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Abstract

We prove that if f : R → R is Lipschitz continuous, then for every
H ∈ (0 , 1/4] there exists a probability space on which we can construct a
fractional Brownian motion X with Hurst parameter H, together with a
process Y that: (i) is Hölder-continuous with Hölder exponent γ for any
γ ∈ (0 , H); and (ii) solves the differential equation dYt = f(Yt) dXt. More
significantly, we describe the law of the stochastic process Y in terms of
the solution to a non-linear stochastic partial differential equation.
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1 Introduction

Let us choose and fix some T > 0 throughout, and consider the differential
equation

dYt = f(Yt) dXt (0 < t 6 T ), (DE0)

that is driven by a given, possibly-random, signal X := {Xt}t∈[0,T ] and is sub-
ject to some given initial value Y0 ∈ R which we hold fixed throughout. The
sink/source function f : R→ R is also fixed throughout, and is assumed to be
Lipschitz continuous, globally, on all of R.

It is well known—and not difficult to verify from first principles—that when
the signal X is a Lipschitz-continuous function, then:

∗Research supported in part by NSF grant DMS-1307470.
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(i) The differential equation (DE0) has a solution Y that is itself Lipschitz
continuous;

(ii) The Radon–Nikodým derivative dYt/dXt exists, is continuous, and solves
dYt/dXt = f(Yt) for every 0 < t 6 T ; and

(iii) The solution to (DE0) is unique.

Therefore, the Lebesgue differentiation theorem implies that we can recast
(DE0) equally well as the solution to the following: As ε ↓ 0,

Yt+ε − Yt
Xt+ε −Xt

= f(Yt) + o(1), (DE)

for almost every t ∈ [0 , T ].1 Note that (DE) always has an “elementary”
solution, even when X is assumed only to be continuous. Namely, if y is a
solution to the ODE, y′ = f(y), and we set Yt = y(Xt), then Yt+ε − Yt =
f(Yt)(Xt+ε−Xt)+o(|Xt+ε−Xt|). Also note that if Y is a solution to (DE) and
ξ is a process that is smoother thanX in the sense that ξt+ε−ξt = o(|Xt+ε−Xt|),
then Y + ξ is also a solution to (DE).

Differential equations such as (DE0) and/or (DE) arise naturally also when
X is Hölder continuous with some positive index γ < 1. One of the best-studied
such examples is when X is Brownian motion on the time interval [0 , T ]. In
that case, it is very well known that X is Hölder continuous with index γ for any
γ < 1/2. It is also very well known that (DE0) and/or (DE) has infinitely-many
strong solutions [36], and that there is a unique pathwise solution provided that

we specify what we mean by the stochastic integral
∫ t

0
f(Ys) dXs [consider the

integrals of Itô and Stratonovich, for instance].
This view of stochastic differential equations plays an important role in the

pathbreaking work [26, 25] of T. Lyons who invented his theory of rough paths in
order to solve (DE0) when X is rougher than Lipschitz continuous. Our reduc-
tion of (DE) to (DE0) is motivated strongly by Gubinelli’s theory of controlled
rough paths [17], which we have learned from a recent paper of Hairer [18]. In
the present context, Gubinelli’s theory of controlled rough paths basically states
that if we could prove a priori that the o(1) term in (DE) has enough structure,
then there is a unique solution to (DE), and hence (DE0).

Lyons’ theory builds on older ideas of Fox [12] and Chen [4], respectively
in algebraic differentiation and integration theory, in order to construct, for a
large family of functionsX, “rough-path integrals”

∫ t
0
f(Ys) dXs that are defined

uniquely provided that a certain number of “multiple stochastic integrals” of X
are pre specified. Armed with a specified definition of the stochastic integral∫ t

0
f(Ys) dYs, one can then try to solve the differential equation (DE) and/or

(DE0) pathwise [that is ω-by-ω]. To date, this program has been particularly
successful when X is Hölder continuous with index γ ∈ [1/3 , 1]: When γ ∈

1To be completely careful, we might have to define 0 ÷ 0 := 0 in the cases that X has
intervals of constancy. But with probability one, this will be a moot issue for the examples
that we will be considering soon.
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(1/2 , 1] one uses Young’s theory of integration; γ = 1/2 is covered in essence by
martingale theory; and Errami and Russo [10] and Chapter 5 of Lyons and Qian
[24] both discuss the more difficult case γ ∈ [1/3 , 1/2). There is also mounting
evidence that one can extend this strategy to cover values of γ ∈ [1/4 , 1]—see
[1, 2, 3, 6, 7, 16, 31]—and possibly even γ ∈ (0 , 1/4)—see the two recent papers
by Unterberger [35] and Nualart and Tindel [29].

As far as we know, very little is known about the probabilistic structure of
the solution when γ < 1/2 [when the solution is in fact known to exist]. Our
goal is to say something about the probabilistic structure of a solution for a
concrete, but highly interesting, family of choices for X in (DE).

A standard fractional Brownian motion [fBm] with Hurst parameter H ∈
(0, 1)—abbreviated fBm(H)—is a continuous, mean-zero Gaussian process X :=
{Xt}t>0 with X0 = 0 a.s. and

E
(
|Xt −Xs|2

)
= |t− s|2H (s, t > 0). (1.1)

Note that fBm(1/2) is a standard Brownian motion. We refer to any constant
multiple of a standard fractional Brownian motion, somewhat more generally,
as fractional Brownian motion [fBm].

