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Abstract

Consider the semi-discrete semi-linear Itô stochastic heat equation,

∂tut(x) = (L ut)(x) + σ(ut(x)) ∂tBt(x),

started at a non-random bounded initial profile u0 : Zd → R+. Here:
{B(x)}x∈Zd is an field of i.i.d. Brownian motions; L denotes the generator
of a continuous-time random walk on Zd; and σ : R → R is Lipschitz
continuous and non-random with σ(0) = 0. The main findings of this
paper are:

(i) The kth moment Lyapunov exponent of u grows exactly as k2;

(ii) The following random Radon–Nikodým theorem holds:

lim
τ↓0

ut+τ (x)− ut(x)

Bt+τ (x)−Bt(x)
= σ(ut(x)) in probability;

(iii) Under some non-degeneracy conditions, there often exists a “scale
function” S : R→ (0 ,∞), such that the finite-dimensional distribu-
tions of x 7→ {S(ut+τ (x))−S(ut(x))}/

√
τ converge to those of white

noise as τ ↓ 0; and

(iv) When the underlying walk is transient and the “‘noise level is suffi-
ciently low,” the solution can be a.s. uniformly dissipative provided
that u0 ∈ `1(Zd).
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1 Introduction

Consider the following semi-discrete stochastic heat equation,

dut(x)

dt
= (L ut)(x) + σ(ut(x))

dBt(x)

dt
, (SHE)

where {B(x)}x∈Zd is a field of independent standard linear Brownian motions,
L denotes the generator of a continuous-time random walk X := {Xt}t>0 :=

{
∑Nt
j=1 Zj}t>0 on Zd where Nt is a Poisson process with jump-rate one and

the Zj ’s are i.i.d. random variables taking values on Zd, and σ : R → R is a
Lipschitz-continuous non-random function with

σ(0) = 0. (1.1)

It is well-known that if the initial state u0 : Zd → R is non-random and
bounded, then (SHE) has an a.s.-unique solution in the sense of K. Itô; see for
example Shiga and Shimizu [36]. We will concentrate only on the case that

u0(x) > 0 for all x ∈ Zd, and sup
x∈Zd

u0(x) > 0, (1.2)

though some of our theory works for more general initial functions, as well.
Semi-discrete stochastic partial differential equations such as (SHE) have

been studied at great length [12, 13, 17–21, 25, 28, 31, 35, 36], most commonly in
the context of well-established models of statistical mechanics or population
genetics.

The purpose of this article is to highlight some subtle local and global fea-
tures of the solution to (SHE). For our first result, consider the [maximal] kth
moment Lyapunov exponents

γ
k
(u) := lim inf

t→∞
sup
x∈Zd

1

t
log E

(
|ut(x)|k

)
,

γk(u) := lim sup
t→∞

sup
x∈Zd

1

t
log E

(
|ut(x)|k

)
.

(1.3)

In the very important special case that σ(x) ∝ x and L := the generator of a
simple symmetric walk on Zd—this is the socalled parabolic Anderson model—it
is the frequently the case that

γ
k
(u) = γk(u) <∞ for all k > 2. (1.4)

More significantly, it is frequently the case that γ
k
(u) > 0 for all k > 2 if and

only d ∈ {1 , 2}; see the memoir of Carmona and Molchanov [13] for these results
in the case that u0 is a constant, for instance.

In the present non-linear setting, one does not expect the equality of the
Lyapunov exponents γ

k
(u) and γk(u). Still, our first result shows that, under

some “intermittency conditions,” the Lyapunov exponents are always positive
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and finite, and that the kth moment Lyapunov exponents grow as k2, as k →∞.
This is contrast with continuous SPDEs where the Lyapunov exponents typically
grow exactly as k3 as k →∞ [4–7, 24].

With the preceding aims in mind, let us define

Lipσ := sup
−∞<x 6=y<∞

∣∣∣∣σ(x)− σ(y)

x− y

∣∣∣∣ , `σ := inf
x∈R

∣∣∣∣σ(x)

x

∣∣∣∣ . (1.5)

Note, in particular, that `σ|x| 6 |σ(x)| 6 Lipσ|x| (x ∈ R) by (1.1); the upper
bound is always finite, and the lower bound is > 0 for x 6= 0 iff `σ > 0.

The following result makes the previous assertions more precise. For the sake
of completeness, we include also a careful existence-uniqueness and positivity
statements, since those assertions are free byproducts of the proofs of the main
part of the theorem, which involves the numerical [upper and lower] bounds on
the growth of the Lyapunov exponents.

Theorem 1.1. The non-linear stochastic heat equation (SHE) has a solution u
that is continuous in the variable t, and is unique among all predictable random
fields that satisfy supt∈[0,T ] supx∈Zd E(|ut(x)|2) <∞ for all T > 0. Moreover,

γk(u) 6 8Lip2
σk

2 for all integers k > 2. (1.6)

Furthermore, ut(x) > 0 for all t > 0 and x ∈ Zd a.s., provided that u0(x) > 0
for all x ∈ Zd. Finally, if `σ > 0 and σ(x) > 0 for all x > 0, then for all
ε ∈ (0 , 1),

γ
k
(u) > (1− ε)`2σk2 for every integer k > ε−1 + (ε`2σ)−1. (1.7)

Standard moment methods—which we will have to reproduce here as well—
show that t 7→ ut(x) is almost surely a Hölder-continuous random function for
every Hölder exponent < 1/2. The following proves that the Hölder exponent
1/2 is sharp.

Theorem 1.2 (A Radon–Nikodým property). For every t > 0 and x ∈ Zd,

lim
τ↓0

ut+τ (x)− ut(x)

Bt+τ (x)−Bt(x)
= σ (ut(x)) almost surely. (1.8)

In addition,

lim sup
τ↓0

ut+τ (x)− ut(x)√
2τ log log(1/τ)

= − lim inf
τ↓0

ut+τ (x)− ut(x)√
2τ log log(1/τ)

= |σ (ut(x))| , (1.9)

almost surely.

Remark 1.3. Local iterated-logarithm laws, such as (1.9) are well known in the
context of finite-dimensional diffusions; see for instance Anderson [3, Theorem
4.1]. The time-change methods employed in the finite-dimensional setting will,
however, not work effectively in the present infinite-dimensional context. Here,
we obtain (1.9) as a ready consequence of the proof of the “random Radon–
Nikodým property” (1.8).
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Remark 1.4. Let us fix an x ∈ Zd and a t > 0, and let us consider R(τ) :=
[ut+τ (x) − ut(x)]/[Bt+τ (x) − Bt(x)]; this is a well-defined random variable for
every τ > 0, since Bt+τ (x) − Bt(x) 6= 0 with probability one for every τ > 0.
However, {R(τ)}τ>0 is not a well-defined stochastic process since there exists
random times τ > 0 such that Bt+τ (x) − Bt(x) = 0 a.s. Thus, one does not
expect that the mode of convergence in (1.8) can be improved to almost-sure
convergence. This statement can be strengthened further still, but we will not
do so here.

According to (1.8), the solution to the stochastic heat equation behaves as
the non-interacting system “dut(x) ≈ σ(ut(x))dBt(x)” of diffusions, locally to
first order. This might seem to suggest the [false] assertion that x 7→ ut(x) ought
to be a sequence of independent random variables. That is not the case, as can
be seen by looking more closely at the time increments of t 7→ ut(x). In fact,
our arguments can be extended to show that the spatial correlation structure
of u appears at second-order approximation levels in the sense of the following
three–term stochastic Taylor expansion in the scale τ 1/2:

ut+τ (x) ' ut(x) + τ
1/2σ(ut(x))Z1 + τZ2 + τ

3/2U(τ) as τ ↓ 0, (1.10)

where: (i) “'” denotes approximation in the sense of distributions; (ii) Z1 is a
standard normal variable independent of ut(x); (iii) Z2 is a non-trivial random
variable that depends on the entire random field {us(y)}s∈[0,t],y∈Zd ; and (iv)
U(τ) = OP(1) as τ ↓ 0. The latter means that limm↑∞ lim supτ↓0 P{|U(τ)| >
m} = 0. In particular, (1.10) tells us that the temporally-local interactions in
the random field x 7→ ut(x) are second order in nature.

Rather than prove these refined assertions, we next turn our attention to a
different local property of the solution to (SHE) and show that, after a scale
change, the local-in-time behavior of the solution to (SHE) is that of spatial
white noise. Namely, we offer the following:

Theorem 1.5. Suppose σ(z) > 0 for all z ∈ R \ {0}, and define

S(z) :=

∫ z

z0

dw

σ(w)
(z > 0), (1.11)

where z0 ∈ R\{0} is a fixed number. Then, S(ut(x)) <∞ a.s. for all t > 0 and
x ∈ Zd. Furthermore, if we choose and fix m distinct points x1, . . . , xm ∈ Zd,
then for all t > 0 and q1, . . . , qm ∈ R,

lim
τ↓0

P

 m⋂
j=1

{
S (ut+τ (xj))− S (ut(xj)) 6 qj

√
τ
} =

m∏
j=1

Φ(qj), (1.12)

where Φ(q) := (2π)−1/2
∫ q
−∞ exp(−w2/2) dw denotes the standard Gaussian cu-

mulative distribution function.

The preceding manifests itself in amusing ways for different choices of the
non-linearity coefficient σ. Let us mention the following parabolic Anderson
model, which has been a motivating example for us.
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Example 1.6. Consider the semi-discrete parabolic Anderson model, which is
(SHE) with σ(x) = c|x| [for some fixed constant c > 0]. In that case, the solution
to (SHE) is positive [if u0 is] and the “scale function” S is S(z) = c−1 ln(z/z0)
for z, z0 > 0. As such, σ(ut(x)) = cut(x) in (SHE), and we find the following
log-normal limit law: For every t > 0 and x1, . . . , xm ∈ Zd fixed,([

ut+τ (x1)

ut(x1)

]1/√τ
, . . . ,

[
ut+τ (xm)

ut(xm)

]1/√τ)
=⇒ (ecN1 , . . . , ecNm), (1.13)

as τ ↓ 0, where N1 , . . . , Nm are i.i.d. standard normal variables, and “⇒”
denotes convergence in distribution.

Our final main result is a statement about the large-time behavior of the
solution u to (SHE). We intend to prove a rigorous version of the following as-
sertion: “If the random walk X is transient and Lipσ is sufficiently small —so
that (SHE) is not very noisy—then a decay condition such as u0 ∈ `1(Zd) on
the initial profile is enough to ensure that supx∈Zd |ut(x)| → 0 almost surely as
t → ∞.” This is new even for the parabolic Anderson model, where σ(x) ∝ x
and L := the generator of the simple walk on Zd. In fact, this result gives a
partial [though strong] negative answer to an open problem of Carmona and
Molchanov [13, p. 122] and rules out the existence of [the analogue of] a non-
trivial “Anderson mobility edge” in the present non-stationary setting, when
u0 ∈ `1(Zd). We are aware only of one such non-existence theorem, this time
for the original stationary Anderson model on “tree graphs”; see the recent
paper by Aizenman and Warzel [2].

Recall that X := {Xt}t>0 is a continuous-time random walk on Zd with
generator L . Let X ′ denote an independent copy of X, and define

Υ(0) :=

∫ ∞
0

P{Xt = X ′t} dt = E

∫ ∞
0

1{0}(Xt −X ′t) dt. (1.14)

We can think of Υ(0) as the expected value of the total occupation time of {0},
as viewed by the symmetrized random walk X −X ′. Although Υ(0) is always
well defined, it is finite if and only if the symmetrized random walk X −X ′ is
transient [14]. We are ready to state our final result.

Theorem 1.7. Suppose that

Lipσ < [Υ(0)]
−1/2

, (1.15)

and that there exists α ∈ (1 ,∞) such that

P{Xt = X ′t} = O(t−α) (t→∞), (1.16)

where X ′ denotes an independent copy of X. If, in addition, u0 ∈ `1(Zd) and
the underlying probability space is complete, then

lim
t→∞

sup
x∈Zd

|ut(x)| = lim
t→∞

∑
x∈Zd

|ut(x)|2 = 0 almost surely. (1.17)
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Remark 1.8 (Hysteresis). Consider the parabolic Anderson model [σ(x) ∝ x],
where the underlying symmetrized walk X − X ′ is transient, the noise level
is small, and u0 is a constant. It is well known that, under these conditions,
ut(x) converges weakly as t → ∞ to a non-void random variable u∞(x) for
every x ∈ Zd. See, for example, Greven and den Hollander [28, Theorem 1.4],
Cox and Greven [18], and Shiga [35]. These results provide a partial affirmative
answer to a question of Carmona and Molchanov [13, p. 122] about the existence
of long-term invariant laws in the low-noise regime of the transient parabolic
Anderson model, in particular. By contrast, Theorem 1.7 shows that if u0 is
far from stationary [here, it decays at infinity], then the system is very strongly
dissipative in the low-noise regime. Among other strange things, this result has
the consequence that the parabolic Anderson model remembers its initial state
forever.

Remark 1.9. Continuous-time walks that have the property (1.16) include all
transient finite-variance centered random walks on Zd [d > 2, necessarily]. For
those walks, α := d/2, thanks to the local central limit theorem. There are more
interesting examples as well. For instance, suppose t−1/pXt converges in distri-
bution to a stable random variable S as t→∞. [See Gnedenko and Kolmogorov
[27, §35] for necessary and sufficient conditions.] Then, S is necessarily stable
with index p, p ∈ (0 , 2], and t−1/p(Xt − X ′t) converges in law to a symmetric
stable random variable S with stability index p. If, in addition, the group of all
possible values of Xt−X ′t generates all of Zd, then a theorem of Gnedenko [27,
p. 236] ensures that t1/pP{Xt = X ′t} converges to f(0) < ∞, where f denotes
the probability density function of S, as long as p ∈ (0 , 1).

