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Abstract

We study discrete nonlinear parabolic stochastic heat equations of the
form, un+1(x) − un(x) = (Lun)(x) + σ(un(x))ξn(x), for n ∈ Z+ and
x ∈ Zd, where ξ := {ξn(x)}n≥0,x∈Zd denotes random forcing and L the

generator of a random walk on Zd. Under mild conditions, we prove that
the preceding stochastic PDE has a unique solution that grows at most
exponentially in time. And that, under natural conditions, it is “weakly
intermittent.” Along the way, we establish a comparison principle as well
as a finite-support property.
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1 Introduction

Let us consider a prototypical stochastic heat equation of the following type:∣∣∣∣∣∣
∂u(t , x)
∂t

= (Lu)(t , x) + σ(u(t , x))ξt(x) for t > 0 and x ∈ R,

u(0 , x) = u0(x),
(1.1)

where u0 and σ are known nonrandom functions: u0 is bounded and measurable;
σ : R→ R is Lipschitz continuous; ξ := {ξt}t≥0 is an infinite-dimensional white
noise; and L is an operator acting on the variable x. It is well known that (1.1)
has a unique “mild solution” under natural conditions on ξ and L [14, 15, 22, 35–
37, 44, 45, 51]; we can think of ξ as the “forcing term” as well as the “noise.”
∗Research supported in part by NSF grant DMS-0704024.
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Let us observe that, in (1.1), the operator L and the noise term compete
with one another: L tends to flatten/smooth the solution u, whereas the noise
term tends to make u more irregular. This competition was studied in [21] in
the case that σ := 1 and L := the L2-generator of a Lévy process.

The [parabolic] “Anderson model” is an important special case of (1.1).
In that case one considers L := κ∂xx and σ(z) := νz for fixed ν, κ > 0, and
interprets u(t , x) as the average number of particles—at site x and time t—when
the particles perform independent Brownian motions; every particle splits into
two at rate ξt(x)—when ξt(x) > 0—and is extinguished at rate −ξt(x)—when
ξt(x) < 0. See Carmona and Molchanov [10, Chapter 1] for this, together with
a groundbreaking analysis of the ensuing model. The Anderson model also has
important connections to stochastic analysis, statistical physics, random media,
cosmology, etc. [3, 4, 6–8, 10–13, 19, 22–27, 29, 31–34, 38, 40, 41, 47, 48, 53, 54].

A majority of the sizable literature on the Anderson model is concerned with
establishing a property called “intermittency” [39, 40, 43, 53, 54]. Recall that the
pth moment Liapounov exponent γ(p) is defined as

γ(p) := lim
t→∞

1
t

ln E [u(t , x)p] , (1.2)

provided that the limit exists. The solution u := {u(t , x)}t≥0,x∈Rd to the
parabolic Anderson model is said to be intermittent if γ(p) exists for all p ≥ 1
and p 7→ (γ(p)/p) is strictly increasing on [1 ,∞). This mathematical definition
describes a “separation of scales” phenomena, and is believed to capture many
of the salient features of its physical counterpart in statistical physics and tur-
bulence [2, 39, 43, 50, 54]. For more information see the Introductions of Bertini
and Cancrini [3] and Carmona and Molchanov [10].

Recently [20] we considered (1.1) in a fully nonlinear setting with space-time
white noise ξ and L := the L2-generator of a Lévy process. We showed that if
σ is “asymptotically linear” and u0 is “sufficiently large,” then p 7→ γ̃(p)/p is
strictly increasing on [2 ,∞), where

γ̃(p) := lim sup
t→∞

1
t

ln E (|ut(x)|p) . (1.3)

This gives evidence of intermittency for solutions of stochastic PDEs. Moreover,
bounds on γ̃ were given in terms of the Lipschitz constant of σ and the function

Υ̃(β) :=
1

2π

∫ ∞
−∞

dξ

β + 2Re Ψ(ξ)
, defined for all β > 0, (1.4)

where Ψ denotes the characteristic exponent of the Lévy process generated by
the L. It is precisely this connection between Υ̃ and σ that allows us to describe
a relationship between the smoothing effects of L and the roughening effect of
the underlying forcing terms.

There are two physically-relevant classes of bounded initial data u0 that arise
naturally in the literature [3, 6, 40]: (a) Where u0 is bounded below, away from
zero; and (b) Where u0 has compact support. Our earlier analysis [20] studies
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fairly completely Case (a), but fails to say anything about Case (b). We do not
know much about (b) in fact. Our present goal is to consider instead a discrete
setting in which we are able to analyze Case (b).

There is a large literature on [discrete] partial difference equations of the
heat type; see Agarwal [1] and its many chapter bibliographies. Except for the
work by Zeldovich et al [54, §5], we have found little on fully-discrete stochastic
heat equations (1.1). We will see soon that the discrete setup treated here yields
many of the interesting mathematical features that one might wish for, and at
low technical cost. For instance, we do not presuppose a knowledge of PDEs
and/or stochastic calculus in this paper.

An outline of the paper follows: In §2 we state the main results of the paper;
they are proved in §5, after we establish some auxiliary results in §3 and §4. In
§6 we compute a version of the second-moment [upper] Liapounov exponent of
the solution u to the parabolic Anderson model with temporal noise. From a
physics point of view, that model is only modestly interesting; but it provides a
setting in which we can rigorously verify many of the predictions of the replica
method [31]. The replica method itself will not be used however.