Here, we study the differential equation (DE) in the special case that X is
fBm(H) with

0 < H 6 1
4 . (1.2)

It is well known that (1.1) implies that X is Hölder continuous with index γ for
every γ < H, up to a modification.2 Since H ∈ (0 , 1/4], we are precisely in the
regime where not a great deal is known about (DE).

In analogy with the classical literature on stochastic differential equations
[36] the following theorem establishes the “weak existence” of a solution to (DE),
provided that we interpret the little-o term in (DE0), somewhat generously, as
“little-o in probability.” Our theorem says some things about the law of the
solution as well.

Theorem 1.1. Let g : R → R be Lipschitz continuous uniformly on all of R.
Choose and fix H ∈ (0 , 1/4]. Then there exists a probability space (Ω ,F ,P) on
which we can construct a fractional Brownian motion X, with Hurst parameter
H, together with a stochastic process Y ∈ ∩γ∈(0,H)C

γ([0 , T ]) such that

lim
ε↓0

sup
t∈(0,T ]

P

{∣∣∣∣ Yt+ε − YtXt+ε −Xt
− g(Yt)

∣∣∣∣ > δ

}
= 0 for all δ > 0. (1.3)

Moreover, Y := {Yt}t∈[0,T ] has the same law as {κHut(0)}t∈[0,T ], where

κH :=

(
(1− 2H)Γ(1− 2H)

2πH

)1/2

, (1.4)

2In other words, X ∈ ∩γ∈(0,H)C
γ([0 , T ]) a.s., where Cγ([0 , T ]) denotes as usual the

collection of all continuous functions f : [0 , T ] → R such that |f(t) − f(s)| 6 const · |t − s|γ
uniformly for all s, t ∈ [0 , T ].
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and u denotes the mild solution to the nonlinear stochastic partial differential
equation,

∂

∂t
ut(x) =

1

2
(∆α/2ut)(x) +

1

2(1−2H)/2 · κ2
H

g(κHut(x))Ẇt(x), (1.5)

on (t , x) ∈ (0 , T ]×R, subject to u0(x) ≡ Y0 for all x ∈ R, where Ẇ denotes a
space-time white noise.

The preceding can be extended to all of H ∈ (0 , 1/2) by replacing, in (3.1)
below, the space-time white noise Ẇt(x) by a generalized Gaussian random field
ψt(x) whose covariance measure is described by

Cov(ψt(x) , ψs(y)) =
δ0(t− s)
|x− y|θ

, (1.6)

for a suitable choice of θ ∈ (0 , 1). We will not pursue this matter further here
since we do not know how to address the more immediately-pressing question
of uniqueness in Theorem 1.1. Namely, we do not know a good answer to the
following: “What are [necessarily global] non-trivial conditions that ensure that
our solution Y is unique in law”?

Throughout this paper, Aq denotes a finite constant that depends critically
only on a [possibly vector-valued] parameter q of interest. We will not keep track
of parameter dependencies for the parameters that are held fixed throughout;
they include α and H of (2.16) below, as well as the functions g [see Theorem
1.1] and f [see (5.1) below].

The value of Aq might change from line to line, and sometimes even within
the line.

In the absence of interesting parameter dependencies, we write a generic
“const” in place of “A.”

We prefer to write ‖ · · · ‖k in place of ‖ · ‖Lk(Ω), where k ∈ [1 ,∞) can be an
arbitary real number. That is, for every random variable Y , we set

‖Y ‖k :=
{

E
(
|Y |k

)}1/k
. (1.7)

On a few occasions we might write Lipϕ for the optimal Lipschitz constant
of a function ϕ : R→ R; that is,

Lipϕ := sup
−∞<x<y<∞

∣∣∣∣ϕ(x)− ϕ(y)

x− y

∣∣∣∣ . (1.8)

2 Some Gaussian random fields

In this section we recall a decomposition theorem of Lei and Nualart [23] which
will play an important role in this paper; see Mueller and Wu [27] for a related set
of ideas. We also work out an example that showcases further the Lei–Nualart
theorem.
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2.1 fBm and bi-fBm

Suppose that H ∈ (0 , 1) and K ∈ (0 , 1] are fixed numbers.3 A standard bifrac-
tional Brownian motion, abbreviated as bi-fBm(H ,K), is a continuous mean-

zero Gaussian process BH,K := {BH,Kt }t>0 with BH,K0 := 0 a.s. and covariance
function

Cov
(
BH,Kt , BH,Kt′

)
= 2−K

([
t2H + (t′)2H

]K − |t− t′|2HK) , (2.1)

for all t′, t > 0. Note that BH,1 is a fractional Brownian motion with Hurst
parameter H ∈ (0 , 1). More generally, any constant multiple of a standard
bifractional Brownian motion will be referred as bifractional Brownian motion.