We close this introduction with some background on Burkholder’s constants.
According to the Burkholder–Davis–Gundy inequality [8–10],

zp := sup
x

sup
t>0

 E (|xt|p)

E
(
〈x〉p/2t

)
1/p

<∞, (1.18)

where the supremum “supx” is taken over all non-zero martinagles x := {xt}t>0

that have continuous trajectories and are in L2(P) at all times, 〈x〉t denotes
the quadratic variation of x at time t, and 0/0 := ∞/∞ := 0. Davis [22] has
computed the numerical value of zp in terms of zeroes of special functions. In
the special case that p = k where k > 2 an integer, Davis’ theorem implies that
zk is equal to the largest positive root of the modified Hermite polynomial Hek.
Thus, for example, we obtain the following from direct evaluation of the zeros:

z2 = 1, z3 =
√

3, z4 =

√
3 +
√

6 ≈ 2.334,

z5 =

√
5 +
√

10 ≈ 2.857, z6 ≈ 3.324, . . . .

(1.19)

It is known that zp ∼ 2
√
p as p → ∞, and supp>2(zp/

√
p) = 2; see Carlen

and Kree [11, Appendix].
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2 Preliminaries

2.1 The mild solution

As is customary, by a “solution” to (SHE) we mean a solution in integrated—or

“mild”—form. That is, a predictable process t 7→ ut, with values in RZd , that
solves the following infinite system of Itô SDEs:

ut(x) = (p̃t ∗ u0)(x) +
∑
y∈Zd

∫ t

0

pt−s(y − x)σ(us(y)) dBs(y); (2.1)

where pt(x) := P{Xt = x},

(f ∗ g)(x) :=
∑
y∈Zd

f(x− y)g(y) (x ∈ Zd) (2.2)

denotes the convolution on Zd; and for every function h : Zd → R we define a
new function h̃,

h̃(x) := h(−x) (x ∈ Zd), (2.3)

as the reflection of h.
It might be helpful to note also that (Ptφ)(x) := (p̃t ∗ φ) (x) defines the

semigroup of the random walk X via the identity (Ptφ)(x) = Eφ(x+Xt). Thus
we can write (2.1) in the following, perhaps more familar, form:

ut(x) = (Ptu0)(x) +
∑
y∈Zd

∫ t

0

pt−s(y − x)σ(us(y)) dBs(y), (2.4)

2.2 A BDG inequality

Suppose Z := {Zt(x)}t>0,x∈Zd is a predictable random field, with respect to
the infinite-dimensional Brownian motion {Bt(•)}t>0, that satisfies the moment

bound E
∫ t
0
‖Zs‖2`2(Zd) ds <∞. Then, the Itô integral process defined by∫ t

0

Zs · dBs :=
∑
y∈Zd

∫ t

0

Zs(y) dBs(y) (t > 0) (2.5)

exists and defines a continuous L2(P) martingale. This is part of the standard
folklore of infinite-dimensional stochastic analysis; see for example Prévôt and
Röckner [33]. The following variation of the Burkholder–Davis–Gundy inequal-
ity yields moment bounds for that martingale that also pay special attention to
the constants in such inequalities.

Lemma 2.1 (BDG Lemma). For all finite real numbers k > 2 and t > 0,

E

(∣∣∣∣∫ t

0

Zs · dBs

∣∣∣∣k
)

6

∣∣∣∣∣∣4k
∑
y∈Zd

∫ t

0

{
E
(
|Zs(y)|k

)}2/k
ds

∣∣∣∣∣∣
k/2

. (2.6)
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Proof. We follow a method of Foondun and Khoshnevisan [24].
A standard approximation argument tells us that it suffices to consider

the case that y 7→ Zs(y) has finite support. To be concrete, let F ⊂ Zd

be a finite set of cardinality m > 1, and suppose Zs(y) = 0 for all y 6∈ F .

Consider the [standard, finite-dimensional] Itô integral process
∫ t
0
Zs · dBs :=∑

y∈F
∫ t
0
Zs(y) dBs(y). According to Davis’ [22] form of the Burkholder–Davis–

Gundy inequality m-dimensional Brownian motion [8–10],

E

(∣∣∣∣∫ t

0

Zs · dBs
∣∣∣∣k
)

6 zkkE


∣∣∣∣∣∣
∑
y∈F

∫ t

0

[Zs(y)]2 ds

∣∣∣∣∣∣
k/2
 . (2.7)

Finally, we use the Carlen–Kree bound zk 6 2
√
k [11] together with the Minkowski

inequality to finish the proof in the case that F is finite. A standard finite-
dimensional approximation completes the proof.

3 Proof of Theorem 1.1: Part 1

Existence and uniqueness, and also continuity, of the solution are dealt with
extensively in the literature and are well known; see for example Shiga and
Shimizu [36], and the general theory of Prévot and Röckner [33] for some of the
latest developments. However, in order to derive our estimates of the Lyapunov
exponents we will need a priori estimates which will also yield existence and
uniqueness. Therefore, in this section, we hash out some—though not all—of
the details.

Let us proceed by applying Picard iteration. Let u
(0)
t (x) := u0(x), and then

define iteratively for all n > 0,

u
(n+1)
t (x) := (p̃t ∗ u0)(x) +

∑
y∈Zd

∫ t

0

pt−s(y − x)σ
(
u(n)s (y)

)
dBs(y). (3.1)

It follows from the properties of the Itô integral that

M
(n+1)
t := sup

x∈Zd
E
(
|u(n+1)
t (x)|k

)
6 2k−1 sup

x∈Zd
(Ix + Jx), (3.2)

where

Ix := |(pt ∗ u0)(x)|k ,

Jx := E


∣∣∣∣∣∣
∑
y∈Zd

∫ t

0

pt−s(y − x)σ
(
u(n)s (y)

)
dBs(y)

∣∣∣∣∣∣
k
 .

(3.3)

The first term is easy to bound:

sup
x∈Zd

Ix 6 ‖u0‖k`∞(Zd), (3.4)
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since
∑
x pt(x) = 1. Next we bound Jx.

Because σ is Lipschitz continuous and σ(0) = 0, we can see that |σ(z)| 6
Lipσ|z| for all z ∈ R. Thus, we may use the BDG lemma [Lemma 2.1] in order
to see that

J2/k
x 6 4kLip2

σ

∑
y∈Zd

∫ t

0

[pt−s(y − x)]2
{

E

(∣∣∣u(n)s (y)
∣∣∣k)}2/k

ds. (3.5)

Therefore, we may recall the inductive definition (3.2) of M to see that

J2/k
x 6 4kLip2

σ

∑
y∈Zd

∫ t

0

[pt−s(y − x)]2
(
M (n)
s

)2/k
ds

6 4kLip2
σ

∫ t

0

(
M (n)
s

)2/k
ds,

(3.6)

since ∑
z∈Zd

[pr(z)]
2 = P{Xr = X ′r} 6 1, (3.7)

where X ′ denotes an independent copy of X. [This last bound might appear
to be quite crude, and it is when r is large. However, it turns out that the
behavior of r near zero matters more to us. Therefore, the inequality is tight in
the regime r ≈ 0 of interest to us.]

We may combine (3.2), (3.4), and (3.6) in order to see that for all β, t > 0,

e−βtM
(n+1)
t (3.8)

6 2k−1‖u0‖k`∞(Zd) + (16kLip2
σ)k/2

∣∣∣∣∫ t

0

e−2β(t−s)/k
(

e−βsM (n)
s

)2/k
ds

∣∣∣∣k/2 .
Consequently, the sequence defined by

N
(m)
β := sup

t>0

(
e−βtM

(m)
t

)
(m > 0) (3.9)

satisfies the recursive inequality

N
(n+1)
β 6 2k−1‖u0‖k`∞(Zd) + (16kLip2

σ)k/2
∣∣∣∣∫ t

0

e−2βs/k ds

∣∣∣∣k/2N (n)
β

6 2k−1‖u0‖k`∞(Zd) +

(
8k2Lip2

σ

β

)k/2
N

(n)
β .

(3.10)

In particular, if we denote [temporarily for this proof]

α := 8(1 + δ)Lip2
σ, (3.11)

where δ > 0 is fixed but arbitrary, then

N
(n+1)
αk2 6 2k−1‖u0‖k`∞(Zd) + (1 + δ)−k/2N

(n)
αk2 . (3.12)
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We may apply induction on n now in order to see that supn>0N
(n)
αk2 < ∞;

equivalently, for all k > 2 there exists ck ∈ (0 ,∞) such that

sup
x∈Zd

E

(∣∣∣u(n)t (x)
∣∣∣k) 6 cke8(1+δ)Lip

2
σk

2t for all t > 0. (3.13)

Similarly,

E

(∣∣∣u(n+1)
t (x)− u(n)t (x)

∣∣∣k) (3.14)

= E


∣∣∣∣∣∣
∑
y∈Zd

∫ t

0

pt−s(y − x)
{
σ
(
u(n)s (y)

)
− σ

(
u(n−1)s (y)

)}
dBs(y)

∣∣∣∣∣∣
k


6 (4kLip2
σ)k/2E


∣∣∣∣∣∣
∑
y∈Zd

∫ t

0

[pt−s(y − x)]
2
{
u(n)s (y)− u(n−1)s (y)

}2

ds

∣∣∣∣∣∣
k/2
 .

Define

L
(n+1)
t := sup

x∈Zd
E

(∣∣∣u(n+1)
t (x)− u(n)t (x)

∣∣∣k) (3.15)

to deduce from the preceding, (3.7), and Minkowski’s inequality that

L
(n+1)
t 6 (4kLip2

σ)k/2

∑
y∈Zd

∫ t

0

[pt−s(y − x)]
2
(
L(n)
s

)2/k
ds

k/2

6 (4kLip2
σ)k/2

(∫ t

0

(
L(n)
s

)2/k
ds

)k/2
.

(3.16)

Therefore,

K
(m)
αk2 = sup

t>0

(
e−αk

2tL
(m)
t

)
(3.17)

satisfies

K
(n+1)
αk2 6 (4kLip2

σ)k/2
(∫ t

0

e−2αk(t−s) ds

)k/2
K

(n)
αk2 6

(
4Lip2

σ

2α

)k/2
K

(n)
αk2

6 2−kK
(n)
αk2 . (3.18)

From this we can conclude that
∑∞
n=0K

(n)
αk2 < ∞. Therefore, there exists a

random field ut(x) such that limn→∞ u
(n)
t (x) = ut(x), where the limit takes

place in Lk(P). It follows readily that u solves (SHE), and u satisfies (1.6)
thanks to (3.13) and Fatou’s lemma. Uniqueness is proved by similar means,
and we skip the details.
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4 A local approximation theorem

In this section we develop a description of the local dynamics of the random
field t 7→ ut(•) in the form of several approximation results.

Our first approximation lemma is a standard sample-function continuity
result; it states basically that outside a single null set,

ut+τ (x) = ut(x) +O
(
τ (1+o(1))/2

)
as τ → 0, for all t > 0 and x ∈ Zd. (4.1)

The result is well known, but we need to be cautious with various constants
that crop up in the proof. Therefore, we include the details to account for the
dependencies of the implied constants.

Lemma 4.1. There exists a version of u that is a.s. continuous in t with critical
Hölder exponent > 1/2. In fact, for every T > 1, ε ∈ (0 , 1) and k > 2,

sup
x∈Zd

sup
I

E

 sup
s,t∈I
s6=t

[
|ut(x)− us(x)|
|t− s|(1−ε)/2

]k <∞, (4.2)

where “ supI” denotes the supremum over all closed subintervals I of [0 , T ] that
have length 6 1.