Throughout the paper, we define

‖X‖p := {E(|X|p)}1/p for all X ∈ Lp(P), (1.5)

for every p ∈ [1 ,∞).

2 Main results

Throughout we study the following discrete version of (1.1):

un+1(x)− un(x) = (Lun)(x) + σ(un(x))ξn(x) for n ≥ 0 and x ∈ Zd, (2.1)

with [known] bounded initial function u0 : Zd → R and diffusion σ : R → R.
The operator L acts on x and is the generator of a random walk on Zd.

Let I denote the identity operator and P := L + I the transition operator
for L. Then (2.1) is equivalent to the following recursive relation:

un+1(x) = (Pun)(x) + σ(un(x))ξn(x). (2.2)

Our first contribution is an analysis of (2.1) in the case that the ξ’s are
i.i.d. with common mean 0 and variance 1 [discrete white noise]. The following
function Υ : (1 ,∞)→ R+ is the present analogue of Υ̃ [see (1.4)]:

Υ(λ) :=
1

(2π)d

∫
(−π,π)d

dξ
λ− |φ(ξ)|2

for all λ > 1, (2.3)

where φ denotes the characteristic function of the increments of the walk that
corresponds to L; that is,

φ(ξ) :=
∑
x∈Zd

eix·ξP0,x. (2.4)
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Because Υ is continuous, strictly positive, and strictly decreasing on (1 ,∞),
it has a continuous strictly increasing inverse on (0 ,Υ(1−)). We extend the
definition of that inverse by setting

Υ−1(x) := sup {λ > 1 : Υ(λ) > x} , (2.5)

where sup ∅ := 1. Also, let

Lipσ := sup
x 6=y

|σ(x)− σ(y)|
|x− y|

(2.6)

denote the Lipschitz constant of the function σ [Lipσ can be infinite]. The
following is a discrete counterpart of Theorems 2.1 and 2.7 of [20], and is our
first main result.

Theorem 2.1. Suppose ξ are i.i.d. with mean 0 and variance 1. If u0 is bounded
and σ is Lipschitz continuous, then (2.1) has an a.s.-unique solution u which
satisfies the following: For all p ∈ [2 ,∞),

lim sup
n→∞

1
n

sup
x∈Zd

ln ‖un(x)‖p ≤
1
2

ln Υ−1
(
(cpLipσ)−2

)
, (2.7)

where Υ−1(1/0) := 0 and cp := the optimal constant in Burkholder’s inequality
for discrete-parameter martingales. Conversely, if infx∈Zd u0(x) > 0 and Lσ :=
infz∈R |σ(z)/z| > 0, then

inf
x∈Zd

lim sup
n→∞

1
n

ln ‖un(x)‖p ≥
1
2

ln Υ−1
(
L−2
σ

)
. (2.8)

The exact value of cp is not known [52]. Burkholder’s method itself produces
cp ≤ 18pq1/2 [28, Theorem 2.10, p. 23], where q := p/(p − 1) denotes the
conjugate to p. It is likely that better bounds are known, but we are not aware
of them.

Theorem 2.1 has a continuous counterpart in [20]. Next we point out that
“u0 is bounded below” in Theorem 2.1 can some times be replaced by “u0 has
finite support.” As far as we know, this does not seem to have a continuous
analogue [20]. But first we recall the following standard definition:

Definition 2.2. L is local if there exists R > 0 such that P0,x = 0 if |x| > R.1

Theorem 2.3. Suppose L is local and the ξ’s are i.i.d. with mean 0 and vari-
ance 1. In addition, u0 6≡ 0 has finite support, σ is Lipschitz continuous
with σ(0) = 0, and Lσ := infz∈R |σ(z)/z| > 0. Then, for all p ∈ [2 ,∞),
Mn := supx∈Zd |un(x)| satisfies

1
2

ln Υ−1
(
L−2
σ

)
≤ lim sup

n→∞

1
n

sup
x∈Zd

ln ‖un(x)‖p (2.9)

≤ lim sup
n→∞

1
n

ln ‖Mn‖p ≤
1
2

ln Υ−1
(
(cpLipσ)−2

)
.

1As is sometimes customary, we identify the Fredholm operator Pn with its kernel, which
is merely the n-step transition probability: P n

x,y = P n
0,y−x at (x , y) ∈ Zd × Zd.

4



We define the upper pth-moment Liapounov exponent γ̄(p) as follows:

γ̄(p) := lim sup
n→∞

1
n

sup
x∈Zd

ln E [un(x)p] , (2.10)

Definition 2.4. We say that u := {un(x)}n>0,x∈Zd is weakly intermittent if
γ̄(p) <∞ for all positive and finite p, and p 7→ (γ̄(p)/p) is strictly increasing on
[2 ,∞).

Corollary 2.5. Suppose, in addition to the conditions of Theorem 2.3, that
Cξ := supn≥0 supx∈Zd |ξn(x)| is finite and

P0,0 ≥ CξLipσ. (2.11)

Then (2.1) with has a weakly-intermittent solution.

We emphasize that γ̄(p) is not an exact discrete version of γ̃(p), as it is
missing absolute values.

