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Abstract

We consider the solution {u(t, x); t ≥ 0, x ∈ R} of a system of d
linear stochastic wave equations driven by a d dimensional symmetric
space-time Lévy noise. We provide a necessary and sufficient condition,
on the characteristic exponent of the Lévy noise, which describes exactly
when the zero set of u is nonvoid. We also compute the Hausdorff dimen-
sion of that zero set, when it is nonempty. These results will follow from
more general potential-theoretic theorems on the level sets of Lévy sheets.
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1 Introduction and main results

Consider the solution u(t , x) := (u1(t , x) , . . . , ud(t , x)) to the following system
of d linear stochastic wave equations:

∂2ui
∂t2

(t , x) =
∂2ui
∂x2

(t , x) + L̇i(t , x), t ≥ 0, x ∈ R, (1.1)

with initial condition ui(0 , x) = ∂tui(0 , x) = 0, where i ranges in {1 , . . . , d},
and L̇ := (L̇1 , . . . , L̇d) is a [totally scattered] d-dimensional Lévy noise on R2

with Lévy exponent Ψ.
Stochastic PDEs (SPDEs) that are driven by [non-Gaussian] Lévy noises

are beginning to receive some attention in the literature. We mention, for
example, the work of Mueller [29], who investigates nonlinear heat equations in
high space dimensions that are driven by multiplicative space-time stable Lévy
noises. See also Mueller, Mytnik, and Stan [30] who consider heat equations with
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a multiplicative space-dependent stable Lévy noise. And the Cauchy problem,
in high space dimensions, for the linear wave equation driven by a space-time
Lévy noise, is treated in Øksendal, Proske, and Signahl [31].

We now return to the SPDE (1.1), and define the light cone at (t , x) ∈ R2
+

to be the set

C (t , x) :=
{

(s , y) ∈ R2
+ : 0 ≤ s ≤ t and x− (t− s) ≤ y ≤ x+ (t− s)

}
. (1.2)

Then, 1
21C (t,x) is the Green function for the wave operator. We follow the

approach developed by Walsh [36], for space-time white noise, and can write
the solution of (1.1), in mild form, as

u(t , x) =
1
2

∫
R2

+

1C (t,x)(s, y)L(dsdy) for all t ≥ 0, x ∈ R, (1.3)

where L denotes the Lévy sheet that corresponds to L̇ := (L̇1 , . . . , L̇d) [see §2.1],
and the stochastic integral is a Wiener-type integral with respect to L [see §2.3].

The aim of this paper is to study the geometry of the zero set

u−1{0} := {(t , x) ∈ R+ ×R : u(t , x) = 0} (1.4)

of the solution to (1.1). In particular, we seek to know when u−1{0} is nonvoid.
In order to describe when u−1{0} 6= ∅, we first analyze the zero set of a Lévy
sheet. This will be done in a more general setting. Then, we devise a “com-
parison principle” to relate the solution to the SPDE (1.1) to theorems about
additive Lévy process developed earlier in [22, 25, 26]. This comparison method
might appear to be a little round-about, but as it turns out, it is not so easy to
work directly with the solution to (1.1).

In order to state the main result of this paper we introduce the following
regularity conditions on the characteristic exponent Ψ of the noise L̇; see (2.1)
below for a precise definition of Ψ:

A1. L̇ is symmetric. That is, Ψ(ξ) is real and nonnegative for all ξ ∈ Rd.

A2. Φ(λ) <∞ for all λ > 0, where Φ is the gauge function defined by

Φ(λ) :=
1

(2π)d

∫
Rd

e−λΨ(ξ) dξ for all λ > 0. (1.5)

A3. For all a > 0 there exists a constant Aa > 0 such that

Ψ(aξ) ≥ AaΨ(ξ) for all ξ ∈ Rd. (1.6)

Remark 1.1. In order to understand condition A3 better, we note that Φ is
nonincreasing. Therefore, in particular, Φ(2λ) ≤ Φ(λ) for all λ > 0. Condition
A3 implies that a converse holds. Namely,

lim sup
λ↓0

Φ(λ)
Φ(2λ)

<∞. (1.7)

2



Unfortunately, (1.7) by itself does not seem to be enough to imply our main
result.

Given an analytic Euclidean set A, we let dimH A denote its Hausdorff dimen-
sion [21, Appendix C], with the proviso added that the statement “dimH A < 0”
means that “A is empty.”

We are ready to present the main result of this paper; the remainder of the
article is dedicated to proving this fact.