Proof. Owing to Minkowski’s inequality,{
E
(
|ut+τ (x)− ut(x)|k

)}1/k

6 |Q1|+Q2 +Q3, (4.3)

where

Q1 := (p̃t+τ ∗ u0)(x)− (p̃t ∗ u0)(x),

Q2 :=

E


∣∣∣∣∣∣
∑
y∈Zd

∫ t

0

[pt+τ−s(y − x)− pt−s(y − x)]σ(us(y)) dBs(y)

∣∣∣∣∣∣
k



1/k

,

Q3 :=

E


∣∣∣∣∣∣
∑
y∈Zd

∫ t+τ

t

pt+τ−s(y − x)σ(us(y)) dBs(y)

∣∣∣∣∣∣
k



1/k

. (4.4)

We estimate each item in turn.
Let Jt,t+τ denote the event that the random walk X jumps some time during

the time interval (t , t+ τ). Because∑
x∈Zd

|pt+τ (x)− pt(x)| =
∑
x∈Zd

∣∣E (1{Xt+τ=x} − 1{Xt=x}; Jt,t+τ
)∣∣

6 2P(Jt,t+τ ) = 2
(
1− e−τ

)
6 2τ,

(4.5)
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we obtain the following estimate for |Q1|:

|Q1| 6 2‖u0‖`∞(Zd)τ. (4.6)

By the BDG Lemma 2.1,

Q2
2 6 4k

∑
y∈Zd

∫ t

0

[pt+τ−s(y − x)− pt−s(y − x)]
2
{

E
(
|σ(us(y))|k

)}2/k

ds

6 4k

∫ t

0

Q(s) sup
y∈Zd

{
E
(
|σ(us(y))|k

)}2/k

ds, (4.7)

where
Q(s) :=

∑
z∈Zd

|pt+τ−s(z)− pt−s(z)|2 (0 < s < t). (4.8)

It is possible to find a real-variable estimate for Q(s) using (4.5); namely, Q(s) 6∑
z∈Zd |pt+τ−s(z) − pt−s(z)| 6 2τ. Unfortunately, this is not good enough for

our present needs; we need to do a little better by showing that Q(s) 6 2τ2:

Recall that we can represent Xt :=
∑N(t)
j=0 Yj , where Y0 := 0, {Yj}∞j=1 is a

sequence of i.i.d. random variables and {N(t)}t>0 is an independent rate-one
Poisson process. Let ϕ(ξ) := E exp(iξ · Y1) denote the characteristic function
of the increments of the continuous-time random walk X. It is an exercise in
Poissonization that

Eeiξ·Xt = e−t(1−ϕ(ξ)) for all ξ ∈ Rd and t > 0. (4.9)

Therefore, we appeal to the Parseval identity and find that

Q(s) = (2π)−d
∫
[−π,π]d

∣∣∣e−(t+τ−s)(1−ϕ(ξ)) − e−(t−s)(1−ϕ(ξ))
∣∣∣2 dξ 6 2τ2, (4.10)

uniformly for all s ∈ (0 , t). This shows that

Q2
2 6 8kτ2

∫ t

0

sup
y∈Zd

{
E
(
|σ(us(y))|k

)}2/k

ds.

Because |σ(z)| 6 Lipσ|z| for all z ∈ R, the already-proved bound (1.6) tells us
that there exist constants c, ck ∈ (0 ,∞) [k > 2] such that

sup
y∈Zd

E
(
|σ(us(y))|k

)
6 ckkeck

2s for all integers k > 2 and s > 0. (4.11)

Therefore,
Q2

2 6 4c−1c2ke2cktτ2. (4.12)

Finally, we apply the BDG Lemma 2.1 to see that

Q2
3 6 4k

∑
y∈Zd

∫ t+τ

t

[pt+τ−s(y − x)]
2
{

E
(
|σ(us(y))|k

)}2/k

ds

6 4kc2k
∑
y∈Zd

∫ t+τ

t

[pt+τ−s(y − x)]
2

e2cks ds,

(4.13)
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owing to (4.11). Because
∑
y∈Zd [ph(y − x)]2 6 1 for all h > 0, we find that

Q2
3 6 2c2ke2ck(t+τ)τ. (4.14)

We combine (4.6), (4.12), and (4.14) and find that for all integers k > 2, there
exists a finite and positive constant ã := ã(T, k) such that for every τ ∈ (0 , 1),

sup
x∈Zd

sup
t∈(0,T )

E
(
|ut+τ (x)− ut(x)|k

)
6 ãeãT τk/2. (4.15)

The lemma follows from this bound, and an application of a quantitative form
of the Kolmogorov continuity theorem [34, Theorem 2.1, p. 25]. We omit the
remaining details, as they are nowadays standard.

Our second approximation lemma yields a truncation error estimate for the
nonlinearity σ.

Lemma 4.2. Let U
(N)
t (x) denote the a.s.-unique solution to (SHE) where σ

is replaced by σ(N), where σ(N) = σ on (−N ,N), σ(N) = 0 on [−N − 1 , N +
1]c, and defined by linear interpolation on [−N − 1 ,−N ] ∪ [N ,N + 1]. Then,

limN→∞ U
(N)
t (x) = ut(x) almost surely and in Lk(P) for all k > 2, t > 0, and

x ∈ Zd.

Proof. Since σ(N) is Lipschitz continuous, Theorem 1.1 ensures the existence
and uniqueness of U (N) for every N > 1. Next we note, using (2.1), that

ut(x)− U (N)
t (x) = T1 + T2, (4.16)

where:

T1 :=
∑
y∈Zd

∫ t

0

pt−s(y − x){σ(us(y))− σ(N)(us(y)}dBs(y);

T2 :=
∑
y∈Zd

∫ t

0

pt−s(y − x)
{
σ(N)(us(y))− σ(N)

(
U (N)
s (y)

)}
dBs(y).

(4.17)

Because |σ(z)| 6 Lipσ|z|, Lemma 2.1 implies that
{

E(|T1|k)
}2/k

is at most

4kLip2
σ

∑
y∈Zd

∫ t

0

[pt−s(y − x)]2
{

E
(
|us(y)|k ; |us(y)| > N

)}2/k

ds. (4.18)

We have E(|Y |k; |Y | > N) 6 N−kE(Y 2k), valid for all 2k-times integrable
random variables Y . Therefore,

{
E(|T1|k)

}2/k
6

4kLip2
σ

N2

∑
y∈Zd

∫ t

0

[pt−s(y − x)]2
{

E
(
|us(y)|2k

)}2/k

ds. (4.19)
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Because
∑
y∈Zd [pt−s(y − x)]2 6 1, the already-proved bound (1.6) tells us that

{
E(|T1|k)

}2/k
6

ak
N2

∫ t

0

e128Lip
2
σks ds 6

AakeAkt

N2
, (4.20)

where ak and A are uninteresting finite and positive constants; moreover, ak
depends only on k. This estimates the norm of T1.

As for T2, we use the simple inequality |σ(N)(r) − σ(N)(ρ)| 6 C|r − ρ|,
together with the BDG Lemma 2.1 in order to find that

{
E
(
|T2|k

)}2/k
6 bk

∫ t

0

sup
y∈Zd

{
E

(∣∣∣us(y)− U (N)
s (y)

∣∣∣k)}2/k

ds, (4.21)

where bk is a constant dependent on σ and k. Consequently, we combine these
bounds to deduce that

D
(N)
t := sup

x∈Zd

{
E

(∣∣∣ut(x)− U (N)
t (x)

∣∣∣k)}2/k

(4.22)

satisfies the recursion

D
(N)
t 6

ãkeÃk
2t

N2
+ b̃k

∫ t

0

D(N)
s ds, (4.23)

where ãk, b̃k, and Ã are positive and finite constants, and the first two depend
only on k [whereas the latter is universal]. An application of the Gronwall

inequality shows that supt∈[0,T ]D
(N)
t = O(N−2) as N → ∞, for every fixed

value T ∈ (0 ,∞). This is more than enough to yield the lemma.

Our next approximation result is the highlight of this section, and refines
(4.1) by inspecting more closely the main contribution to the O(τ (1+o(1))/2)
error term in (4.1). In order to describe the next approximation result, we first
define for every fixed t > 0 an infinite-dimensional Brownian motion B(t) as
follows:

B(t)
τ (x) := Bτ+t(x)−Bt(x) (x ∈ Zd, τ > 0). (4.24)

If we continue to hold t fixed, then it is easy to see that {B(t)
• (x)}x∈Zd is a

collection of independent d-dimensional Brownian motions. Furthermore, the
entire process B(t) is independent of the infinite-dimensional random variable
ut(•), since it is easy to see from the proof of the first part of Theorem 1.1 that
ut is a measurable function of {Bs(y)}s∈[0,t],y∈Zd , which is therefore independent

of B(t) by the Markov property of B. Now for every fixed t > 0 and x ∈ Zd,

consider the solution u
(t)
• (x) to the following [autonomous/non-interacting] Itô

stochastic differential equation: du
(t)
τ (x)

dτ
=

d(p̃τ ∗ ut)(x)

dτ
+ σ

(
u(t)τ (x)

) dB
(t)
τ (x)

dτ
,

subject to u
(t)
0 (x) = ut(x).

(4.25)
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Note, once again, that B(t) is independent of ut(•). Moreover,

sup
τ>0

E
(
|(p̃τ ∗ ut) (x)|2

)
6 sup
y∈Zd

E
(
|ut(y)|2

)
<∞, (4.26)

thanks to the already-proved bound (1.6) and Cauchy–Schwarz inequality. There-
fore, (4.25) is a standard Itô-type SDE, and hence has a unique strong solution.

Theorem 4.3 (The local-diffusion property). For every t > 0, the following
holds a.s. for all x ∈ Zd:

ut+τ (x) = u(t)τ (x) +O
(
τ

3/2+o(1)
)

as τ ↓ 0. (4.27)

The proof of Theorem 4.3 hinges on three technical lemmas that we state
next.

Lemma 4.4. Choose and fix t > 0, τ ∈ [0 , 1], and x ∈ Zd, and define

A :=
∑
y∈Zd

∫ t+τ

t

pt+τ−s(y − x)σ(us(y)) dBs(y),

B :=

∫ t+τ

t

σ(us(x)) dBs(x).

(4.28)

Then, for all real numbers k > 2 there exist a finite constant Ck > 0—depending
on k but not on (t , τ, x)—and a finite constant C > 0—not depending on
(t , τ, x , k)—such that

E
(
|A −B|k

)
6 CkeCk

2(t+1)τ3k/2. (4.29)

Lemma 4.5. For every k > 2 and T > 1 there exists a finite constant C(k , T )
such that for every τ ∈ (0 , 1],

sup
t∈[0,T ]

sup
x∈Zd

E

(∣∣∣ut+τ (x)− u(t)τ (x)
∣∣∣k) 6 C(k , T )τ3k/2. (4.30)

Lemma 4.6. There exists a version of u(•) that is a.s. continuous in (t , τ).
Moreover, for every T > 1, ε ∈ (0 , 1) and k > 2,

sup
t∈[0,T ]

sup
x∈Zd

sup
I

E

 sup
ν,µ∈I
ν 6=µ

[
|u(t)ν (x)− u(t)µ (x)|
|ν − µ|(1−ε)/2

]k <∞, (4.31)

where “ supI” denotes the supremum over all closed subintervals I of [0 , T ] that
have length 6 1.

In order to maintain the flow of the discussion we prove Theorem 4.3 first.
Then we conclude this section by establishing the three supporting lemmas
mentioned above.
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Proof of Theorem 4.3. Throughout the proof we choose and fix some t ∈ [0 , T ]
and x ∈ Zd.

Our plan is to prove that for all δ ∈ (0 , 1/2),

ut+τ (x)− u(t)τ (x) = O
(
τ

3/2−δ
)

as τ ↓ 0, a.s. (4.32)

Henceforth, we choose and fix some δ ∈ (0 , 1/2), and denote by Ak, A
′
k, A

′′
k , etc.

finite constants that depend only on a parameter k > 2 that will be selected
later on during the course of the proof.

Thanks to Lemma 4.5, for all k > 2 and τ ∈ [0 , 1],

P

{∣∣∣ut+τ (x)− u(t)τ (x)
∣∣∣ > 1

3
τ

3/2−δ
}

6 C(k , T )τ δk. (4.33)

We can choose k large enough and then apply the Borel–Cantelli lemma in order
to deduce that with probability one,∣∣∣ut+τn(x)− u(t)τn (x)

∣∣∣ < τ
3/2−δ
n for all but a finite number of n’s, (4.34)

where τn := nδ−(1/2). Because τn − τn+1 ∼ const × n−1τn as n → ∞, Hölder
continuity ensures the following [Lemmas 4.1 and 4.6]: Uniformly for all τ ∈
[τn+1, τn],

|ut+τ (x)− ut+τn(x)|+
∣∣∣u(t)τn (x)− u(t)τ (x)

∣∣∣ = O
(

[τn/n]
1/2−δ

)
a.s.

= O
(
τ

3/2−δ
n

)
,

(4.35)

thanks to the particular choice of the sequence {τn}∞n=1. The preceding two
displays can now be combined to imply (4.27).

Proof of Lemma 4.4. We may rewrite B as follows:

B =
∑
y∈Zd

∫ t+τ

t

1{0}(y − x)σ(us(y)) dBs(y). (4.36)

Therefore, the BDG Lemma 2.1 can be used to show that{
E
(
|A −B|k

)}2/k

6 4k
∑
y∈Zd

∫ t+τ

t

[
pt+τ−s(y − x)− 1{0}(y − x)

]2 {
E
(
|σ(us(y))|k

)}2/k

ds

6 4kc2ke2ck(t+1)

 ∑
y∈Zd\{0}

∫ τ

0

[ps(y)]
2

ds+

∫ τ

0

[1− ps(0)]
2
ds

 (4.37)

6 4kc2ke2ck(t+1)2

∫ τ

0

[1− ps(0)]
2
ds,
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where c, ck appear in (4.11). Next we might observe that ps(0) = P{Xs =
0} > P{Ns = 0} = e−s, where {Ns}s>0 denotes the underlying Poisson clock.

Therefore, we obtain
∫ τ
0

[1− ps(0)]
2

ds 6 (1/3)τ3, and hence

E
(
|A −B|k

)
6 (8/3)k/2kk/2ckkeck

2(t+1)τ3k/2. (4.38)

This implies the lemma.