Our next result concerns the Anderson model with temporal noise. In other
words we consider (2.1) with σ(z) = z, ξn(x) = ξn for all x ∈ Zd, and
ξ := {ξn}∞n=0 = i.i.d. random variables. The present model is motivated by
Mandelbrot’s analysis of random cascades in turbulence [39], and is designed to
showcase a family of examples where the predictions of the replica method of
Kardar [31] can be shown rigorously. We make the following assumptions:

Assumptions 2.6. Suppose:

(a) L is local ;

(b) supn≥0 |ξn| ≤ P0,0 < 1 [lazy, non-degenerate random walk]; and

(c) u0(x) ≥ 0 for all x ∈ Zd, and 0 <
∑
z∈Zd u0(z) <∞.

Then we offer the following.

Theorem 2.7. Under Assumptions 2.6, the Anderson model [(2.1) with σ(z) =
z] has a unique a.s.-nonnegative solution u, and Mn := supx∈Zd un(x) satisfies

lim
n→∞

1
n

ln E (Mp
n) = Γ(p) for all p ∈ [0 ,∞), and

lim
n→∞

1
n

lnMn = lim
n→∞

1
n

E (lnMn) = Γ′(0+) almost surely,
(2.12)

where Γ(p) := ln E[(1 + ξ1)p] for all p > 0.
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3 Some Auxiliary Results

Let us start with a simple existence/growth lemma. Note that σ is not assumed
to be Lipschitz continuous, and the ξ’s need not be random. The proof is not
demanding, but the result itself is unimprovable [Remark 3.2].

Lemma 3.1. Suppose there exist finite Cσ and C̃σ such that |σ(z)| ≤ Cσ|z|+C̃σ
for all z ∈ R. Suppose also that u0 is bounded and Cξ := supn≥0 supx∈Zd |ξn(x)|
is finite. Then (2.1) has a unique solution u that satisfies

lim sup
n→∞

1
n

sup
x∈Zd

ln |un(x)| ≤ ln(1 + CσCξ). (3.1)

Proof. Clearly, ‖Ph‖∞ ≤ ‖h‖∞, where ‖h‖∞ denotes the supremum norm of a
function h : Zd → R. Consequently, (2.2) implies that

‖un+1‖∞ ≤ ‖un‖∞ (1 + CσCξ) + C̃σCξ. (3.2)

We iterate this and apply (2.2) to conclude the proof.

Remark 3.2. Consider (2.1) with u0(x) ≡ 1, σ(z) = z, and ξn(x) ≡ 1. Then,
un(x) = 2n for all n ≥ 0 and x ∈ Zd, and (3.1) is manifestly an identity. The
results of the Introduction show that when the ξ’s are mean-zero and indepen-
dent, then the worst-case rate in (3.1) can be improved upon; this is another
evidence of intermittency.

The following covers the case when ξ’s are random variables. This exis-
tence/growth result is proved in the same manner as Lemma 3.1; we omit the
elementary proof, and also mention that the following cannot be improved upon.

Lemma 3.3. Suppose there exist finite Cσ and C̃σ such that |σ(z)| ≤ Cσ|z|+C̃σ
for all z ∈ R. Suppose also that u0(x) and ‖ξn(x)‖p are bounded uniformly in
x ∈ Zd and n ≥ 0, for some p ∈ [1 ,∞]. Then (2.1) has an a.s.-unique solution
u that satisfies

lim sup
n→∞

1
n

sup
x∈Zd

ln ‖un(x)‖p ≤ ln (1 + CσKp,ξ) , (3.3)

where Kp,ξ := supn≥0 supx∈Zd ‖ξn(x)‖p.

3.1 A finite-support property.

Next we demonstrate that the solution to (2.1) has a finite-support property. A
remarkable result of Mueller [41] asserts that Theorem 3.4 below does not have
a naive continuum-limit analogue. The present work is closer in spirit to the
compact-support theorem of Mueller and Perkins [42].
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Let us consider the heat equation (2.1), and suppose that it has a unique
solution u := {un(x)}n≥0,x∈Zd . We say that a function f : Zd → R has finite
support if {x ∈ Zd : f(x) 6= 0} is finite. Define

Rn := inf
{
r > 0 : un(x) = 0 for all x ∈ Zd such that |x| > r

}
, (3.4)

and let R denote the radius of support of P; that is,

R := inf
{
r > 0 : P0,x = 0 for all x ∈ Zd with |x| > r

}
. (3.5)

Theorem 3.4. Suppose σ(0) = 0 and L is local. If, in addition, u0 has finite
support, then so does un for all n ≥ 1. In fact,

#
{
x ∈ Zd : un+1(x) 6= 0

}
≤ 2d[(n+ 1)R+R0]d for all n ≥ 0. (3.6)

Proof. Suppose there exists n ≥ 0 such that un(x) = 0 for all but a finite number
of points x ∈ Zd. We propose to prove that un+1 enjoys the same finite-support
property. This clearly suffices to prove the theorem. Because un(x) = 0 for all
but a finite number of x’s, (2.2) tells us that for all but a finite number of points
x ∈ Zd, un+1(x) =

∑
y∈Zd:|y−x|≤R Px,yun(y). Thus, if un has finite support

then so does un+1, and Rn+1 ≤ R+Rn. Eq. (3.6) also follows from this.

The locality of L cannot be dropped altogether. This general phenomenon
appears earlier. For instance, Iscoe [30] showed that the super Brownian motion
has a finite-support property, and Evans and Perkins [18] proved that there
Iscoe’s theorem does not hold if the underlying motion is nonlocal.

3.2 A comparison principle

The result of this subsection is a discrete analogue of Mueller’s well-known and
deep comparison principle [41]; but the proof uses very simple ideas. Through-
out we assume that there exist unique solutions v and u to (2.1) with respective
initial data v0 and u0. And assume that σ : R → R is globally Lipschitz with
optimal Lipschitz constant Lipσ.