Bifractional Brownian motion was invented by Houdré and Villa [19] as a
concrete example (besides fractional Brownian motion) of a family of processes
that yield natural “quasi–helices” in the sense of Kahane [21] and/or “screw
lines” of classical Hilbert-space theory [28, 32]. Some sample path properties of
bi-fBm(H ,K) have been studied by Russo and Tudor [30], Tudor and Xiao [34]
and Lei and Nualart [23]. In particular, the following decomposition theorem is
due to Lei and Nualart [23, Proposition 1].

Proposition 2.1. Let BH,K be a bi-fBm(H ,K). There exists a fractional
Brownian motion BHK with Hurst parameter HK and a stochastic process ξ
such that BH,K and ξ are independent and, outside a single P-null set,

BH,Kt = 2(1−K)/2BHKt + ξt for all t > 0. (2.2)

Moreover, the process ξ is a centered Gaussian process, with sample functions
that are infinitely differentiable on (0 ,∞) and absolutely continuous on [0 ,∞).

In fact, it is shown in [23, eq.’s (4) and (5)] that we can write

ξt =

(
K

2KΓ(1−K)

)1/2 ∫ ∞
0

1− exp(−st2H)

s(1+K)/2
dWs, (2.3)

where W is a standard Brownian motion that is independent of BH,K .

2.2 The linear heat equation

Let ̂ denote the Fourier transform, normalized so that for every rapidly-
decreasing function ϕ : R→ R,

ϕ̂(ξ) =

∫ ∞
−∞

eiξxϕ(x) dx (ξ ∈ R). (2.4)

Let ∆α/2 := −(−∆)α/2 denote the fractional Laplace operator, which is usually

defined by the property that (∆α/2ϕ)̂ (ξ) = −|ξ|αϕ̂(ξ); see Jacob [20, Vol. II].

3Although we are primarily interested in H ∈ (0 , 1/4], we study the more general case
H ∈ (0 , 1) in this section.
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Consider the linear stochastic PDE

∂

∂t
vt(x) =

1

2
(∆α/2vt)(x) + Ẇt(x), (2.5)

where v0(x) ≡ 0 and Ẇt(x) denotes space-time white noise; that is,

Ẇt(x) =
∂2Wt(x)

∂t∂x
, (2.6)

in the sense of generalized random fields [15, Chapter 2, §2.4], for a space-time
Brownian sheet W .

According to the theory of Dalang [8], the condition

1 < α 6 2 (2.7)

is necessary and sufficient in order for (2.5) to have a solution v that is a random
function. Lei and Nualart [23] have shown that—in the case that α = 2—the
process t 7→ vt(x) is a suitable bi-fBm for every fixed x. In this section we apply
the reasoning of [23] to the present setting in order to show that the same can
be said about the solution to (2.5) for every possible choice of α ∈ (1 , 2].

Let pt(x) denote the fundamental solution to the fractional heat operator
(∂/∂t)− 1

2∆α/2; that is, the function (t ;x , y) 7→ pt(y−x) is the transition prob-
ability function for a symmetric stable-α Lévy process, normalized as follows
(see Jacob [20, Vol. III]):

p̂t(ξ) = exp (−t|ξ|α/2) (t > 0, ξ ∈ R). (2.8)

The Plancherel theorem implies the following: For all t > 0,

‖pt‖2L2(R) =
1

2π
‖p̂t‖2L2(R) =

1

π

∫ ∞
0

e−tξ
α

dξ =
Γ(1/α)

απt1/α
. (2.9)

Let us mention also the following variation: By the symmetry of the heat kernel,
‖pt‖2L2(R) = (pt ∗ pt)(0) = p2t(0). Therefore, the inversion theorem shows that

pt(0) = sup
x∈R

pt(x) =
21/αΓ(1/α)

απt1/α
(t > 0). (2.10)

Now we can return to the linear stochastic heat equation (2.5), and write its
solution v, in mild form, as follows:

vt(x) =

∫
(0,t)×R

pt−s(y − x)W (dsdy). (2.11)

It is well known [37, Chapter 3] that v is a continuous, centered Gaussian random
field. Therefore, we combine (2.8), and (2.9), using Parseval’s identity, in order
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to see that

Cov (vt(x) , vt′(x)) =

∫ t∧t′

0

ds

∫ ∞
−∞

dy pt−s(y)pt′−s(y)

=
1

2π

∫ t∧t′

0

ds

∫ ∞
−∞

dξ p̂t−s(ξ)p̂t′−s(ξ)

=
Γ(1/α)

πα

∫ t∧t′

0

(
t+ t′ − 2s

2

)−1/α

ds.

(2.12)

We use the substitution r = (t+ t′ − 2s)/2 and note that (t+ t′)/2− (t ∧ t′) =
|t− t′|/2 in order to conclude that

Cov (vt(x) , vt′(x)) = c2α2(1−α)/α
(
|t′ + t|(α−1)/α − |t′ − t|(α−1)/α

)
, (2.13)

where

cα :=

(
Γ(1/α)

π(α− 1)

)1/2

. (2.14)

That is, we have verified the following:

Proposition 2.2. For every fixed x ∈ R, the stochastic process t 7→ c−1
α vt(x) is

a bi-fBm(1/2 , (α− 1)/α), where cα is defined in (2.14). Therefore, Proposition
2.1 allows us to write

vt(x) = cα21/(2α)Xt +Rt (t > 0), (2.15)

where {Xt}t>0 is fBm((α−1)/(2α)) and {Rt}t>0 is a centered Gaussian process
that is:

(i) Independent of v•(x);

(ii) Absolutely continuous on [0 ,∞), a.s.; and

(iii) Infinitely differentiable on (0 ,∞), a.s.