Proof of Lemma 4.5. In accord with (2.1), we may write ut+τ (x) as

(p̃t+τ ∗ u0) (x) +
∑
y∈Zd

∫ t

0

pt+τ−s(y − x)σ(us(y)) dBs(y) + A , (4.39)

where A was defined in Lemma 4.4.
By the Chapman–Kolmogorov property of the transition functions {pt}t>0,

(p̃τ ∗ ut)(x) = (p̃t+τ ∗ u0)(x) +
∑
y∈Zd

∫ t

0

pt+τ−s(y − x)σ (us(y)) dBs(y). (4.40)

The exchange of summation with stochastic integration can be justified, using
the already-proved moment bound (1.6) of Theorem 1.1; we omit the details.
Instead, let us apply this in (4.39) to see that

ut+τ (x) = (p̃τ ∗ ut)(x) +

∫ t+τ

t

σ(us(x)) dBs(x) + (A −B)

= (p̃τ ∗ ut)(x) +

∫ τ

0

σ(ut+s(x)) dsB
(t)
s (x) + (A −B) .

(4.41)

Lemma 4.4 implies that for all k > 2, t, τ > 0, and x ∈ Zd,

E

(∣∣∣∣ut+τ (x)− (p̃τ ∗ ut)(x)−
∫ τ

0

σ(ut+s(x)) dsB
(t)
s (x)

∣∣∣∣k
)

6 akeak
2(t+1)τ3k/2,

(4.42)

where a ∈ (0 ,∞) is universal and ak ∈ (0 ,∞) depends only on k. On the other
hand,

u(t)τ (x)− (p̃τ ∗ ut)(x)−
∫ τ

0

σ
(
u(t)s (x)

)
dB(t)

s (x) = 0 a.s., (4.43)

by the very definition of u(t), and thank to the fact that u
(t)
0 (y) = ut(y). The

preceding two displays and Minkowski’s inequality that

ψ(τ) :=

{
E

(∣∣∣ut+τ (x)− u(t)τ (x)
∣∣∣k)}1/k

6 a
1/k
k eak(t+1)τ3/2 +Q, (4.44)
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where

Q :=

{
E

(∣∣∣∣∫ τ

0

[
σ(ut+s(x))− σ

(
u(t)s (x)

)]
dsB

(t)
s (x)

∣∣∣∣k
)}1/k

. (4.45)

According to the BDG Lemma 2.1 [actually we need a one-dimensional version
of that lemma only], and since |σ(r)− σ(ρ)| 6 Lipσ|r − ρ|,

Q2 6 4kLip2
σ

∫ τ

0

{
E

(∣∣∣ut+s(x)− u(t)s (x)
∣∣∣k)}2/k

ds

= 4kLip2
σ

∫ τ

0

[ψ(s)]2 ds.

(4.46)

Thus, we find that

[ψ(τ)]2 6 2a
2/k
k e2ak(t+1)τ3 + 8kLip2

σ

∫ τ

0

[ψ(s)]2 ds for all 0 6 τ 6 1. (4.47)

The lemma follows from this and an application of Gronwall’s lemma.

Proof of Lemma 4.6. One can model closely a proof after that of Lemma 4.1.
However we omit the details, since this is a result about finite-dimensional
diffusions and as such simpler than Lemma 4.1.

We conclude this section with a final approximation lemma. The next as-
sertion shows that the solution to (SHE) depends continuously on its initial
function [in a suitable topology].

Lemma 4.7. Let u and v denote the unique solutions to (SHE), corresponding
respectively to initial functions u0 and v0. Then,

sup
x∈Zd

E
(
|ut(x)− vt(x)|2

)
6 ‖u0 − v0‖2`∞(Zd)e

Lip2
σt for all t > 0. (4.48)

Proof. Choose and fix t > 0. The fact that
∑
y∈Zd pt(y) = 1 alone ensures that

sup
x∈Zd

|(p̃t ∗ u0) (x)− (p̃t ∗ v0) (x)| 6 ‖u0 − v0‖`∞(Zd). (4.49)

Therefore, (2.1) and Itô’s isometry together imply that

E
(
|ut(x)− vt(x)|2

)
(4.50)

6 ‖u0 − v0‖2`∞(Zd) + Lip2
σ

∫ t

0

‖ps‖2`2(Zd) · sup
y∈Zd

E
(
|us(y)− vs(y)|2

)
ds.

Since ‖ps‖2`2(Zd) = P{Xs = X ′s} 6 1, where X ′ is an independent copy of X, we

may conclude that f(t) := supx∈Zd E(|ut(x)− vt(x)|2) satisfies

f(t) 6 ‖u0 − v0‖2`∞(Zd) + Lip2
σ

∫ t

0

f(s) ds. (4.51)

Therefore, the lemma follows from Gronwall’s inequality.
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5 Proof of Theorem 1.1: Part 2

We now return to the proof of Theorem 1.1, and complete it by verifying the two
remaining assertions of that theorem: (i) The solution is nonnegative because
u0(x) > 0 and σ(0) = 0; and (ii) The lower bound (1.7) for the lower Lyapunov
exponent holds. It is best to keep the two parts separate, as they use different
ideas.

Theorem 5.1 (Comparison principle). Suppose u and v are the solutions to
(SHE) with respective initial functions u0 and v0. If u0(x) > v0(x) for all
x ∈ Zd, then ut(x) > vt(x) for all t > 0 and x ∈ Zd a.s.

The nonnegativity assertion of Theorem 1.1 is well known [35], but also
follows from the preceding comparison principle. This is because the condition
(1.1) implies that vt(x) ≡ 0 is the unique solution to (SHE) with initial condition
v0(x) ≡ 0. Therefore, the comparison principle yields ut(x) > vt(x) = 0 a.s.

Proof of Theorem 5.1. Consider the following infinite dimensional SDE:

wt(x) = w0(x) +

∫ t

0

(Lws)(x) ds+

∫ t

0

σ(ws(x))dBs(x) (x ∈ Zd). (5.1)

It is a well-known fact that the mild solution to (SHE) is also a solution in
the weak sense. See, for example, Theorem 3.1 of Iwata [30] and its proof.
Therefore, ut(x) and vt(x) respectively solve (5.1) with initial conditions u0(x)
and v0(x).

Let {Sn}∞n=1 denote a growing sequence of finite subsets of Zd that exhaust
all of Zd. Consider, for every n > 1, the stochastic integral equation,w(n)
t (x) = w0(x) +

∫ t

0

(Lw(n)
s )(x) ds+

∫ t

0

σ(w(n)
s (x))dBs(x) if x ∈ Sn;

w
(n)
t (x) = w0(x) if x /∈ Sn.

(5.2)

Similarly, we let v(n) solve the same equation, but start it as v0(x).
Each of these equations is in fact a finite-dimensional SDE, and has a unique

strong solution, by Itô’s theory. Moreover, Shiga and Shimizu’s proof of their
Theorem 2.1 [36] shows that, for every x ∈ Zd and t > 0, there exists a subse-
quence {nk}∞k=1 of increasing integers such that

w
(nk)
t (x)

P−→ wt(x) and v
(nk)
t (x)

P−→ vt(x), (5.3)

as k → ∞. Therefore, we may appeal to a comparison principle for finite-
dimensional SDEs, such as that of Geiß and Manthey [26, Theorem 1.2], in
order to conclude the result; the quasi-monotonicity condition of [26] is met
simply because L is the generator of a Markov chain. The verification of that
small detail is left to the interested reader.

We are now in position to establish the lower bound (1.7) on the bottom
Lyapunov exponent of the solution to (SHE).
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Proof of Theorem 1.1: Verification of (1.7). Let v solve the stochastic heat equa-
tion

dvt(x) = (L vt)(x) dt+ `σvt(x) dBt(x), (5.4)

subject to v0(x) := u0(x). Also define V (N) to be the solution to

dV
(N)
t (x) = (L vt)(x) dt+ ζ(N)

(
V

(N)
t (x)

)
dBt(x), (5.5)

where ζ(N)(x) = `σx on (−N ,N), ζ(N)(x) = 0 when |x| > N + 1, and ζ(N) is
defined by linear interpolation everywhere else.

Define σ(N) and U (N) as in Lemma 4.2. Because σ(N) > ζ(N) everywhere on
R+, and since both U (N) and V (N) are > 0 a.s. and pointwise, the comparison
theorem of Cox, Fleischmann, and Greven [17, Theorem 1] shows us that

E

(∣∣∣V (N)
t (x)

∣∣∣k) 6 E

(∣∣∣U (N)
t (x)

∣∣∣k) , (5.6)

for all t > 0, x ∈ Zd, k > 2, and N > 1. Let N → ∞ and apply Lemma

4.2 to find that V
(N)
t (x) → vt(x) and U

(N)
t (x) → ut(x) in Lk(P) for all k > 2.

Therefore, the preceding display shows us that

E
(
|vt(x)|k

)
6 E

(
|ut(x)|k

)
. (5.7)

Therefore, it suffices to bound γ
k
(v) from below.

Let {X(i)}ki=1 denote k independent copies of the random walk X. Then it
is possible to prove that

E
(
|vt(x)|k

)
= E

 k∏
j=1

u0

(
X

(j)
t + x

)
· eMk(t)

 , (5.8)

where Mk(t) denotes the “multiple collision local time,”

Mk(t) := 2`2σ
∑∑
16i<j6k

∫ t

0

1{0}

(
X(i)
s −X(j)

s

)
ds. (5.9)

In the case that X is the continuous-time simple random walk on Zd, this is a
well-known consequence of a Feynman–Kac formula; see, for instance, Carmona
and Molchanov [13, p. 19]. When X is replaced by a Lévy process, Conus [15]
has found an elegant derivation of this formula. The class of all Lévy processes
includes that of continuous-time random walks, whence follows (5.8).

Finally, we note that if every walk X(1), . . . , X(k) does not jump in the time
interval [0 , t], then certainly

k∏
j=1

u0

(
X(j) + x

)
eMk(t) > [u0(x)]kek(k−1)`

2
σt. (5.10)
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Since the probability is exp(−t) that X(j) does not jump in [0 , t], it follows from
the independence of X(1), . . . , X(k) that

E
(
|vt(x)|k

)
> [u0(x)]k exp

{[
k(k − 1)`2σ − k

]
t
}
, (5.11)

whence
γ
k
(u) > γ

k
(v) > k(k − 1)`2σ − k, (5.12)

since u0 is not identically zero. If k is at least ε−1 + (ε`2σ)−1, then we certainly
have k(k − 1)`2σ − k > (1− ε)k2`2σ, and the theorem follows.

6 Proof of Theorem 1.2

Theorem 1.2 is a consequence of the following result.

Proposition 6.1. For every t > 0, the following holds a.s. for all x ∈ Zd:

ut+τ (x)− ut(x) = σ (ut(x)) {Bt+τ (x)−Bt(x)}+ o
(
τ1+o(1)

)
as τ ↓ 0. (6.1)

Indeed, we obtain (1.8) from this proposition, simply because well-known
properties of Brownian motion imply that for all ε ∈ (0 , 1/2) and t > 0,

lim
τ↓0

τ1−ε

Bt+τ (x)−Bt(x)
= 0 in probability. (6.2)

Moreover, (1.9) follows from the local law of the iterated logarithm for Brownian
motion. It remains to prove Proposition 6.1.

Proof. According to (4.42), for every integer k > 2, and all t, τ > 0 and x ∈ Zd,

E

(∣∣∣∣ut+τ (x)− ut(x)−
∫ τ

0

σ(ut+s(x)) dsB
(t)
s (x)

∣∣∣∣k
)

6 2k−1
[
akeak

2(t+1)τ3k/2 + E
(
|ut(x)− (p̃τ ∗ ut) (x)|k

)]
.

(6.3)

We may write

E
(
|ut(x)− (p̃τ ∗ ut) (x)|k

)
= E


∣∣∣∣∣∣ut(x)−

∑
y∈Zd

pτ (y − x)ut(y)

∣∣∣∣∣∣
k


= E


∣∣∣∣∣∣ut(x)P{Xτ 6= 0} −

∑
y∈Zd\{x}

pτ (y − x)ut(y)

∣∣∣∣∣∣
k
 .

(6.4)

21



Because P{Xτ 6= 0} = 1− exp(−τ) 6 τ , Minkowski’s inequality shows that{
E
(
|ut(x)− (p̃τ ∗ ut) (x)|k

)}1/k

6 τ
{

E
(
|ut(x)|k

)}1/k
+

∑
y∈Zd\{x}

pτ (y − x)
{

E
(
|ut(y)|k

)}1/k
6 2τ sup

y∈Zd

{
E
(
|ut(y)|k

)}1/k
.

(6.5)

We can conclude from this development, and from Theorem 1.1, that there
exists Ak <∞, depending only on k, and a universal A <∞ such that

E

(∣∣∣∣ut+τ (x)− ut(x)−
∫ τ

0

σ(ut+s(x)) dsB
(t)
s (x)

∣∣∣∣k
)

6 AkeAk
2(t+1)

[
τ3k/2 + τk

]
6 AkeAk

2(t+1)τk,

(6.6)

for all τ ∈ [0 , 1]. Now, we may apply the BDG Lemma 2.1 in order to see that{
E

(∣∣∣∣∫ τ

0

σ(ut+s(x)) dsB
(t)
s (x)− σ(ut(x))B(t)

τ (x) + σ(ut(x))Bt0(x)

∣∣∣∣k
)}2/k

=

{
E

(∣∣∣∣∫ τ

0

{σ(ut+s(x))− σ(ut(x))} dsB
(t)
s (x)

∣∣∣∣k
)}2/k

6 4kLip2
σ

∫ τ

0

{
E
(
|ut+s(x)− ut(x)|k

)}2/k

ds.