Theorem 3.5. Suppose Cξ := supn≥0 supx∈Zd |ξn(x)| is finite and satisfies

P0,0 ≥ CξLipσ. (3.7)

Then u0 ≥ v0 implies that un ≥ vn for all n ≥ 0.

Proof. We propose to prove that if un ≥ vn then un+1 ≥ vn+1. Let us write
fk := uk − vk for all k ≥ 0. By (2.2) and (3.7),

fn+1(x) = (Pfn)(x) + [σ(un(x))− σ(vn(x))] ξn(x)
≥ (Pfn)(x)− Lipσ · |fn(x)ξn(x)|
≥ (Pfn)(x)− P0,0 · |fn(x)|.

(3.8)
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But (Ph)(x) =
∑
y∈Zd Px,yh(y) ≥ P0,0 ·h(x) for all x ∈ Zd, as long as h ≥ 0.

By the induction hypothesis, fn is a nonnegative function, and hence so is fn+1.
This has the desired result.

The following “positivity principle” follows readily from Theorem 3.5.

Corollary 3.6. If u0 ≥ 0 in Theorem 3.5, then un ≥ 0 for all n ≥ 0.

4 A priori estimates

In this section we develop some tools needed for the proof of Theorems 2.1 and
2.3. It might help to emphasize that we are considering the case where the
random field ξ := {ξn(x)}n≥0,x∈Zd is [discrete] white noise. That is, the ξ’s are
mutually independent, and have mean 0 and variance 1. [In fact, they will not
be assumed to be identically distributed.] Note, in particular, that K1,ξ = 0
and K2,ξ = 1, where K1,ξ and K2,ξ were defined in Lemma 3.3.

Here and throughout, let G := {Gn}∞n=0 denote the filtration generated by
the infinite-dimensional “white-noise” {ξn}∞n=0. Recall that a random field f :=
{fn(x)}n≥0,x∈Zd is G-predictable if the random function fn is measurable with
respect to Gn−1 for all n ≥ 1, and f0 is nonrandom.

Given a G-predictable random field f and λ > 1, we define

‖f‖λ,p := sup
n≥0

sup
x∈Zd

λ−n‖fn(x)‖p. (4.1)

Define for all G-predictable random fields f ,

(Af)n(x) :=
n∑
j=0

∑
y∈Zd

Pn−jx,y σ(fj(y))ξj(y). (4.2)

We begin by developing an a priori estimate for the operator norm ofA. This
estimate is a discrete Lp-counterpart of Lemma 3.3 in [20] while the continuity
estimates given by Proposition 4.4 is a discrete version of Lemma 3.4 in [20].

Proposition 4.1. For all G-predictable random fields f and all λ > 1,

‖Af‖λ,p ≤ cp(|σ(0)|+ Lipσ‖f‖λ,p) ·
√
λ2Υ(λ2). (4.3)

The proof requires a simple arithmetic result [20, Lemma 3.2]:

Lemma 4.2. (a+ b)2 ≤ (1 + ε)a2 + (1 + ε−1)b2 for all a, b ∈ R and ε > 0.

Hereforth, define

qk :=
∑
z∈Zd

∣∣P k0,z∣∣2 for all k ≥ 0. (4.4)

The proof of Proposition 4.1 also requires the following Fourier-analytic inter-
pretation of the function Υ.
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Lemma 4.3. λΥ(λ) =
∑∞
n=0 λ

−nqn for all λ > 1.

Proof. By the Plancherel theorem [46, p. 26],

qn =
1

(2π)d

∫
(−π,π)d

|φ(ξ)|2n dξ. (4.5)

Multiply the preceding by λ−n and add over all n ≥ 0 to finish.

Proof of Proposition 4.1. According to Burkholder’s inequality,

E (|(Af)n(x)|p) ≤ cppE


∣∣∣∣∣∣
n∑
j=0

∑
y∈Zd

|Pn−jx,y |2 · |σ(fj(y))|2
∣∣∣∣∣∣
p/2
 . (4.6)

Since p/2 is a positive integer, the generalized Hölder inequality yields the fol-
lowing: For all j = 0, . . . , n and y1, . . . , yp/2 ∈ Zd,

E

p/2∏
i=1

|σ(fj(yi))|2
 ≤ p/2∏

i=1

‖σ(fj(yi))‖2p . (4.7)

After a little algebra, the preceding and (4.6) together imply that

‖(Af)n(x)‖2p ≤ c2p
n∑
j=0

∑
y∈Zd

|Pn−jx,y |2 · ‖σ(fj(y))‖2p. (4.8)

Because σ is Lipschitz, |σ(x)| ≤ |σ(0)| + Lipσ|x| for all x ∈ R. Consequently,
by Lemma 4.2 and Minkowski’s inequality,

‖(Af)n(x)‖2p ≤ c2p(1 + ε)|σ(0)|2
n∑
k=0

qk

+ c2p
(
1 + ε−1

)
Lip2

σ

n∑
j=0

∑
y∈Zd

|Pn−jx,y |2 · ‖fj(y)‖2p.
(4.9)

In accord with Lemma 4.3,

n∑
k=0

qk ≤ λ2n+2Υ(λ2) for all n ≥ 0, (4.10)

and also
sup
y∈Zd

‖fj(y)‖2p ≤ λ2j‖f‖2λ,p for all j ≥ 0. (4.11)
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It follows that λ−2n‖(Af)n(x)‖2p is bounded above by

c2p(1 + ε)|σ(0)|2λ2Υ(λ2)

+ c2p
(
1 + ε−1

)
Lip2

σ

n∑
j=0

∑
y∈Zd

|Pn−jx,y |2λ−2(n−j)‖f‖2λ,p.
(4.12)

We now take supremum over all n ≥ 1 and x ∈ Zd, and obtain

‖Af‖2λ,p ≤ c2pλ2Υ(λ2) ·
{

(1 + ε)|σ(0)|2 +
(
1 + ε−1

)
Lip2

σ‖f‖2λ,p
}
. (4.13)

We obtain the result upon optimizing the right-hand side over ε > 0.