Remark 2.3. From now on, we choose α and H according to the following
relation:

α :=
1

1− 2H
equivalently H :=

α− 1

2α
, (2.16)

so that Dalang’s condition (2.7) is equivalent to the restriction that H ∈ (0 , 1/4].
Propositions 2.1 and 2.2 together show that t 7→ vt(x) is a smooth perturbation
of a [non-standard] fractional Brownian motion. In particular, we may compare
(1.4) and (2.14) in order to conclude that

κH = cα, (2.17)

thanks to our convention (2.16).
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Remark 2.4. According to (2.3) the process Rt of Proposition 2.2 can be
written as

Rt = const ·
∫ ∞

0

1− exp (−st)
sH+(1/2)

dWs. (2.18)

This is a Gaussian process that is C∞ away from t = 0, and its derivatives are
obtained by differentiating under the [Wiener] integral. In particular, the first
derivative of R, away from t = 0, is

R′t = const ·
∫ ∞

0

exp (−st)
sH−(1/2)

dWs (t > 0). (2.19)

Consequently, {R′q}q>0 defines a centered Gaussian process, and Wiener’s isom-

etry shows that E(|R′q|2) = const · q2H−2 for all q > 0. Therefore,

‖Rt+ε −Rt‖k = Ak‖Rt+ε −Rt‖2 6 Ak

∫ t+ε

t

‖R′q‖2 dq

= Ak

∫ t+ε

t

qH−1 dq 6 Ak t
H−1ε,

(2.20)

uniformly over all t > 0 and ε ∈ (0 , 1).

3 The non-linear heat equation

In this section we consider the non-linear stochastic heat equation

∂

∂t
ut(x) =

1

2
(∆α/2ut)(x) + f(cαut(x))Ẇt(x) (3.1)

on (t , x) ∈ (0 , T ]×R, subject to u0(x) ≡ Y0 for all x ∈ R, where cα was defined
in (2.14) and f : R→ R is a globally Lipschitz-continuous function.

As is customary [37, Chapter 3], we interpret (3.1) as the non-linear random
evolution equation,

ut(x) = Y0 +

∫
(0,t)×R

pt−s(y − x)f(cαus(y))W (dsdy). (3.2)

Dalang’s condition (2.7) implies that the evolution equation (3.2) has an a.s.-
unique random-field solution u. Moreover, (2.7) is necessary and sufficient for
the existence of a random-field solution when f is a constant; see [8]. We will
need the following technical estimates.

Lemma 3.1. For all k ∈ [2 ,∞) there exists a finite constant Ak,T such that:

E
(
|ut(x)|k

)
6 Ak,T ; and

E
(
|ut(x)− ut′(x′)|

k
)
6 Ak,T

(
|x− x′|(α−1)k/2 + |t− t′|(α−1)k/(2α)

)
;

(3.3)

uniformly for all t, t′ ∈ [0 , T ] and x, x′ ∈ R.
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This is well known: The first moment bound can be found explicitly in
Dalang [8], and the second can be found in the appendix of Foondun and
Khoshnevisan [11]. The second can also be shown to follow from the moments
estimates of [8] and some harmonic analysis.

Lemma 3.1 and the Kolmogorov continuity theorem [9, Theorem 4.3, p. 10]
together imply that u is continuous up to a modification. Moreover, (2.16) and
Kolmogorov’s continuity theorem imply that for every x ∈ R,

u•(x) ∈
⋂

γ∈(0,H)

Cγ([0 , T ]). (3.4)

4 An approximation theorem

The following is the main technical contribution of this paper. Recall that v
denotes the solution to the linear stochastic heat equation (2.5), and has the
integral representation (2.11).

Theorem 4.1. For every k ∈ [2 ,∞) there exists a finite constant Ak,T such
that uniformly for all ε ∈ (0 , 1), x ∈ R, and t ∈ [0 , T ],

E
(
|ut+ε(x)− ut(x)− f(cαut(x)) · {vt+ε(x)− vt(x)}|k

)
6 Ak,T ε

GHk, (4.1)

where

GH :=
2H

1 +H
. (4.2)

Remark 4.2. Since 0 < H 6 1/4, it follows that

8

5
6
GH
H

< 2. (4.3)

We do not know whether the fraction 8/5 = 1.6 is a meaningful quantity or a
byproduct of the particulars of our method. For us the relevant matter is that
(4.3) is a good enough estimate to ensure that GH/H > 1; the strict inequality
will play an important role in the sequel.

Theorem 4.1 is in essence an analysis of the temporal increments of u•(x).
Thanks to (3.2), we can write those increments as

ut+ε(x)− ut(x) := J1 + J2, (4.4)

where

J1 :=

∫
(0,t)×R

[pt+ε−s(y − x)− pt−s(y − x)] f(cαus(y))W (dsdy);

J2 :=

∫
(t,t+ε)×R

pt+ε−s(y − x)f(cαus(y))W (dsdy).