(6.7)

Thanks to (4.15),

sup
x∈Zd

{
E

(∣∣∣∣∫ τ

0

σ(ut+s(x)) dsB
(t)
s (x)− σ(ut(x))B(t)

τ (x)

∣∣∣∣k
)}2/k

6 ãkeãt
∫ τ

0

sds 6 const · τ2.

(6.8)

Therefore, we can deduce from (6.6) that

E
(
|D(τ)|k

)
6 ck,tτ

k (0 6 τ 6 1), (6.9)

where

D(τ) := ut+τ (x)− ut(x)− σ(ut(x)) {Bt+τ (x)−Bt(x)} , (6.10)

and ck,t is a finite constant that depends only on k and t; in particular, ck,t
does not depend on τ . Now we choose and fix some η > ξ > 0 such that
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η+ξ < 1/2, and then apply the Chebyshev inequality, and the preceding with any
choice of integer k > ξ−1, in order to see that

∑∞
n=1 P{|D(n−η)| > n−(η−ξ)} 6

ck,t
∑∞
n=1 n

−ξk <∞. Thus,

D
(
n−η

)
= O

(
n−(η−ξ)

)
a.s., (6.11)

thanks to the Borel–Cantelli lemma. Because n−η− (n+ 1)−η = O(n−1−η), the
modulus of continuity of Brownian motion, together with Lemma 4.1, imply
that

sup
(n+1)−η6τ6n−η

∣∣D (n−η)−D(τ)
∣∣ = O

(
n−

1/2
)

= o
(
n−(η+ξ)

)
a.s. (6.12)

Therefore a standard monotonicity argument and (6.11) together reveal that
D(t) = O(t(η−ξ)/η) as t ↓ 0, a.s. Since η > ξ are arbitrary positive numbers, it
follows that lim supt↓0(logD(t)/ log t) 6 1 a.s. This is another way to state the
result.

7 Proof of Theorem 1.5.

First we prove a preliminary lemma that guarantees strict positivity of the
solution to the (SHE). We follow the method described in Conus, Joseph, and
Khoshnevisan [16, Theorem 5.1], which in turn borrowed heavily from ideas of
Mueller [31] and Mueller and Nualart [32].

Lemma 7.1. inf06t6T ut(x) > 0 a.s. for every T ∈ (0 ,∞) and all x ∈ Zd that
satisfy u0(x) > 0.

Proof. We are going to prove that if u0(x0) > 0 for a fixed x ∈ Zd, then there
exist finite and positive constants A and C such that

P

{
inf

0<s<t
us(x0) 6 ε

}
6 AεC log | log ε|, (7.1)

for that same point x0, uniformly for all ε ∈ (0 , 1). It turns out to be convenient
to prove the following equivalent formulation of the preceding:

P

{
inf

0<s<t
us(x0) 6 e−n

}
6 An−Cn, (7.2)

simultaneously for all n > 1, after a possible relabeling of the constants A,C ∈
(0 ,∞). If so, then we can simply let n → ∞ and deduce the lemma. Without
loss of too much generality we assume that u0(0) > 0, and aim to prove (7.2)
with x0 = 0. In fact, we will simplify the exposition further and establish (7.2)
in the case that u0(0) = 1; the general case follows from this one and scaling.
Finally, we appeal to the comparison theorem (Theorem 5.1) in order to reduce
our problem further to the special case that

u0(x) = δ0(x) for all x ∈ Zd. (7.3)
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Thus, we consider this case only from now on.
Let Ft := σ{Bs(x) : x ∈ Zd, 0 < s 6 t} describe the filtration generated by

time t by all the Brownian motions, enlarged so that t 7→ ut is a C(R)-valued
[strong] Markov chain. Set T0 := 0, and define iteratively for k > 0 the sequence
of {Ft}t>0-stopping times

Tk+1 := inf
{
s > Tk : us(0) 6 e−k−1

}
, (7.4)

using the usual convention that inf ∅ :=∞. We may observe that the preceding
definitions imply that, almost surely on {Tk <∞},

uTk(x) > e−kδ0(x) for all x ∈ Zd. (7.5)

We plan to apply the strong Markov property. In order to do that, we first define
u(k+1) to be the unique continuous solution to the (SHE) (for same Brownian

motions, pathwise), with initial data u
(k+1)
0 (x) := e−kδ0(x). Next we note that,

for every k > 0, the random field

wk+1
t (x) := eku

(k+1)
t (x) (7.6)

solves the system
dw

(k+1)
t (x)

dt
= (Lw

(k+1)
t )(x) + σk

(
w

(k+1)
t (x)

) dBt(x)

dt

w
(k+1)
0 (x) = δ0(x),

(7.7)

where σk(y) := ekσ(e−ky). Because σ(0) = 0, we have Lipσk = Lipσ, uniformly
for all k > 1. Thus, we can keep track of the constants in the proof of Lemma
4.1, in order to deduce the existence of a finite constant K := K(ε) so that for
all t, s with |t− s| < 1,

E

(
sup

0<|t−s|<1

|w(k+1)
t (0)− w(k+1)

s (0)|m
)

6 Km2eKm
2

|t− s|m(1−ε)/2, (7.8)

for all real numbers m > 2.
For each k > 0 let us define

T
(k+1)
1 = inf

{
t > 0 : w

(k+1)
t (0) 6 e−1

}
. (7.9)

Equation (7.5), the strong Markov property, and the comparison principle [The-
orem 5.1] together imply that outside of a null set, the solution to the revised
SPDE (7.7) satisfies

e−kw
(k+1)
t (x) 6 uTk+t(x). (7.10)

Therefore, in particular,

T
(k+1)
1 6 Tk+1 − Tk, (7.11)
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and the stopping times T
(k+1)
1 and T

(`+1)
1 are independent if k 6= `. For every

t < 1,

P
{
T

(k+1)
1 < t

}
6 P

{
sup

0<s<t

∣∣∣w(k+1)
t (0)− w(k+1)

s (0)
∣∣∣ > 1− e−1

}
(7.12)

6 K(ε)m2eKm
2(

1− e−1
)−m

t(1−ε)m/2,

where the last inequality follows by Chebyshev’s inequality and (7.8), and is
valid for all 0 < ε < 1. Let us emphasize that the constant of the bound in
(7.12) does not depend on the parameter k which appears in the superscript of

the random variable T
(k+1)
1 . Now we compute

P

{
inf

0<s6t
us(0) 6 e−n

}
= P{Tn 6 t} (7.13)

= P{(Tn − Tn−1) + . . .+ (T1 − T0) 6 t}

6 P
{
T

(n)
1 + T

(n−1)
1 + · · ·+ T

(1)
1 6 t

}
,

owing to (7.11).

The terms T
(n)
1 , . . . , T

(1)
1 , that appear in the ultimate line of (7.13), are in-

dependent non-negative random variables. Thanks to the pigeon-hole principle,
if the sum of those terms is at most t, then certainly it must be that at least
n/2 of those terms are at most t/2n. If n is an even integer, larger than t > 2,
then a simple union bound on (7.13) and (7.12) yields

P

{
inf

0<s6t
us(0) 6 e−n

}
6

(
n

n/2

)
K(ε)n/2mneKm

2n
(
1− e−1

)−mn
t(1−ε)mn/2(2n)−(1−ε)mn/2

6 K̃(ε)n4nmneKm
2n
(
1− e−1

)−mn
t(1−ε)mn/4(2n)−(1−ε)mn/4. (7.14)

Now we set m := log n/ log log n in (7.14) in order to deduce (7.2) for x0 = 0
and every n > 1 sufficiently large. This readily yields (7.2) in its entirety, and
concludes this demonstration.

Next we show that if we start with an initial profile u0 such that u0(x) > 0
for at least one point x ∈ Zd, then ut(z) > 0 for all z ∈ Zd and t > 0 a.s.
Because we are interested in establishing a lower bound, we may apply scaling
and a comparison theorem (Theorem 5.1) in order to reduce our problem to the
special case that

u0 = δ0. (7.15)

In this way, we are led to the following representation of the solution:

ut(x) = pt(x) +

∫ t

0

∑
y∈Zd

pt−s(y − x)σ
(
us(y)

)
dBs(y). (7.16)
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Proposition 7.2. If u0 = δ0, then ut(x) > 0 for all x ∈ Zd and t > 0 a.s.

Proposition 7.2 follows from a few preparatory lemmas.

Lemma 7.3. If u0 = δ0, then

E
(
|us(y)|2

)
6 eLip

2
σs[ps(y)]2 for all s > 0 and y ∈ Zd. (7.17)

Proof. We begin with the representation (7.16) of the solution u, in integral
form, and appeal to Picard’s iteration in order to prove the lemma.

Let u
(0)
t (x) := 1 for all t > 0, x ∈ Zd, and then let {u(n+1)}n>0 be defined

iteratively by

u
(n+1)
t (x) := pt(x) +

∫ t

0

∑
y∈Zd

pt−s(y − x)σ
(
u(n)s (y)

)
dBs(y). (7.18)

Let us define

M
(k)
t := sup

x∈Zd
E

∣∣∣∣∣u(n+1)
t (x)

pt(x)

∣∣∣∣∣
2
 , (7.19)

and apply Itô’s isometry in order to deduce the recursive inequality for the
M (k)’s:

M
(n+1)
t 6 1 + Lip2

σ · sup
x∈Zd

∫ t

0

∑
y

[
pt−s(y − x)ps(y)

pt(x)

]2
M (n)
s ds. (7.20)

Because
∑
y∈Zd [f(y)]2 6 [

∑
y∈Zd f(y)]2 for all f : Zd → R+, the semigroup

property of {pt}t>0 yields the bound∑
y∈Zd

[pt−s(y − x)ps(y)]2 6 [pt(x)]2, (7.21)

whence M
(n+1)
t 6 1 + Lip2

σ ·
∫ t
0
M

(n)
s ds for all t > 0 and n > 0. It follows

readily from this that M
(n)
t 6 exp(Lip2

σt), uniformly for all n > 0 and t > 0;
equivalently,

E
(
|u(n)t (x)|2

)
6 eLip

2
σt[pt(x)]2, (7.22)

uniformly for all n > 0, x ∈ Zd, and t > 0. The lemma follows from this and

Fatou’s lemma, since u
(n)
t (x)→ ut(x) in L2(P) as n→∞.

Our next lemma shows that the random term on the right-hand side of (7.16)
is small, for small time, as compared with the nonrandom term in (7.16).

Lemma 7.4. Assume the conditions of Proposition 7.2. Then there exists a
finite constant C > 0 such that for all t ∈ (0 , 1),

sup
x∈Zd

P


∣∣∣∣∣∣
∫ t

0

∑
y∈Zd

pt−s(y − x)σ (us(y)) dBs(y)

∣∣∣∣∣∣ > pt(x)

2

 6 Ct. (7.23)
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Proof. By Lemma 7.3 and Itô’s isometry,

E


∣∣∣∣∣∣
∫ t

0

∑
y∈Zd

pt−s(y − x)σ (us(y)) dBs(y)

∣∣∣∣∣∣
2
 (7.24)

6 Lip2
σ ·
∫ t

0

∑
y∈Zd

[pt−s(y − x)ps(y)]
2

eLip
2
σs ds 6 Lip2

σ[pt(x)]2 ·
∫ t

0

eLip
2
σs ds,

where we have used (7.21) in the last inequality. Because
∫ t
0

exp(Lip2
σs) ds 6 ct

for all t ∈ (0 , 1) with c := exp(Lip2
σ), the lemma follows from Chebyshev’s

inequality.

Now we can establish Proposition 7.2.

Proof of Proposition 7.2. Let us choose and fix an arbitrary x ∈ Zd. By the
strong Markov property of the solution, and thanks to Lemma 7.1, we know
that once the solution becomes positive at a point, it remains positive at that
point at all future times, almost surely. Thus, it suffices to show that ut(x) > 0
for all times of the form t = 2−k, when k is a large enough integer. But this is
immediate from (7.16) and (7.23), thanks to the Borel-Cantelli lemma.

The preceding lemmas lay the groundwork for the proof of Theorem 1.5. We
now proceed with the main proof.

Proof of Theorem 1.5. Let us first consider the case that m = 1 and without
loss of generality, x1 = 0. In that case, we write

lim
τ↓0

P
{
S(ut+τ (0))− S(ut(0)) 6 q

√
τ
}

(7.25)

= lim
τ↓0

P

{∫ ut+τ (0)

ut(0)

dy

σ(y)
6 q
√
τ

}

= lim
τ↓0

P

{∫ ut+τ (0)

ut(0)

(
1

σ(y)
− 1

σ(ut(0))

)
dy +

ut+τ (0)− ut(0)

σ(ut(0))
6 q
√
τ

}
.

Lemma 7.1 and the positivity condition on σ ensure that σ(ut(0)) > 0 a.s.
Therefore, the theorem follows from Theorem 1.2 if we were to show that

1√
τ

∫ ut+τ (0)

ut(0)

(
1

σ(y)
− 1

σ(ut(0))

)
dy → 0 almost surely, as τ ↓ 0. (7.26)

Let I(t, t + τ) denote the random closed interval with endpoints ut(0) and
ut+τ (0). Our strict positivity result [Lemma 7.1] implies that

I(t , t+ τ) ⊂ (0 ,∞) for all t, τ > 0 a.s., (7.27)
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and thus paves way for the a.s. bounds∣∣∣∣∣
∫ ut+τ (0)

ut(0)

(
1

σ(y)
− 1

σ(ut(0))

)
dy

∣∣∣∣∣ 6 Lipσ ·
|ut(0)− ut+τ (0)|2

infy∈I(t,t+τ) |σ(y)|2

= O (τ log | log τ |) (τ ↓ 0);

see (1.9) for the last part. This implies (7.26) and thus completes our proof for
m = 1. The proof for general m is an easy adaption since {B(xj)}mj=1 are i.i.d.
Brownian motions.