Next we present an a priori estimate of the degree to which A is continuous.

Proposition 4.4. For all predictable random fields f and g, and all λ > 1,

‖Af −Ag‖λ,p ≤ cpLipσ‖f − g‖λ,p ·
√
λ2Υ(λ2). (4.14)

Proof. We can, and will, assume without loss of generality that ‖f−g‖λ,p <∞;
else, there is nothing to prove. By using Burkholder’s inequality and arguing as
in the previous Lemma we find that

‖(Af)n(x)− (Ag)n(x)‖2p ≤ c2pLip2
σ ·

n∑
j=0

∑
y∈Zd

|Pn−jx,y |2 · ‖fj(y)− gj(y)‖2p. (4.15)

We can apply (4.11), but with f − g in place of f , and follow the proof of
Lemma 4.3 to finish the proof.

5 Proof of Main results

Before we prove the main results we provide a version of Duhamel’s principle
for discrete equations.

Proposition 5.1 (Duhamel’s principle). Suppose that there exists a unique
solution to (2.1), then for all n ≥ 0 and x ∈ Zd,

un+1(x) = (Pn+1u0)(x) +
n∑
j=0

∑
y∈Zd

Pn−jx,y σ(uj(y))ξj(y) a.s. (5.1)

Remark 5.2. Among other things, Proposition 5.1 implies that {un}∞n=0 is
an infinite-dimensional Markov chain with values in (Zd)Z+ . And that un+1 is
measurable with respect to {ξk(•)}nk=0 for all n ≥ 0.

Proof. One checks directly that (2.2) implies that (Pun)(x) can be written as
(P2un−1)(x)+

∑
y∈Zd Px,yσ(un−1(y))ξn−1(y), and the proposition follows a sim-

ple induction scheme.
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5.1 Remaining proofs

Proof of Theorem 2.1. We proceed in two steps: First we prove uniqueness and
(2.7), and then we establish (2.8).

Step 1: Let f (0)
n (x) := u0(x) for all n ≥ 0 and x ∈ Zd. We recall the operator

A from (4.2), and define iteratively a predictable random field f (`+1) as follows:
f

(`+1)
0 (x) := u0(x) for all x ∈ Zd, and

f
(`+1)
n+1 (x) := (Pn+1u0)(x) +

(
Af (`)

)
n

(x), (5.2)

for integers n, ` ≥ 0 and x ∈ Zd. Proposition 4.1 and induction together imply
that ‖Af (`)‖λ,p <∞ for all λ > 1 and ` ≥ 0. And therefore, ‖f (m)‖λ,p <∞ for
all m ≥ 0 and λ > 1, as well. We multiply (5.2) by λ−n and use the fact that
f

(m)
0 ≡ u0 to obtain

‖f (`+1) − f (`)‖λ,p =
1
λ
‖Af (`) −Af (`−1)‖λ,p. (5.3)

Thus, Proposition 4.4 implies

‖f (`+1) − f (`)‖λ,p ≤ cpLipσ
√

Υ(λ2) · ‖f (`) − f (`−1)‖λ,p. (5.4)

This and iteration together yield

‖f (`+1) − f (`)‖λ,p ≤
(
cpLipσ

√
Υ(λ2)

)`
· ‖f (1) − f (0)‖λ,p. (5.5)

In order to estimate the final (λ , p)-norm we use (5.2) [` := 0] and Minkowski’s
inequality to find that

‖f (1)
n+1 − f

(0)
n+1‖p ≤ 2‖u0(x)‖p + ‖(Af (0))n‖p. (5.6)

We argue as before and use Proposition 4.1 to deduce that ‖f (1) − f (0)‖λ,p is
bounded above by 2‖u0‖λ,p + cp(|σ(0)|+ Lipσ‖u0‖λ,p)

√
Υ(λ2). Thus, by (5.5),

‖f (`+1) − f (`)‖λ,p (5.7)

≤
(
cpLipσ

√
Υ(λ2)

)`
·
{
cp(|σ(0)|+ Lipσ‖u0‖λ,p)

√
Υ(λ2) + 2‖u0‖λ,p

}
.

Consequently, if Υ(λ2) < (cpLipσ)−2 then ‖f (`+1) − f (`)‖λ,p is summable in `.
Whence there exists a predictable f such that ‖f (`) − f‖λ,p tends to zero as `
tends to infinity, and f solves (2.1). Proposition 5.1 implies that fn(x) = un(x)
a.s., for all n ≥ 0 and x ∈ Zd. It follows that ‖u‖λ,p <∞ provided that Υ(λ2) <
(cpLipσ)−2. The first part of the theorem—that is, existence, uniqueness, and
(2.7)—all follow from this finding. We now turn our attention to the second
step of the proof.