(4.5)

Our proof of Theorem 4.1 proceeds by analyzing J1 and J2 separately.
Let us begin with the latter quantity, as it is easier to estimate than the former
term.
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4.1 Estimation of J2

Define

J̃2 := f(cαut(x)) ·
∫

(t,t+ε)×R
pt+ε−s(y − x)W (dsdy). (4.6)

Proposition 4.3. For every k ∈ [2 ,∞) there exists a finite constant Ak,T such
that for all ε ∈ (0 , 1),

sup
x∈R

sup
t∈[0,T ]

E

(∣∣∣J2 − J̃2

∣∣∣k) 6 Ak,T ε
2Hk. (4.7)

We split the proof in 2 parts: First we show that J2 ≈J ′
2 in Lk(Ω), where

J ′
2 :=

∫
(t,t+ε)×R

pt+ε−s(y − x)f(cαus(x))W (dsdy). (4.8)

After that we will verify that J ′
2 ≈ J̃2 in Lk(Ω). Proposition 4.3 follows imme-

diately from Lemmas 4.4 and 4.5 below and Minkowski’s inequality. Therefore,
we will state and prove only those two lemmas.

Lemma 4.4. For all k ∈ [2 ,∞) there exists a finite constant Ak,T such that
uniformly for all ε ∈ (0 , 1),

sup
x∈R

sup
t∈[0,T ]

E
(
|J2 −J ′

2|
k
)
6 Ak,T ε

2Hk. (4.9)

Proof. The proof will use a particular form of the Burkholder–Davis–Gundy
(BDG) inequality [5, Lemma 2.3]. Since we will make repeated use of this
inequality throughout, let us recall it first.

For every t > 0, let F 0
t denote the sigma-algebra generated by every Wiener

integral of the form
∫

(0,t)×R ϕs(y)W (dsdy) as ϕ ranges over all elements of

L2(R+ ×R). We complete every such sigma-algebra, and make the filtration
{Ft}t>0 right continuous in order to obtain the “Brownian filtration” F that

corresponds to the white noise Ẇ .
Let Φ := {Φt(x)}t>0,x∈R be a predictable random field with respect to F .

Then, for every real number k ∈ [2 ,∞), we have the following BDG inequality:∥∥∥∥∥
∫

(0,t)×R
Φs(y)W (dsdy)

∥∥∥∥∥
2

k

6 4k

∫ t

0

ds

∫ ∞
−∞

dy ‖Φs(y)‖2k. (4.10)
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The BDG inequality (4.10) and eq. (3.2) together imply that

‖J2 −J ′
2‖

2

Lk(Ω)

6 4k

∫ t+ε

t

ds

∫ ∞
−∞

dy [pt+ε−s(y − x)]
2 ‖f(cαus(y))− f(cαus(x))‖2k

6 4kc2αLip2
f ·
∫ t+ε

t

ds

∫ ∞
−∞

dy [pt+ε−s(y − x)]
2 ‖us(y)− us(x)‖2k (4.11)

6 Ak,T

∫ ε

0

ds

∫ ∞
−∞

dy [ps(y)]
2 (|y|α−1 ∧ 1

)
.

The last inequality uses both moment inequalities of Lemmas 3.1. Furthermore,
measurability issues do not arise, since the solution to (3.2) is continuous in the
time variable t and adapted to the Brownian filtration F .

In order to proceed from here, we need to recall two basic facts about the
transition functions of stable processes: First of all,

ps(y) = s−1/αp1

(
|y|/s1/α

)
for all s > 0 and y ∈ R. (4.12)

This fact is a consequence of scaling and symmetry; see (2.8). We also need to
know the fact that p1(z) 6 const · (1 + |z|)−(1+α) for all z ∈ R [22, Proposition
3.3.1, p. 380], whence

ps(y) 6 const×

{
s−1/α if |y| 6 s1/α,

s|y|−(1+α) if |y| > s1/α.
(4.13)

Consequently,∫ ε

0

ds

∫ 1

0

dy [ps(y)]
2 (
yα−1 ∧ 1

)
6 const ·

(∫ ε

0

s−2/α ds

∫ s1/α

0

yα−1 dy +

∫ ε

0

s2 ds

∫ 1

s1/α
y−3−α dy

)
6 const · ε2(α−1)/α.

(4.14)

We obtain the following estimate by similar means:∫ ε

0

ds

∫ ∞
1

dy [ps(y)]
2 (
yα−1 ∧ 1

)
6 const ·

∫ ε

0

s2 ds

∫ ∞
1

y−2−2α dy (4.15)

= const · ε3

6 const · ε2(α−1)/α,

uniformly for all ε ∈ (0 , 1). Since ps(y) = ps(−y) for all s > 0 and y ∈ R, the
preceding two displays and (4.11) together imply that

‖J2 −J ′
2‖2Lk(Ω) 6 const · ε2(α−1)/α. (4.16)

We may conclude the lemma from this inequality, using our convention about
α and H; see (2.16).
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In light of Lemma 4.4, Proposition 4.3 follows at once from

Lemma 4.5. For all k ∈ [2 ,∞) there exists a finite constant Ak,T such that
uniformly for all ε ∈ (0 , 1),

sup
x∈R

sup
t∈[0,T ]

E

(∣∣∣J ′
2 − J̃2

∣∣∣k) 6 Ak,T ε
2Hk. (4.17)

Proof. We apply the BDG inequality (4.10), as we did in the derivation of (4.11),
in order to see that∥∥∥J ′

2 − J̃2

∥∥∥2

Lk(Ω)

6 4kc2αLip2
f

∫ t+ε

t

ds

∫ ∞
−∞

dy [pt+ε−s(y)]
2 ‖us(x)− ut(x)‖2Lk(Ω) (4.18)

6 Ak,T

∫ t+ε

t

‖pt+ε−s‖2L2(R) |s− t|
(α−1)/α

ds.