8 Preliminaries for the proof of Theorem 1.7

The following function will play a prominent role in the ensuing analysis:

P̄ (τ) := ‖pτ‖2`2(Zd) =
∑
x∈Zd

[pτ (x)]2 for all τ > 0. (8.1)

Because of the Chapman–Kolmogorov property, we can also think of P̄ as

P̄ (τ) := P{Xτ −X ′τ = 0}, (8.2)

where X ′ is an independent copy of X. There is another useful way to think of
P̄ as well. Namely, we apply (4.9) and the Plancherel theorem to see that

P̄ (τ) = (2π)−d
∫
(−π,π)d

|E exp(iξ ·Xτ )|2 dξ

= (2π)−d
∫
(−π,π)d

e−2τ(1−Reϕ(ξ)) dξ,

(8.3)

where ϕ(ξ) = E[exp(iξ · Z1)], recall that Z1 is the distribution of jump size.
Therefore, in particular, the Laplace transform of P̄ is

Υ(β) :=

∫ ∞
0

e−βτ P̄ (τ) dτ (β > 0)

= (2π)−d
∫
(−π,π)d

dξ

β + 2(1− Reϕ(ξ))
.

(8.4)

The interchange of the integrals is justified by Tonelli’s theorem, since 1 −
Reϕ(ξ) > 0.

Note that Υ(0) agrees with (1.14). Also, the classical theory of random
walks tells us that X −X ′ is transient if and only if Υ(0) =

∫∞
0
P̄ (τ) dτ < ∞,

which is in turn equivalent to the condition,∫
(−π ,π)d

dξ

1− Reϕ(ξ)
<∞; (8.5)

this is the Chung–Fuchs theorem [14], transliterated to the setting of continuous-
time symmetric random walks thanks to a standard Poissonization argument
which we feel free to omit.
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Lemma 8.1. If u0 ∈ `2(Zd), then ut ∈ `2(Zd) a.s. for all t > 0. Moreover, for
every β > 0 such that Lip2

σΥ(β) < 1,

E
(
‖ut‖2`2(Zd)

)
6
‖u0‖2`2(Zd)e

βt

1− Lip2
σΥ(β)

for all t > 0. (8.6)

Proof. Let u
(0)
t (x) := u0(x) for all t > 0 and x ∈ Zd, and define u(k) to be the

resulting kth-step approximation to u via Picard iteration. It follows that

E
(
|u(n+1)
t (x)|2

)
= |(p̃t ∗ u0) (x)|2 +

∑
y∈Zd

∫ t

0

[pt−s(y − x)]2E

(∣∣∣σ (u(n)s (y)
)∣∣∣2) ds

6 |(p̃t ∗ u0) (x)|2 + Lip2
σ

∑
y∈Zd

∫ t

0

[pt−s(y − x)]2E

(∣∣∣u(n)s (y)
∣∣∣2) ds.

(8.7)

We may add over all x ∈ Zd to deduce from this and Young’s inequality that

E

(∥∥∥u(n+1)
t

∥∥∥2
`2(Zd)

)
6 ‖u0‖2`2(Zd)+Lip2

σ

∫ t

0

P̄ (t−s)E
(∥∥∥u(n)s

∥∥∥2
`2(Zd)

)
ds. (8.8)

Since Υ(β) = β−1
∫∞
0

exp(−s)P̄ (s/β) ds 6 β−1 < ∞, we can find β > 0

large enough to guarantee that Lip2
σΥ(β) < 1.

We multiply both sides of (8.8) by exp(−βt)—for this choice of β—and
notice from (8.8) that

Ak := sup
t>0

[
e−βtE

(∥∥∥u(k)t

∥∥∥2
`2(Zd)

)]
(k > 0) (8.9)

satisfies
An+1 6 ‖u0‖2`2(Zd) + Lip2

σΥ(β)An for all n > 0. (8.10)

Since A0 = ‖u0‖2`2(Zd), the preceding shows that supn>0An is bounded above

by (1− Lip2
σΥ(β))−1‖u0‖2`2(Zd).

Proposition 8.2. If u0 ∈ `1(Zd), then for every β > 0 such that Lip2
σΥ(β) < 1,∫ ∞

0

e−βtE
(
‖ut‖2`2(Zd)

)
dt 6

‖u0‖2`1(Zd)Υ(β)

1− Lip2
σΥ(β)

. (8.11)

Moreover, ∫ ∞
0

e−βtE
(
‖ut‖2`2(Zd)

)
dt =∞, (8.12)

for all β > 0 such that `2σΥ(β) > 1.
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Proof. We proceed as we did for lemma 8.1. But instead of deducing (8.8) from
(8.7), we use a different bound for ‖p̃t ∗ u0‖`2(Zd)

E

(∥∥∥u(n+1)
t

∥∥∥2
`2(Zd)

)
6 ‖pt‖2`2(Zd)‖u0‖

2
`1(Zd) + Lip2

σ

∫ t

0

P̄ (t− s)E
(∥∥∥u(n)s

∥∥∥2
`2(Zd)

)
ds

= P̄ (t)‖u0‖2`1(Zd) + Lip2
σ

∫ t

0

P̄ (t− s)E
(∥∥∥u(n)s

∥∥∥2
`2(Zd)

)
ds,

(8.13)

thanks to a slightly different application of Young’s inequality. If we integrate
both sides [exp(−βt)dt], then we find that

Ik :=

∫ ∞
0

e−βtE

(∥∥∥u(k)t

∥∥∥2
`2(Zd)

)
dt (k > 0) (8.14)

satisfies

In+1 6 ‖u0‖2`1(Zd)
∫ ∞
0

e−βtP̄ (t) dt+ In × Lip2
σ

∫ ∞
0

e−βtP̄ (t) dt

= ‖u0‖2`1(Zd)Υ(β) + InLip2
σΥ(β);

(8.15)

see (8.4). The first portion of the lemma follows from this, induction, and
Fatou’s lemma since Lip2

σΥ(β) < 1.
Next, let us suppose that `2σΥ(β) > 1. The following complimentary form

of (8.13) holds [for the same reasons that (8.13) held]:

E
(
‖ut‖2`2(Zd)

)
> ‖p̃t ∗ u0‖2`2(Zd) + `2σ

∫ t

0

P̄ (t− s)E
(
‖us‖2`2(Zd)

)
ds. (8.16)

It is not hard to verify directly that

‖p̃t ∗ u0‖2`2(Zd) > u20(x0)‖pt‖2`2(Zd), (8.17)

whence, by u0(x0) > 0 for some x0 > 0, it follows that

F (t) := E
(
‖ut‖2`2(Zd)

)
(t > 0) (8.18)

solves the renewal inequality,

F (t) > u20(x0)P̄ (t) + `2σ

∫ t

0

P̄ (t− s)F (s) ds. (8.19)

Therefore, F̃ (β) :=
∫∞
0

exp(−βt)F (t) dt satisfies

F̃ (β) > u20(x0)Υ(β) + `2σΥ(β)F̃ (β). (8.20)

Since u0(x0) > 0 and Υ(β) > 0 for all β > 0, it follows that F̃ (β) =∞ whenever
`2σΥ(β) > 1.
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Proposition 8.3. If u0 ∈ `1(Zd), then

sup
t>0

sup
x∈Zd

ut(x) <∞,
∑
y∈Zd

∫ ∞
0

|σ(us(y))|2 ds <∞ a.s. (8.21)

Moreover: (i) If, in addition, q := Lip2
σΥ(0) < 1, then

E

(
sup
t>0

sup
x∈Zd

|ut(x)|2
)

6 E

(
sup
t>0
‖ut‖2`1(Zd)

)
6 ‖u0‖2`1(Zd) +

4q

1− q
. (8.22)

(ii) If, in addition, `2σΥ(0) > 1, then

E

(
sup
t>0
‖ut‖2`1(Zd)

)
=

∫ ∞
0

E
(
‖us‖2`2(Zd)

)
ds =∞. (8.23)

Remark 8.4. Clearly, (8.21) implies that if u0 ∈ `1(Zd), then

lim inf
t→∞

sup
x∈Zd

|σ(ut(x))|2 6 lim inf
t→∞

∑
x∈Zd

|σ(ut(x))|2 = 0 a.s. (8.24)

Suppose, in addition, that `σ > 0 [say]. Then, we can deduce from the preceding
fact that lim inft→∞ supx∈Zd |ut(x)| = 0 a.s.

Recall that X −X ′ is transient if and only if Υ(0) <∞. Therefore, in order
for the condition Lip2

σΥ(0) < 1 to hold, it is necessary—though not sufficient—
that X −X ′ be transient.

Proof of Proposition 8.3. First of all, Theorem 1.1 assures us that ut(x) > 0
a.s., and hence ‖ut‖`1(Zd) =

∑
x∈Zd ut(x). Therefore, if we add both sides of

(2.1) then we find that

‖ut‖`1(Zd) = ‖u0‖`1(Zd) +
∑
y∈Zd

∫ t

0

σ(us(y)) dBs(y). (8.25)

[It is easy to apply the moment bound of Theorem 1.1 to justify the interchange
of the sum and the stochastic integral.] In particular, it follows that

Mt := ‖ut‖`1(Zd) (t > 0) (8.26)

defines a non-negative continuous martingale with mean ‖u0‖`1(Zd). Its quadratic
variation satisfies the following relations:

〈M〉t =
∑
y∈Zd

∫ t

0

|σ(us(y))|2 ds 6 Lip2
σ

∫ t

0

‖us‖2`2(Zd) ds. (8.27)

The bound (1.6) of Theorem 1.1 is more than enough to show that M :=
{Mt}t>0 is a continuous L2(P) martingale. Since Mt > 0 a.s. [Theorem
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1.1] it follows from the martingale convergence theorem that limt→∞Mt ex-
ists a.s. and is finite a.s., which proves the first part of (8.21). And therefore,

〈M〉∞ =
∑
y∈Zd

∫ t
0
|σ(us(y))|2 ds has to be also a.s. finite., since we can realize

Mt as W (〈M〉t) for some Brownian motion W , thanks to the Dubins, Dambis–
Schwartz representation theorem [34, p. 170].

(i) If we know also that Lip2
σΥ(0) < 1, then Proposition 8.2 guarantees that

E〈M〉∞ is bounded from above by (1 − Lip2
σΥ(0))−1Lip2

σΥ(0) < ∞, whence it
follows that M := {Mt}t>0 is a continuous L2(P)-bounded martingale with

E

(
sup
t>0

M2
t

)
6 ‖u0‖2`1(Zd) +

4Lip2
σΥ(0)

1− Lip2
σΥ(0)

, (8.28)

thanks to Doob’s maximal inequality. This proves part (i) because ‖ut‖`∞(Zd)

is bounded above by ‖ut‖`1(Zd).

(ii) Finally consider the case that `σΥ(0) > 1. Since

E
(
‖ut‖2`1(Zd)

)
= E

(
M2
t

)
= ‖u0‖2`1(Zd) +

∑
y∈Zd

∫ t

0

E
(
|σ(us(y))|2

)
ds

> ‖u0‖2`1(Zd) + `2σ

∫ t

0

E
(
‖us‖2`2(Zd)

)
ds, (8.29)

it suffices to show that this final integral is unbounded [as a function of t]. But
that follows from the second part of Proposition 8.2.

Corollary 8.5. If u0 ∈ `1(Zd), then the following is a P-null set:{
ω : lim

t→∞
sup
x∈Zd

|ut(x)(ω)| = 0

}
4
{
ω : lim

t→∞
‖ut‖`2(Zd)(ω) = 0

}
. (8.30)

Proof. Let E1 denote the event that limt→∞ supx∈Zd |ut(x)| = 0 and E2 the
event that limt→∞ ‖ut‖`2(Zd) = 0. Because of the real-variable bounds, ‖ut‖2`∞(Zd) 6

‖ut‖2`2(Zd) 6 ‖ut‖`∞(Zd) · ‖ut‖`1(Zd), we have

E14E2 ⊆
{
ω : lim sup

t→∞
‖ut‖`1(Zd)(ω) =∞

}
. (8.31)

But we have noted already that Mt := ‖ut‖`1(Zd) defines a non-negative martin-
gale, under the conditions of this corollary. Therefore, the final event in (8.31)
is P-null, thanks to Doob’s martingale convergence theorem. Thus, we find that
E14E2 is a measurable subset of a P-null set, and is hence P-null.

Proposition 8.6. Suppose u0 ∈ `1(Zd) and the random walk X is transient;
i.e., Υ(0) <∞. Then,

lim sup
t→∞

1

t
log E

(
‖ut‖2`1(Zd)

)
6 inf

{
β > 0 : Lip2

σΥ(β) < 1
}
<∞. (8.32)
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If, in addition, `2σΥ(0) > 1, then

lim inf
t→∞

1

t
log E

(
‖ut‖2`2(Zd)

)
> inf

{
β > 0 : `2σΥ(β) < 1

}
> 0. (8.33)

Proof. We have already proved a slightly weaker version of (8.32). Indeed, since
`1(Zd) ⊂ `2(Zd), (8.6) implies that

lim sup
t→∞

1

t
log E

(
‖ut‖2`2(Zd)

)
6 inf

{
β > 0 : Lip2

σΥ(β) < 1
}
. (8.34)

Then (8.25) and (8.34) together tell us that for every C > inf{β > 0 : Lip2
σΥ(β) <

1}, there exists K = K(C) ∈ (0 ,∞) such that

E
(
‖ut‖2`1(Zd)

)
6 ‖u0‖2`1(Zd) + Lip2

σ

∫ t

0

E
(
‖us‖2`2(Zd)

)
ds (8.35)

6 ‖u0‖2`1(Zd) +K

∫ t

0

eCs ds = O
(

e(C+o(1))t
)

as t→∞.