11



Step 2: Hereforth, we assume that α := infx∈Zd u0(x) > 0 and |σ(z)| ≥ Lσ|z|
for all z ∈ R. It follows readily from Proposition 5.1 that

E
(
|un+1(x)|2

)
=
∣∣(Pn+1u0)(x)

∣∣2 +
n∑
j=0

∑
y∈Zd

∣∣Pn−jx,y

∣∣2 E
(
|σ(uj(y)|2

)
≥ α2 + L2

σ ·
n∑
j=0

∑
y∈Zd

∣∣∣Pn−j0,y−x

∣∣∣2 E
(
|uj(y)|2

)
.

(5.8)

In order to solve this we define for all λ > 1 and z ∈ Zd,

Fλ(z) :=
∞∑
j=0

λ−j |P j0,z|2 and Gλ(z) :=
∞∑
j=0

λ−jE
(
|uj(z)|2

)
. (5.9)

We can multiply the extreme quantities in (5.8) by λ−(n+1) and add [n ≥ 0] to
find that

Gλ(x) ≥ α2λ

λ− 1
+
L2
σ

λ
· (Fλ ∗ Gλ) (x). (5.10)

This is a renewal inequality [9]; we prove that (5.10) does not have a finite
solution when Υ(λ) ≥ L−2

σ . If 1(x) := 1 for all x ∈ Zd, then (Fλ∗1)(x) = λΥ(λ)
for all x ∈ Zd [Lemma 4.3]. Therefore, (5.10) yields

Gλ(x) ≥ α2λ

λ− 1
+
L2
σ

λ
·
(
α2λ

λ− 1
(Fλ ∗ 1)(x) +

L2
σ

λ
· (Fλ ∗ Fλ ∗ Gλ)(x)

)
=

α2λ

λ− 1
{

1 + Υ(λ)L2
σ

}
+
(
L2
σ

λ

)2

· (Fλ ∗ Fλ ∗ Gλ)(x).

(5.11)

This and induction together imply the following:

Gλ(x) ≥ α2λ

λ− 1

∞∑
n=0

(
Υ(λ)L2

σ

)n
. (5.12)

Consequently, Υ(λ) ≥ L−2
σ implies that Gλ(x) =∞ for all x ∈ Zd. If there exists

a λ0 > 1 such that Υ(λ0) > L−2
σ , then the preceding tells us that Gλ0 ≡ ∞.

Now suppose, in addition, that there exists z ∈ Zd such that

E
(
|un(z)|2

)
= O(λn0 ). (5.13)

Then by the continuity of Υ we can choose a finite λ > λ0 such that Υ(λ) ≥ L−2
σ ,

whence Gλ ≡ ∞. This yields a contradiction, since (5.13) implies that Gλ(z) ≤
const×

∑∞
n=0(λ0/λ)n <∞. We have verified (2.8) when p = 2. An application

of Hölder inequality proves (2.8) for all p ≥ 2, whence the theorem.

Proof of Theorem 2.3. Because u0 has finite support, it is bounded. Therefore,
Theorem 2.1 ensures the existence of an a.s.-unique solution u to (2.1).

12



Choose and fix p ∈ [2 ,∞), and let Lp(Zd) denote the usual space of p-times
summable functions f : Zd → R, normed via

‖f‖p
Lp(Zd)

:=
∑
x∈Zd

|f(x)|p. (5.14)

We also define m to be the counting measure on Zd and consider the Banach
space B := Lp(m×P), all the time noting that for all random functions g ∈ B,

‖g‖B =

∣∣∣∣∣∣E
∑
x∈Zd

|g(x)|p
∣∣∣∣∣∣

1/p

. (5.15)

Evidently, u0 ∈ Lp(Zd); we claim that

1
2

ln Υ−1
(
L−2
σ

)
≤ lim sup

n→∞

1
n

ln ‖un‖B ≤
1
2

ln Υ−1
(
(cpLipσ)−2

)
. (5.16)

For every λ > 1 we define B(λ) to be the Banach space of all G-predictable
processes f with ‖f‖B(λ) <∞, where

‖f‖B(λ) := sup
n≥0

λ−n‖fn‖B. (5.17)

Note that ‖f‖λ,p ≤ ‖f‖B(λ).
Since u0 has finite support, we can use Theorem 3.4 to write

‖un‖B = O(nd/p)× sup
x∈Zd

‖un(x)‖p. (5.18)

Therefore, the following is valid for all λ ∈ (0 ,∞):

‖u‖B(λ) ≤ const · sup
n≥0

(
nd/pλ−n sup

x∈Zd

‖un(x)‖p
)
. (5.19)

As a result, if we select λ > λ0 >
1
2Υ−1((cpLipσ)−2)), then

‖u‖λ,p ≤ const× ‖u‖B(λ0) <∞, (5.20)

thanks to the upper bound of Theorem 2.1. It follows immediately from this
that lim supn→∞ n−1 ln ‖un‖B ≤ λ0 for all finite λ0 >

1
2Υ−1((cpLipσ)−2). The

second inequality in (5.16) is thus proved. Next we derive the first inequality in
(5.16).