Therefore, (2.9) and a change of variables together show us that the preceding
quantity is bounded above by

Ak,T

∫ ε

0

s(α−1)/α(ε− s)−1/α ds = Ak,T ε
2(α−1)/α. (4.19)

The lemma follows from this and our convention (2.16) about the relation be-
tween α and H.

4.2 Estimation of J1 and proof of Theorem 4.1

Now we turn our attention to the more interesting term J1 in the decomposition
(4.5). The following localization argument paves the way for a successful analysis
of J1: pt(x) dx ≈ δ0(dx) when t ≈ 0; therefore one might imagine that there
is a small regime of values of s ∈ (0 , t) such that pt+ε−s(y − x) − pt−s(y − x)
is highly localized [big within the regime, and significantly smaller outside that
regime]. Thus, we choose and fix a parameter a ∈ (0 , 1)—whose optimal value
will be made explicit later on in (4.42)—and write

J1 = J1,a + J ′
1,a, (4.20)

where

J1,a :=

∫
(0,t−εa)×R

[pt+ε−s(y − x)− pt−s(y − x)] f(cαus(y))W (dsdy),

(4.21)

J ′
1,a :=

∫
(t−εa,t)×R

[pt+ε−s(y − x)− pt−s(y − x)] f(cαus(y))W (dsdy).

12



We will prove that the quantity J1,a is small as long as we choose a ∈ (0 , 1)
carefully; that is, J1 ≈J ′

1,a for a good choice of a. And because s ∈ (t− εa, t)
is approximately t, then we might expect that f(us(y))) ≈ f(ut(y)) [for that
correctly-chosen a], and hence J1 ≈J ′′

1,a, where

J ′′
1,a :=

∫
(t−εa,t)×R

[pt+ε−s(y − x)− pt−s(y − x)] f(cαut(y))W (dsdy). (4.22)

Finally, we might notice that pt+ε−s and pt−s both act as point masses when

s ∈ (t− εa, t), and therefore we might imagine that J1 ≈J ′′
1,a ≈ J̃1,a, where

J̃1,a := f(cαut(x)) ·
∫

(t−εa,t)×R
[pt+ε−s(y − x)− pt−s(y − x)]W (dsdy). (4.23)

All of this turns out to be true; it remains to find the correct choice[s] for
the parameter a so that the errors in the mentioned approximations remain
sufficiently small for our later needs. Recall the parameter GH from (4.2). Before
we continue, let us first document the end result of this forthcoming effort. We
will prove it subsequently.

Proposition 4.6. For every T > 0 and k ∈ [2 ,∞) there exists a finite constant
Ak,T such that uniformly for all ε ∈ (0 , 1), x ∈ R, and t ∈ [0 , T ],

E

∣∣∣∣∣J1 − f(cαut(x)) ·
∫

(0,t)×R
[pt+ε−s(y − x)− pt−s(y − x)]W (dsdy)

∣∣∣∣∣
k


6 Ak,T ε
GHk. (4.24)

Thanks to (4.4) and Minkowski’s inequality, Theorem 4.1 follows easily from
Propositions 4.3 and 4.6. It remains to prove Proposition 4.6.

We begin with a sequence of lemmas that make precise the various formal
appeals to “≈” in the preceding discussion. As a first step in this direction, let
us dispense with the “small” term J1,a.

Lemma 4.7. For all k ∈ [2 ,∞) and a ∈ (0 , 1) there exists a finite constant
Aa,k,T such that uniformly for all ε ∈ (0 , 1),

sup
x∈R

sup
t∈[0,T ]

E
(
|J1,a|k

)
6 Aa,k,T ε

[1−a(1−H)]k. (4.25)

Proof. We can modify the argument that led to (4.11), using the BDG inequality
(4.10), in order to yield

‖J1,a‖2Lk(Ω)

6 4k

∫ t−εa

0

ds

∫ ∞
−∞

dy [pt+ε−s(y − x)− pt−s(y − x)]
2 ‖f(cαus(y))‖2Lk(Ω)

6 Ak,T

∫ T

εa
ds

∫ ∞
−∞

dy [ps+ε(y)− ps(y)]
2
. (4.26)
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We first bound
∫ T
εa

ds from above by eT ·
∫∞
εa

e−s ds, and then apply (2.8) and
Plancherel’s formula in order to deduce the following bounds:

‖J1,a‖2Lk(Ω) 6 Ak,T

∫ ∞
εa

e−s ds

∫ ∞
−∞

dξ e−2s|ξ|α
∣∣∣1− e−ε|ξ|

α
∣∣∣2

6 Ak,T

∫ ∞
εa

e−s ds

∫ ∞
0

dξ e−2sξα
(
1 ∧ ε2ξ2α

)
= Ak,T

∫ ∞
0

(
1 ∧ ε2ξ2α

)
e−2εaξα dξ

1 + ξα
,

(4.27)

since 0 6 1− e−z 6 1 ∧ z for all z > 0. Clearly,∫ ε−1/α

0

(
1 ∧ ε2ξ2α

)
e−2εaξα dξ

1 + ξα
6 ε2

∫ ε−1/α

0

ξαe−2εaξαdξ

= ε(α−1)/α

∫ 1

0

xα exp

(
− 2xα

ε1−a

)
dx

6 ε(α−1)/α

∫ ∞
0

xα exp

(
− 2xα

ε1−a

)
dx

= const · ε(2α−a−αa)/α. (4.28)

Furthermore,∫ ∞
ε−1/α

(
1 ∧ ε2ξ2α

)
e−2εaξα dξ

1 + ξα
6
∫ ∞
ε−1/α

e−2εaξαdξ (4.29)

6 const · exp
(
−2ε−(1−a)

)
,

uniformly for all ε ∈ (0 , 1). The preceding two paragraphs together imply that

E
(
|J1,a|k

)
6 Aa,k,T ε

(2α−a−aα)k/(2α), (4.30)

which proves the lemma, due to the relation (2.16) between H and α.

Lemma 4.8. For all k ∈ [2 ,∞) and a ∈ (0 , 1) there exists a finite constant
Aa,k,T such that uniformly for all ε ∈ (0 , 1),

sup
x∈R

sup
t∈[0,T ]

E
(∣∣J ′

1,a −J ′′
1,a

∣∣k) 6 Aa,k,T ε
2aHk. (4.31)

Proof. We proceed as we did for (4.11), using the BDG inequality (4.10), in
order to find that∥∥J ′

1,a −J ′′
1,a

∥∥2

Lk(Ω)
6 Ak,T ·

∫ εa

0

s(α−1)/α‖ps+ε − ps‖2L2(R) ds (4.32)

= Ak,T ε
(2α−1)/α ·

∫ εa−1

0

r(α−1)/α‖pε(1+r) − pεr‖2L2(R) dr,
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after a change of variables [r := s/ε]. The scaling property (4.12) can be written
in the following form:

pετ (y) = ε−1/αpτ (y/ε1/α), (4.33)

valid for all τ, ε > 0 and y ∈ R. Consequently,

‖pε(1+r) − pεr‖2L2(R) = ε−1/α · ‖p1+r − pr‖2L2(R). (4.34)

Eq. (2.8) and the Plancherel theorem together imply that

‖p1+r − pr‖2L2(R) =
1

2π

∫ ∞
−∞

e−r|z|
α
(

1− e−|z|
α/2
)2

dz

6
∫ ∞

0

e−rz
α

dz

=
Γ(1/α)

αr1/α
,

(4.35)

for all r > 0. Therefore, (4.32) implies that

∥∥J ′
1,a −J ′′

1,a

∥∥2

Lk(Ω)
6 Ak,T ε

2(α−1)/α ·
∫ εa−1

0

r(α−2)/α dr, (4.36)

which readily implies the lemma.

Lemma 4.9. For all k ∈ [2 ,∞) and a ∈ (0 , 1) there exists a finite constant
Aa,k,T such that uniformly for all ε ∈ (0 , 1),

sup
x∈R

sup
t∈[0,T ]

E

(∣∣∣J ′′
1,a − J̃1,a

∣∣∣k) 6 Ak,T ε
2aHk. (4.37)

Proof. We proceed as we did for (4.11), apply the BDG inequality (4.10), and
obtain the following bounds:∥∥∥J ′′

1,a − J̃1,a

∥∥∥2

Lk(Ω)

6 Ak

∫ t

t−εa
ds

∫ ∞
−∞

dy [pt+ε−s(y − x)− pt−s(y − x)]
2 ‖ut(y)− ut(x)‖2Lk(Ω)

6 Ak,T

∫ εa

0

ds

∫ ∞
−∞

dy [ps+ε(y)− ps(y)]
2 (|y|α−1 ∧ 1

)
(4.38)

6 Ak,T ε

∫ εa−1

0

dr

∫ ∞
−∞

dy
[
pε(r+1)(y)− pεr(y)

]2 |y|α−1.

Thanks to the scaling property (4.33), we may obtain the following after a
change of variables [w := y/ε1/α]:∥∥∥J ′′

1,a − J̃1,a

∥∥∥2

Lk(Ω)
(4.39)

6 Ak,T ε
2(α−1)/α

∫ εa−1

0

dr

∫ ∞
−∞

dw [pr+1(w)− pr(w)]
2 |w|α−1.
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Next we notice that∫ εa−1

0

dr

∫ ∞
0

dw [pr(w)]
2
wα−1 =

∫ εa−1

0

r−2/α dr

∫ ∞
0

dw
[
p1(w/r1/α)

]2
wα−1

=

∫ εa−1

0

r(α−2)/α dr

∫ ∞
0

dx [p1(x)]
2
xα−1,

6 const · ε2(a−1)(α−1)/α, (4.40)

where the last inequality uses the facts that: (i) α > 1; and (ii) p1(x) 6 const ·
(1 + |x|)−1−α (see [22, Proposition 3.3.1, p. 380]). Therefore,∥∥∥J ′′

1,a − J̃1,a

∥∥∥2

Lk(Ω)
6 Ak,T ε

2a(α−1)/α, (4.41)

which proves the lemma, due to the relation (2.16) between H and α.