Thus follows the first bound of the proposition.
Because of (8.16) and (8.17), we find that

F (t) := E
(
‖ut‖2`2(Zd)

)
(t > 0) (8.36)

solves the renewal inequality,

F (t) > g(t) +

∫ t

0

h(t− s)F (s) ds (t > 0), (8.37)

where
g(t) := u20(x0)P̄ (t), h(t) := `2σP̄ (t) (t > 0). (8.38)

A comparison result (Lemma A.2) tells us that F (t) > f(t) for all t > 0, where
f is the solution to the renewal equation

f(t) = g(t) +

∫ t

0

h(t− s)f(s) ds (t > 0). (8.39)

The condition that `2σΥ(0) > 1 is equivalent to
∫∞
0
h(t) dt > 1. Because of

transience [Υ(0) < ∞] and the fact that Υ(β) is strictly decreasing and con-
tinuous, we can find β∗ > 0 such that

∫∞
0

exp(−β∗t)h(t) dt = 1. Note that
fβ∗(t) := exp(−β∗t)f(t) solves the renewal equation

fβ∗(t) = gβ∗(t) +

∫ t

0

hβ∗(t− s)fβ∗(s) ds (t > 0), (8.40)

where gβ∗(t) := exp(−β∗t)g(t) and hβ∗(t) := exp(−β∗t)h(t). Since hβ∗ is a
probability density function and gβ∗ is non increasing [see (8.3)], Blackwell’s
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key renewal theorem [23] implies that

lim inf
t→∞

e−β
∗tF (t) > lim

t→∞
fβ∗(t) =

(∫ ∞
0

shβ∗(s) ds

)−1
·
∫ ∞
0

gβ∗(s) ds

= u20(x0)`−2σ

(∫ ∞
0

se−β
∗sP̄ (s) ds

)−1
·Υ(β∗).

(8.41)

Since P̄ (s) 6 1, the right-most quantity is at least u20(x0)`−2σ (β∗)2Υ(β∗) > 0.
This completes the proof of (8.33). Note that we have used the fact that Υ(β)
is continuous in β and strictly decreasing, so that β∗ = inf{β > 0 : `2σΥ(β) <
1}.

Proposition 8.7. If Lip2
σΥ(0) < 1, then limt→∞ E(‖ut‖2`2(Zd)) = 0. Further-

more, as t→∞:

P̄ (t) = O
(

E
(
‖ut‖2`2(Zd)

))
; and

E
(
‖ut‖2`2(Zd)

)
= O

(
t−α
)

for all α > 0 such that P̄ (t) = O(t−α).
(8.42)

Proof. The first assertion of (8.42) is simple to prove; in fact, E(‖ut‖2`2(Zd)) >

[u0(x0)]2P̄ (t) (t > 0) for any x0 ∈ Zd and all t > 0; see (8.16) and (8.17). We
concentrate our efforts on the remaining statements.

Thanks to (8.13),

E
(
‖ut‖2`2(Zd)

)
6 P̄ (t)‖u0‖2`1(Zd) + Lip2

σ

∫ t

0

P̄ (t− s)E
(
‖us‖2`2(Zd)

)
ds. (8.43)

That is, F (t) := E(‖ut‖2`2(Zd)) is a sub solution to a renewal equation; viz.,

F (t) 6 g(t) +

∫ t

0

h(t− s)F (s) ds (t > 0), (8.44)

for
g(t) := P̄ (t)‖u0‖2`1(Zd), h(t) := Lip2

σP̄ (t). (8.45)

A comparison lemma (Lemma A.2) shows that 0 6 F (t) 6 f(t) for all t > 0,
where

f(t) = g(t) +

∫ t

0

h(t− s)f(s) ds (t > 0). (8.46)

Therefore, it remains to prove that f(t) → 0 as t → ∞. It is easy, as well as
classical, that we can write f in terms of the renewal function of h; that is,

f(t) = g(t) +

∞∑
n=0

∫ t

0

h∗(n)(s)g(t− s) ds (t > 0), (8.47)

where h∗(1)(t) :=
∫ t
0
h(t − s)h(s) ds denotes the convolution of h with itself,

and h∗(k+1)(t) :=
∫ t
0
h∗(k)(t − s)h(s) ds for all k > 0. We might note that
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g(t) 6 g(0) = ‖u0‖2`2(Zd) because P̄ is non increasing [see (8.3)] and one at zero.

Therefore,

0 6
∫ t

0

h∗(n)(s)g(t− s) ds 6 ‖u0‖2`2(Zd)
∫ ∞
0

h∗(n)(s) ds

6 ‖u0‖2`2(Zd)
(∫ ∞

0

h(s) ds

)n+1

[Young’s inequality]

= ‖u0‖2`2(Zd)
(
Lip2

σΥ(0)
)n+1

.

(8.48)

It is not hard to see that limt→∞ g(t) = limt→∞ P̄ (t) = 0; this follows from
(8.3) and the monotone convergence theorem. Because Lip2

σΥ(0) < 1, we can
deduce from (8.48) and (8.47), in conjunction with the dominated convergence
theorem, that f(t)—hence F (t) = E(‖ut‖2`2(Zd))—converges to zero as t→∞.

It remains to prove the second assertion in (8.42). With this in mind, let us
suppose P̄ satisfies the following: There exists c ∈ (0 ,∞) and α ∈ [0 ,∞) such
that

P̄ (t) 6 c(1 + t)−α. (8.49)

For there is nothing to consider otherwise. We aim to prove that

E
(
‖ut‖2`2(Zd)

)
6 const · (1 + t)−α, (8.50)

for some finite constant that does not depend on t. This proves the proposition.

Define Fk(t) := E(‖u(k)t ‖2`2(Zd)), where u(k) denotes the kth approximation

to u via Picard’s iteration (3.1), starting at u
(0)
t (x) ≡ 0. We can write (8.13),

in short hand, as follows:

Fn+1(t) 6 P̄ (t)‖u0‖2`1(Zd) + Lip2
σ

∫ t

0

P̄ (t− s)Fn(s) ds. (8.51)

Now let us choose and fix ε ∈ (0 , 1) and write∫ t

0

P̄ (t− s)Fn(s) ds =

∫ t

tε

P̄ (s)Fn(t− s) ds+

∫ t

t(1−ε)
P̄ (t− s)Fn(s) ds

6 c

∫ t

tε

Fn(t− s)
(1 + s)α

ds+ sup
w>0

[(1 + w)αFn(w)]

∫ t

t(1−ε)

P̄ (t− s)
(1 + s)α

ds

6
c

εα(1 + t)α

∫ ∞
0

Fn(s) ds+ sup
w>0

[(1 + w)αFn(w)]
Υ(0)

(1− ε)α(1 + t)α
.

(8.52)

The proof of Proposition 8.2 shows that

sup
n>0

∫ ∞
0

Fn(s) ds 6
‖u0‖2`1(Zd)Υ(0)

1− Lip2
σΥ(0)

. (8.53)

Consequently,
Rk := sup

w>0
[(1 + w)αFk(w)] (k > 0) (8.54)
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satisfies

Rn+1 6 A+Rn
Lip2

σΥ(0)

(1− ε)α
for all n > 0, (8.55)

where

A = A(ε) := c‖u0‖2`1(Zd) +
c‖u0‖2`1(Zd)Lip2

σΥ(0)

εα(1− Lip2
σΥ(0))

. (8.56)

Since Lip2
σΥ(0) < 1, we can choose ε sufficiently close to zero to ensure that

Lip2
σΥ(0) < (1−ε)1+α. For this particular ε, we find that Rn+1 6 A+(1−ε)Rn

for all n. Since R0 = 0, this proves that supn>0Rn 6 A/ε. Eq. (8.50)—whence
the proposition—follows from the latter inequality and Fatou’s lemma.

9 Proof of Theorem 1.7

Let us begin with an elementary real-variable inequality.

Lemma 9.1. For all real numbers k > 2 and x, y, δ > 0,

(x+ y)k 6 (1 + δ)k−1xk +

(
1 + δ

δ

)k−1
yk. (9.1)

This is a consequence of Jensen’s inequality when δ = 1. We are interested
in the case that δ � 1.

Proof. The function f(z) := (z + 1)k − (1 + δ)k−1zk (z > 0) is maximized at
z∗ := δ−1, and maxz f(z) = f(z∗) = {(1 + δ)/δ}k−1; i.e., f(x) 6 {(1 + δ)/δ}k−1
for all x > 0. This is the desired result when y = 1. We can factor the variable
y from both sides of (9.1) in order to reduce the problem to the already-proved
case that y = 1.

Lemma 9.2.
∫∞
0
‖ps+τ − ps‖2`2(Zd) ds 6 4Υ(0)τ2 for all τ > 0.

Proof. We apply the Plancherel theorem and (4.9) in order to deduce that

‖ps+τ − ps‖2`2(Zd) = (2π)−d
∫
(−π,π)d

∣∣∣e−(s+τ)(1−ϕ(ξ)) − e−s(1−ϕ(ξ))
∣∣∣2 dξ

= (2π)−d
∫
(−π,π)d

e−2s(1−Reϕ(ξ))
∣∣∣1− e−τ(1−ϕ(ξ))

∣∣∣2 dξ

6
4τ2

(2π)d

∫
(−π,π)d

e−2s(1−Reϕ(ξ)) dξ.

(9.2)

Integrate [ds] to finish; compare with (8.4).

Recall that zk denotes the optimal constant in the BDG inequality [(2.7)].
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Lemma 9.3. If k ∈ (2 ,∞) satisfies zkLipσ
√

Υ(0) < (1 + δ)−(k−1)/k for some
δ > 0, then

sup
t>0

E

(
sup
x∈Zd

|ut(x)|k
)

6 sup
t>0

E
(
‖ut‖k`k(Zd)

)
<∞. (9.3)

Proof. Let u
(0)
t (x) := u0(x) and define u(n) to be the nth step Picard approxi-

mation to u, as in (3.1). Define

M̄
(n)
t := E

(∥∥∥u(n)t

∥∥∥k
`k(Zd)

)
for all t > 0 and k > 1. (9.4)

Then we can apply Lemma 9.1 and write, in analogy with (8.26),

M̄
(n+1)
t 6

(
1 + δ

δ

)k−1 ∑
x∈Zd

Ix + (1 + δ)k−1
∑
x∈Zd

Jx, (9.5)

where Ix and Jx were defined earlier in (3.3). One estimates
∑
x∈Zd Ix via

Jensen’s inequality, using pt(• − x) as the base measure, in order to find that∑
x∈Zd

Ix 6 ‖u0‖k`k(Zd). (9.6)

In order to estimate
∑
x∈Zd Jx, we define—for all (t , x) ∈ R+ × Zd— a Borel

measure ρt,x on R+ × Zd as follows:

ρt,x(dsdy) := [pt−s(y − x)]
2
1[0,t](s) ds χ(dy); (9.7)

where χ denotes the counting measure on Zd. Because of the transience of
X −X ′, the measure ρt,x is finite; in fact,

ρt,x(R+ × Zd) =

∫ t

0

‖ps‖2`2(Zd) ds =

∫ t

0

P̄ (s) ds 6 Υ(0). (9.8)

Therefore, we apply (3.5) and Jensen’s inequality, in conjunction, in order to
see that

Jx 6 zkk

(
Lip2

σ

∫
[0,t]×Zd

{
E

(∣∣∣u(n)s (y)
∣∣∣k)}2/k

ρt,x(dsdy)

)k/2
6 (zkLipσ)k[Υ(0)](k−2)/2

∫
[0,t]×Zd

E

(∣∣∣u(n)s (y)
∣∣∣k) ρt,x(dsdy).

(9.9)

Thus,∑
x∈Zd

Jx 6 (zkLipσ)k[Υ(0)](k−2)/2
∫ t

0

P̄ (t− s)E
(∥∥∥u(n)s

∥∥∥k
`k(Zd)

)
ds

6
(
zkLipσ

√
Υ(0)

)k
· sup
r>0

E

(∥∥∥u(n)r

∥∥∥k
`k(Zd)

)
,

(9.10)
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thanks to (8.4).
In summary, (9.5) has the following consequence: For all n > 0,

sup
t>0

M̄
(n+1)
t

6

(
1 + δ

δ

)k−1
‖u0‖k`k(Zd) + (1 + δ)k−1

(
zkLipσ

√
Υ(0)

)k
sup
t>0

M̄
(n)
t .

(9.11)

Since (1 + δ)k−1(zkLipσ
√

Υ(0))k < 1 and supt>0 M̄
(0)
t = ‖u0‖k`k(Zd), this shows

that C := supn>0 supt>0 M̄
(n)
t < ∞. Fatou’s lemma now implies half of the

result, since it shows that E(‖ut‖k`k(Zd)) 6 lim infn→∞ E(‖u(n)t ‖k`k(Zd)) 6 C. The

remainder of the proposition follows simply because ‖•‖`∞(Zd) 6 ‖•‖`k(Zd).