Thanks to Jensen’s inequality, it suffices to consider only the case p = 2.
According to (2.2),

E
(
|un+1(x)|2

)
≥
∣∣(Pn+1u0)(x)

∣∣2 + L2
σ ·

n∑
j=0

∑
y∈Zd

∣∣Pn−jx,y

∣∣2 E
(
|uj(y)|2

)
. (5.21)
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Consequently,

‖un+1‖2B ≥ ‖u0‖2L2(Zd) + L2
σ ·

n∑
j=0

qn−j‖uj‖2B. (5.22)

We multiply both sides by λ−(n+1), then sum from n = 0 to n =∞ and finally
apply Lemma 4.3, in order to obtain the following:

∞∑
n=1

λ−n ‖un‖2B ≥
1

λ− 1
· ‖u0‖2L2(Zd) + L2

σΥ(λ) ·
∞∑
k=0

λ−k ‖uk‖2B . (5.23)

Because u0 6≡ 0, we have (λ − 1)−1 · ‖u0‖2L2(Zd) > 0, and this shows that∑∞
n=1 λ

−n‖un‖2B = ∞ whenever L2
σΥ(λ) ≥ 1. In particular, it must follow

that lim supn→∞ ρ−n‖un‖2B = ∞ whenever ρ ∈ (1 , λ]. This implies the first
inequality in (5.16).

Now we can conclude the proof from (5.16). According to Theorem 3.4,

sup
x∈Zd

‖un(x)‖2 ≤ ‖un‖B ≤ O(nd/2)× sup
x∈Zd

‖Mn‖2. (5.24)

Therefore, (5.16) implies the theorem.

Before we prove Corollary 2.5 we state and prove an elementary convexity
lemma that is due essentially to Carmona and Molchanov [6, Theorem III.1.2,
p. 55].

Lemma 5.3. Suppose un(x) ≥ 0 for all n ≥ 0 and x ∈ Zd, γ̄(p) < ∞ for all
p <∞ and γ̄(2) > 0. Then, u is weakly intermittent.

Proof. Because u is nonnegative,

γ̄(α) = lim sup
n→∞

1
n

ln E [un(x)α] for all α ≥ 0. (5.25)

Thanks to Proposition 5.1, E[un(x)] = (Pnu0)(x) is bounded above uniformly
by supx u0(x), which is finite. Consequently,

γ̄(1) = 0 < γ̄(2). (5.26)

Next we claim that γ̄ is convex on R+. Indeed, for all a, b ≥ 0 and λ ∈ (0 , 1),
Hölder’s inequality yields the following: For all s ∈ (1 ,∞) with t := s/(s− 1),

E
[
un(x)λa+(1−λ)b

]
≤
{

E
[
un(x)sλa

]}1/s
{

E
[
un(x)t(1−λ)b

]}1/t

. (5.27)

Choose s := 1/λ to deduce the convexity of γ̄ from (5.25).
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Now we complete the proof: By (5.26) and convexity, γ̄(p) > 0 for all p ≥ 2.
If p′ > p ≥ 2, then we write p = λp′ + (1− λ)—with λ := (p− 1)/(p′ − 1)—and
apply convexity to conclude that

γ̄(p) ≤ λγ̄(p′) + (1− λ)γ̄(1) =
p− 1
p′ − 1

γ̄(p′). (5.28)

Since (5.28) holds in particular with p ≡ 2, it implies that γ̄(p′) > 0. And the
lemma follows from (5.28) and the inequality (p− 1)/(p′ − 1) < p/p′.

Proof of Corollary 2.5. Condition 3.7 and Theorem 3.5 imply that un(x) ≥ 0,
and hence (5.25) holds. Now “γ̄(2) > 0” and “γ̄(p) <∞ for p > 2” both follow
from the Theorem 2.3, and Lemma 5.3 completes the proof.

Proof of Theorem 2.7. The assertion about the existence and uniqueness of the
solution to the Anderson model (2.1) with σ(z) := z follows from Lemma 3.1.
The solution is nonnegative by Lemma 3.6. Now we prove the claims about the
growth of the solution u.

It is possible to check that Un :=
∑
x∈Zd un(x) can be written out explicitly

as Un = U0 ×
∏n
j=1(1 + ξj). Since 0 < U0 < ∞, Kolmogorov’s strong law of

large numbers implies that almost surely,

lim
n→∞

1
n

lnUn = lim
n→∞

1
n

E [lnUn] = E [ln(1 + ξ1)] = Γ′(0+). (5.29)

Also, limn→∞ n−1 ln E (Upn) = Γ(p) for all p ≥ 0. Because Mn ≤ Un, we have

lim sup
n→∞

1
n

lnMn ≤ Γ′(0+) a.s., lim sup
n→∞

1
n

E (lnMn) ≤ Γ′(0+), and

lim sup
n→∞

1
n

ln E (Mp
n) ≤ Γ(p) for all p ∈ [0 ,∞).

(5.30)

Next we strive to establish the complementary inequalities to these.
In order to derive the second, and final, half of the theorem we choose and

fix some x0 ∈ Zd such that u0(x0) > 0. Let v := {vn(x)}n≥0,x∈Zd solve (2.1)
with σ(z) = z, subject to v0(x) = u0(x0) if x = x0 and v0(x) = 0 otherwise.
The existence and uniqueness of v follows from Lemma 3.1. By Corollary 3.6,

0 ≤ vn(x) ≤ un(x) for all n ≥ 0 and x ∈ Zd. (5.31)

Let Vn :=
∑
x∈Zd vn(x). Then,

lim
n→∞

1
n

lnVn = lim
n→∞

1
n

E [lnVn] = E [ln(1 + ξ1)] = Γ′(0+). (5.32)

Also, limn→∞ n−1 ln E (V pn ) = Γ(p) for all p ∈ [0 ,∞). Recall R from (3.5).
Because v0 = 0 off of {x0}, (3.6) implies that Vn ≤ 2d{nR+1}d×supx∈Zd vn(x).
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Owing to Theorem 3.5, supx∈Zd vn(x) ≤Mn. Therefore,

lim inf
n→∞

1
n

lnMn ≥ Γ′(0+), lim inf
n→∞

1
n

E (lnMn) ≥ Γ′(0+), and

lim inf
n→∞

1
n

ln E (Mp
n) ≥ Γ(p) for all p ∈ [0 ,∞).