Proof of Proposition 4.6. So far, the parameter a has been an arbitrary real
number in (0 , 1). Now we choose and fix it as follows:

a :=
1

1 +H
. (4.42)

Thus, for this particular choice of a,

1− a(1−H) = 2aH = GH , (4.43)

where G := 2H/(1 +H) was defined in (4.2). Because GH < 2H and because of
(4.20), Lemmas 4.7, 4.8, and 4.9 together imply that, for this choice of a,

E

(∣∣∣J1 − J̃1,a

∣∣∣k) 6 Ak,T ε
GHk, (4.44)

uniformly for all ε ∈ (0 , 1), x ∈ R, and t ∈ [0 , T ]. Thanks to the definition

(4.23) of J̃1,a, it suffices to demonstrate the following with the same parameter
dependencies as above:

E

(∣∣∣J̃1,a − f(cαut(x)) · Λ([0 , t])
∣∣∣k) 6 Ak,T ε

GHk; (4.45)

where Λ(Q) :=
∫
Q×R[pt+ε−s(y − x) − pt−s(y − x)]W (dsdy) for every interval

Q ⊂ [0 , T ].

Because J̃1,a = f(cαut(x))× Λ([t− εa , t]), Lemma 3.1 shows that the left-
hand side of (4.45)

E

(∣∣∣J̃1,a − f(cαut(x)) · Λ([0 , t])
∣∣∣k) 6 Ak,T

√
E
(
|Λ([0 , t− εa])|2k

)
. (4.46)

Since Λ([0 , t− εa]) is the same as the quantity J1,a in the case that f ≡ 1, we
may apply Lemma 4.7 to the linear equation (2.5) with f ≡ 1 in order to see
that √

E
(
|Λ([0 , t− εa])|2k

)
6 Ak,T ε

GHk
, (4.47)

which implies (4.45).
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5 Proof of Theorem 1.1

We conclude this article by proving Theorem 1.1.
Let us define a Lipschitz-continuous function f by

f(x) :=
2H

κ2
H

√
2
g(x) (x ∈ R), (5.1)

where κH was defined in (1.4). Let us also define a stochastic process

Yt := cαut(0) (t > 0), (5.2)

where the constant cα[= κH ] was defined in (2.14) and u denotes the solution
to the stochastic PDE (3.1). Because of Remark 2.3 and the definition of f , we
can see that:

(i) Yt = κHut(0); and

(ii) u solves the stochastic PDE (1.5).

We also remark that g(x) = c2α21/(2α)f(x).
We are assured by (3.4) that Y ∈ ∩γ∈(0,H)C

γ([0 , t]), up to a modification
[in the usual sense of stochastic processes]. Recall from (2.11) the solution v to
the linear SPDE (2.5).

Let X be the fBm(H) from Proposition 2.2 and choose and fix t ∈ (0 , T ].
Then

Θ := Yt+ε − Yt − g(Yt)(Xt+ε −Xt)

= Yt+ε − Yt − c2α21/(2α)f(Yt)(Xt+ε −Xt)

= cα

(
ut+ε(0)− ut(0)− f(cαut(0))

[
cα21/(2α)Xt+ε − cα21/(2α)Xt

])
= cα (ut+ε(0)− ut(0)− f(cαut(0))(vt+ε(0)− vt(0)))

+ cαf(cαut(0))(Rt+ε −Rt). (5.3)

We proved, earlier in Remark 2.4, that ‖Rt+ε − Rt‖k 6 Ak,t ε. Because
f is Lipschitz continuous, Hölder’s inequality and (3.3) together imply that
‖cαf(cαut(0))(Rt+ε −Rt)‖k 6 Ak,t ε, whence we obtain the bound,

sup
t∈(0,T ]

E(Θ2) 6 AT ε
2GH , (5.4)

from Theorem 4.1. Since GH > H—see Remark 4.2—the preceding displayed
bound and Chebyshev’s inequality together imply that for every ε ∈ (0 , 1),
δ > 0, and b ∈ (H,GH),

P

{∣∣∣∣ Yt+ε − YtXt+ε −Xt
− g(Yt)

∣∣∣∣ > δ

}
= P

{
|Θ|

|Xt+ε −Xt|
> δ

}
(5.5)

6 AT ε
2(GH−b) + P

{
|Xt+ε −Xt| <

εb

δ

}
.
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The first term converges to zero as ε → 0+ since b < GH . It remains to prove
that the second term also vanishes as ε → 0+. But since X is fBm(H), the
increment Xt+ε −Xt has the same distribution as εHZ where Z is a standard
normal random variable. Therefore,

sup
t∈(0,T ]

P

{
|Xt+ε −Xt| <

εb

δ

}
= P

{
|Z| 6 εb−H

δ

}
, (5.6)

which goes to zero as ε→ 0+ since b > H.
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