Proposition 9.4. Assume that lim supt→∞ tαP{Xt = X ′t} < 1 for some α > 1,
where X and X ′ are two independent random walks with generator L . If k ∈
(2 ,∞) satisfies zkLipσ

√
Υ(0) < (1+δ)−(k−1)/k for some δ > 0, then there exists

a finite constant A—depending only on δ, Lipσ, Υ(0), and ‖u0‖`1(Zd)—such that

E
(
‖ut+τ − ut‖k`k(Zd)

)
6

Aτk/2

(1 + t)α
for every t, τ > 0. (9.12)

Consequently, there exists a Hölder-continuous modification of the process t 7→
ut(•) with values in `∞(Zd). Moreover, for that modification, there a finite
constant A′—depending only on δ, Lipσ, Υ(0), and ‖u0‖`1(Zd)—such that

E

(
sup

s6=r∈[t,t+1]

sup
x∈Zd

∣∣∣∣ur(x)− us(x)

|r − s|η

∣∣∣∣k
)

6
A′

(1 + t)α
(9.13)

as long as 0 6 η < (k − 2)/(2k).

Proof. Thanks to Lemma 9.3, ‖ut‖`k(Zd) has a finite kth moment. This obser-
vation justifies the use of these moments in the ensuing discussion. Now we
begin our proof in earnest.

The proof requires us to make a few small adjustments to the derivation of
Lemma 4.1; specifically we now incorporate the fact that Lip2

σΥ(0) < 1 into
that proof. Therefore, we mention only the required changes.

We use the notation of the proof of Lemma 4.1 and write{
E
(
|ut+τ (x)− ut(x)|k

)}1/k
6 |Q1|+Q2 +Q3, (9.14)

whence
E
(
|ut+τ (x)− ut(x)|k

)
6 3k−1

(
|Q1|k +Qk2 +Qk3

)
. (9.15)
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Note that

∑
x∈Zd

|Q1|k 6
∑
x∈Zd

∑
y∈Zd

u0(y) |pt+τ (y − x)− pt(y − x)|

k

6 ‖u0‖k−1`1(Zd)
·
∑
x∈Zd

∑
y∈Zd

u0(y) |pt+τ (y − x)− pt(y − x)|k (9.16)

= ‖u0‖k`1(Zd) · ‖pt+τ − pt‖
k
`k(Zd) 6 ‖u0‖

k
`1(Zd) · ‖pt+τ − pt‖

k
`2(Zd) ,

thanks to Jensen’s inequality. We observe that

‖pt+τ − pt‖2`2(Zd) = (2π)−d
∫
[−π,π]d

∣∣∣e−t(1−ϕ(ξ))∣∣∣2 ∣∣∣e−τ(1−ϕ(ξ)) − 1
∣∣∣2 dξ

6 const · τ2
∫
[−π,π]d

∣∣∣e−t(1−ϕ(ξ))∣∣∣2 dξ = const · τ2P{Xt = X ′t}

6 const · τ2

(1 + t)α
. (9.17)

Consequently, ∑
x∈Zd

|Q1|k 6
const · τk

(1 + t)αk/2
(9.18)

We estimate Q2 slightly differently from the proof of Lemma 4.1 as well.
For every (t , x) ∈ R+×Zd, let us define a similar Borel measure Rt,x to ρt,x

[see (9.7)] as follows:

Rt,x(dsdy) := [pt+τ−s(y − x)− pt−s(y − x)]
2
1[0,t](s) ds χ(dy). (9.19)

Now we re-examine the first line of (4.7), and note that

Q2
2 6 (zkLipσ)2

∑
y∈Zd

∫ t

0

[pt+τ−s(y − x)− pt−s(y − x)]
2 {

E
(
|us(y)|k

)}2/k
ds

= (zkLipσ)2
∫
R+×Zd

{
E
(
|us(y)|k

)}2/k
Rt,x(dsdy). (9.20)

This follows from (1.1) and (4.7), but we use the optimal constant zk in place
of the slightly-weaker one 2

√
k that came from Lemma 2.1.

Lemma 9.2 implies that Rt,x(R+×Zd) =
∫ t
0
‖ps+τ − ps‖2`2(Zd) ds 6 4Υ(0)τ2.

This bound and Jensen’s inequality together show that
∑
x∈Zd Q

k
2 is bounded

from above by

(zkLipσ)k(4Υ(0)τ2)(k−2)/2
∑
x∈Zd

∫
R+×Zd

E
(
|us(y)|k

)
Rt,x(dsdy) (9.21)

= (zkLipσ)k(4Υ(0)τ2)(k−2)/2
∫ t

0

‖pt+τ−s − pt−s‖2`2(Zd) E
(
‖us‖k`k(Zd)

)
ds.
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By an argument similar to the one used in Proposition 8.7, one is able to
show that E(‖us‖k`k(Zd)) 6 const · (1 + s)−α. Here is an outline of the proof: We

can follow the proof of Lemma 9.3, but derive a better bound on
∑
x∈Zd Ix 6

P̄ (t)‖u0‖k`1(Zd), in order to obtain

E
(
‖u(n+1)

t ‖k`k(Zd)
)
6

(
1 + δ

δ

)k−1
P̄ (t)‖u0‖k`1(Zd)

+ (1 + δ)k−1(zkLipσ)k[Υ(0)](k−2)/2
∫ t

0

P̄ (t− s)E
(∥∥∥u(n)s

∥∥∥k
`k(Zd)

)
ds.

(9.22)

From here, we proceed along similar lines, as was done from (8.51) onwards. We
follow the proof of Proposition 8.2, using (9.22), in order to derive the following
analog of (8.53):

sup
n>0

∫ ∞
0

Fn(s) ds 6
((1 + δ)/δ)k−1‖u0‖k`1(Zd)Υ(0)

1− (1 + δ)k−1(zkLipσΥ(0))k
, (9.23)

where Fn(t) := E(‖u(n+1)
t ‖k`k(Zd)). In this way, we can obtain the bound,

E(‖us‖k`k(Zd)) 6 const · (1 + s)−α, as was needed. We use this bound, as well as

(9.17) in (9.21), and split the integral into two parts (0 to t/2 and t/2 to t), in
order to obtain the following:∑

x∈Zd
Qk2 6

const · τk

(1 + t)α
. (9.24)

Finally we estimate
∑
x∈Zd Q

k
3 by first modifying (4.13) as follows:

Q2
3 6 (zkLipσ)2

∑
y∈Zd

∫ t+τ

t

[pt+τ−s(y − x)]
2
{

E
(
|us(y)|k

)}2/k

ds

= (zkLipσ)2
∫
R+×Zd

{
E
(
|us(y)|k

)}2/k

Rt,τ,x(dsdy),

(9.25)

where the Borel measures Rt,τ,x are defined in a similar manner as in (9.7); that
is,

Rt,τ,x(dsdy) :=
∑
y∈Zd

[pt+τ−s(y − x)]
2
1[t,t+τ ](s) ds χ(dy). (9.26)

Because Rt,τ,x(R+ × Zd) =
∫ τ
0
P̄ (s)ds 6 τ , Jensen’s inequality assures us that∑

x∈Zd
Qk3 6 (zkLipσ)kτ (k−2)/2

∑
x∈Zd

∫
R+×Zd

E
(
|us(y)|k

)
Rt,τ,x(dsdy)

= (zkLipσ)kτ (k−2)/2
∫ t+τ

t

P̄ (t+ τ − s)E
(
‖us‖k`k(Zd)

)
ds

6
const · τk/2

(1 + t)α
,

(9.27)
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thanks to the bounds E(‖us‖k`k(Zd)) 6 const · (1 + s)−α and P̄ (t + τ − s) 6
1. Since ‖u0‖`k(Zd) 6 ‖u0‖`1(Zd), displays (9.18), (9.24), and (9.27) together
imply (9.12). This yields the first estimate of the proposition. The remaining
assertions follow (9.12), using a suitable form of the Kolmogorov continuity
theorem [34, Theorem 2.1, p. 25] and the fact that supx∈Zd |ut(x) − us(x)| 6
‖ut − us‖`k(Zd).

Proof of Theorem 1.7. We apply Proposition 8.7 and Chebyshev’s inequality in
conjunction in order to see that,

∞∑
n=1

P

{
sup
x∈Zd

|un(x)| > ε

}
6

1

ε2

∞∑
n=1

E
(
‖un‖2`2(Zd)

)
6

const

ε2
·
∞∑
n=1

n−α <∞.
(9.28)

Therefore, the Borel–Cantelli lemma implies that

lim
n→∞

sup
x∈Zd

|un(x)| = 0 a.s. (9.29)

We next note that the Burkholder’s constants zk vary continuously for k > 2
and z2 = 1 is the minimum, see Davis [22]. Davis [22] obtains zk as the largest
positive zero of the parabolic cylinder function of parameter k and this varies
continuously in k, see Abramowitz and Stegun [1].

If Lipσ
√

Υ(0) < 1, we can find k > 2 and δ > 0 such that

zkLipσ
√

Υ(0) < (1 + δ)−(k−1)/k. (9.30)

We can now use Proposition 9.4 (with η = 0) along with Chebyshev’s inequality
to control the spacings

P

{
sup

s∈[n,n+1]

sup
x∈Zd

|us(x)− un(x)| > ε

}
(9.31)

6
1

εk
sup
I

E

(
sup

s∈[n,n+1]

sup
x∈Zd

|ut(x)− us(x)|k
)

= O
(
n−α

)
as n→∞.

We may use the Borel–Cantelli lemma and (9.29) in order to deduce that
limt→∞ supx∈Zd |ut(x)| = 0 a.s. Thanks to this fact, Corollary 8.5 implies the
seemingly-stronger assertion that limt→∞ ‖ut‖2`2(Zd) = 0 a.s., and completes the

proof.

A Some renewal theory

In this appendix we state and prove a few facts from [linear] renewal theory.
These facts ought to be well known, but we have not succeeded to find concrete
references, and so will describe them in some detail.
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Let us suppose that the functions h, g : (0 ,∞)→ R+ are locally integrable
[say] and pre-defined, and let us look for a measurable solution f : (0 ,∞)→ R+

to the renewal equation,

f(t) = g(t) +

∫ t

0

h(t− s)f(s) ds (t > 0). (A.1)

If h ∈ L1(0 ,∞), then this is a classical subject [23]. For a more general treat-
ment, we may proceed with Picard’s iteration: Let f (0)(t) : (0 ,∞)→ R+ be a
fixed measurable function, and iteratively define

f (n+1)(t) := g(t) +

∫ t

0

h(t− s)f (n)(s) ds (t > 0, n > 0). (A.2)

Lemma A.1. Suppose that there exists a constant β ∈ R that satisfies the
following three conditions: (i) γ := supt>0[exp(−βt)g(t)] < ∞; (ii) ρ :=∫∞
0

exp(−βt)h(t) dt < 1; and (iii) supt>0[exp(−βt)f (0)(t)] < ∞. Then (A.1)
has a unique non-negative solution f that satisfies the following:

f(t) 6
γeβt

1− ρ
(t > 0). (A.3)

Moreover, limn→∞ supt>0(e−βt|f (n)(t)− f(t)|) = 0.

Proof. Choose such a β ∈ R and define

γ := sup
t>0

[
e−βtg(t)

]
, ρ :=

∫ ∞
0

e−βth(t) dt < 1, (A.4)

and

Ck := sup
t>0

(
e−βtf (k)(t)

)
, Dk := sup

t>0

(
e−βt

∣∣∣f (k)(t)− f (k−1)(t)∣∣∣) , (A.5)

for integers k > 1. Thanks to the definition of the f (k)’s,

Cn+1 6 γ + ρCn, Dn+1 6 ρDn (n > 0). (A.6)

Consequently, supn>0 Cn 6 γ(1−ρ)−1 andDn = O(ρn). Since
∑∞
n=0Dn <∞, it

follows that there exists a function f such that supt>0(e−βt|f (n)(t)− f(t)|)→ 0

as n → ∞, and supt>0(e−βtf(t)) 6 supn>0 Cn. These observations together
prove the lemma.

The following is the main result of this appendix.

Lemma A.2 (Comparison lemma). Suppose there exists β ∈ R such that: (i)
γ := supt>0[exp(−βt)g(t)] < ∞; and (ii) ρ :=

∫∞
0

exp(−βt)h(t) dt < 1; and
let f denote the unique non-negative solution to (A.1) that satisfies (A.3). If
F : R+ → R+ satisfies: (a) supt>0[exp(−βt)F (t)] <∞; and (b)

F (t) > g(t) +

∫ t

0

h(t− s)F (s) ds (t > 0), (A.7)
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then f(t) 6 F (t) for all t > 0. Finally, if we replace condition (A.7) by

F (t) 6 g(t) +

∫ t

0

h(t− s)F (s) ds (t > 0), (A.8)

then f(t) > F (t) for all t > 0.

Proof. We will prove (A.7); (A.8) is proved similarly.
We apply Picard’s iteration with initial function f (0) := F , and note that

f (1)(t) = g(t) +

∫ t

0

h(t− s)F (s) ds 6 F (t) (t > 0). (A.9)

This and induction together show that f (n+1)(t) 6 f (n)(t) for all t > 0 and
n > 0. Let n→∞ to deduce the lemma from Lemma A.1.
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