(5.33)

Together with (5.30), these bounds prove Theorem 2.7.

6 An example

Let us consider (2.1) in the special case that: (i) ξ’s are independent mean-zero
variance-one random variables; (ii) σ(z) = νz for a fixed ν > 0; (iii) u0 has finite
support; and (iv) L is the generator of a simple symmetric random walk on Z.
That is,

(Lh)(x) =
h(x+ 1) + h(x− 1)− 2h(x)

2
, (6.1)

for every function h : Z→ R and all x ∈ Z. The operator 2L is called the graph
Laplacian on Z, and the resulting form,

un+1(x)− un(x) = (Lun)(x) + νun(x)ξn(x), (6.2)

of (2.1) is an Anderson model of a parabolic type [6, 40]. Theorems 2.1 and
2.3 together imply that the upper Liapounov exponent of the solution to (2.1)
is ln Υ−1(ν−2) in this case. We compute the quantity Υ−1(ν−2) next. The
following might suggest that one cannot hope to compute upper Liapounov
exponents explicitly in general.

Proposition 6.1. If ν > 0, then

Υ−1
(
ν−2

)
= inf

{
λ > 1 : 1F1

(
1
2

; 1 ;
1
λ

)
<

λ

ν2

}
. (6.3)

Proof. Recall the qk’s from (4.4). According to Plancherel’s theorem and sym-
metry,

qn =
1
π

∫ π

0

(
1 + cos(2ξ)

2

)n
dξ. (6.4)

We may apply the half-angle formula for cosines, and then Wallis’s formula
(Davis [16, 6.1.49, p. 258]), in order to find that if n ≥ 1 then

qn =
(2n− 1)!!

(2n)!!
, (6.5)
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where “!!” denotes the double factorial. Therefore, 1F1(1/2 ; 1 ; •) is the gener-
ating function of the sequence {qn}∞n=0; confer with Slater [49, 13.1.2, p. 504].
This and Lemma 4.3 together prove that

λΥ(λ) = 1F1

(
1
2

; 1 ;
1
λ

)
, (6.6)

and the lemma follows since Υ is a continuous and strictly decreasing function
on (0 ,∞).
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[27] Gyöngy, István and David Nualart (1999). On the stochastic Burgers’ equation
in the real line, Ann. Probab. 27(2), 782–802.

[28] Hall, P and Heyde, C. C (1980). Martingale limit theory and its application,
Academic Press.

[29] Hofsted, Remco van der, Wolfgang König, and Peter Mörters (2006). The uni-
versality classes in the parabolic Anderson model, Comm. Math. Phys. 267(2),
307–353.

[30] Iscoe, I. (1988). On the supports of measure-valued critical branching Brownian
motion, Ann. Probab. 16(1), 200–221.

[31] Kardar, Mehran (1987). Replica Bethe ansatz studies of two-dimensional inter-
faces with quenched random impurities, Nuclear Phys. B290, 582–602.

18



[32] Kardar, Mehran, Giorgio Parisi, and Yi-Cheng Zhang (1986). Dynamic scaling of
growing interfaces, Phys. Rev. Lett. 56(9), 889–892.

[33] König, Wolfgang, Hubert Lacoin, Peter Mörters, and Nadia Sidorova (2008). A
two cities theorem for the parabolic Anderson model, Ann. Probab. (to appear)

[34] Krug, J. and H. Spohn (1991). Kinetic roughening of growing surfaces, in: Solids
Far From Equilibrium: Growth, Morphology, and Defects (C. Godrèche, editor),
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tions, in: École d’été de probabilités de Saint-Flour XIV, 1984, pp. 265–439,
Lecture Notes in Math. 1180, Springer, Berlin.

[52] Wang, Gang (1991). Sharp inequalities for the conditional square function of a
martingale, Ann. Probab. 19(4), 1679–1688.

[53] Zeldovich, Ya. B., S. A. Molchanov, A. A. Ruzmaikin, and D. D. Sokolov (1988).
Intermittency, diffusion, and generation in a nonstationary random medium, Sov.
Sci. Rev. C. Math. Phys. 7, 1–110.

[54] Zeldovich, Ya. B., S. A. Molchanov, A. A. Ruzmaikin, and D. D. Sokolov (1985).
Intermittency of passive fields in random media, J. of Experimental and Theoreti-
cal Physics [actual journal title: �urnal eksperimental~no� i teoretiq-
esko� fiziki] 89[6(12)], 2061–2072. (In Russian)

Mohammud Foondun & Davar Khoshnevisan
Department of Mathematics, University of Utah, Salt Lake City, UT 84112-0090
Emails: mohammud@math.utah.edu & davar@math.utah.edu

URLs: http://www.math.utah.edu/~mohammud & http://www.math.utah.edu/~davar

20