Theorem 1.2. Under conditions A1–A3, the following are equivalent:

(i) Almost surely, u(t , x) = 0 for some t > 0 and x ∈ R;

(ii) with positive probability, u(t , x) = 0 for some t > 0 and x ∈ R;

(iii)
∫ 1

0
λΦ(λ) dλ <∞.

In addition, if one of these conditions holds, then dimH u
−1{0} = 2− ind Φ a.s.,

where

ind Φ := lim sup
λ↓0

log Φ(λ)
log(1/λ)

. (1.8)

In order to understand Theorem 1.2 better, let us emphasize the special case
where Ψ(ξ) = 1

2‖ξ‖
α for all ξ ∈ Rd, and α ∈ (0 , 2] is a fixed “index of stability.”

In this case, L̇ is called the isotropic stable Lévy noise with index α, and it is
easy to see that Φ(λ) = const · λd/α. Hence, Theorem 1.2 yields the following
result.

Corollary 1.3. Consider the solution u to (1.1) where L̇ is the isotropic stable
Lévy noise with index α ∈ (0 , 2]. Then u has zeros if and only if d < 2α.
Moreover, if d < 2α, then dimH u

−1{0} = 2− (d/α) a.s.

When α = 2, L̇ is the standard d-dimensional white noise on R2, and (1.1)
simplifies to the more common form of the linear stochastic wave equation with
d i.i.d. components. In that case, there is indeed a large literature on this topic.
See, for example, Dalang [8, 9], Dalang and Walsh [11], Cabaña [3, 4], Carmona
and Nualart [6, 7], Gaveau [15, 16], Pyasetskaya [33], and Walsh [36].

One could also consider the case where Ψ(ξ) = ξ′Qξ where Q := (Qij) is
a nonsingular d × d covariance matrix. This leads to the weakly-interacting
system

∂2ui
∂t2

(t , x) =
∂2ui
∂x2

(t , x) +
d∑
j=1

QijẆj(t , x), t ≥ 0, x ∈ R, 1 ≤ i ≤ d, (1.9)

with initial condition ui(x , 0) = ∂tui(x , 0) = 0. Here, Ẇ := (Ẇ1 , . . . , Ẇd)
denotes a standard d-dimensional white noise on R2. Corollary 1.3 holds in this
case with α = 2, with the end-result being that the solution has zeros if and
only if d < 4. This result is related closely to a hyperbolic problem that was
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solved in Dalang and Nualart [10]. If we apply their characterization to the
problem of the existence of zeros, then we obtain the same critical dimension of
four as we do here. We add that the theorem of Dalang and Nualart [10] holds
in the presence of smooth multiplicative nonlinearities as well.

This paper is organized as follows: In §2 we recall Lévy sheets and their
associated Lévy processes, and present a brief introduction to stochastic inte-
gration with respect to a general Lévy noise. Sections 3, 4 and 5 are devoted
to the study of the polar sets of the zero set of a Lévy sheet and of the random
field defined as a sum of a Lévy sheet and an additive Lévy process, in a general
setting. We finally prove Theorem 1.2 in Section 6.

In the rest of this section we give some notation that will be used throughout.
The k-dimensional Lebesgue measure on Rk is denoted by λk. For all x ∈ Rk,
‖x‖ := (x2

1 + · · ·+ x2
k)1/2 denotes the `2-norm of x, and |x| := |x1|+ · · ·+ |xk|

its `1-norm.
The underlying parameter space is RN , or RN

+ = [0 ,∞)N . A typical pa-
rameter t ∈ RN is written as t = (t1, ..., tN ). There is a natural partial order �
on RN . Namely, s � t if and only if si ≤ ti for all i = 1, ..., N . When it is the
case that s � t, we define the interval [s , t] =

∏N
i=1[si , ti]. Finally, s∧ t denotes

the N -vector whose ith coordinate is the minimum of si and ti.
We denote by f̂ the normalized Fourier transform of f ∈ L1(Rd) given by

f̂(ξ) =
∫
Rd

eix·ξ f(x) dx for all ξ ∈ Rd. (1.10)

2 Lévy sheets and their associated processes

In this section we study the structure of the distribution function of the noise
L̇, which is called a Lévy sheet. In fact, we proceed by first studying such sheets
under greater generality that is needed for (1.1). This is primarily because we
view Lévy sheets as fundamental objects themselves.

2.1 Lévy sheets

Let us begin by introducing some notation for N -parameter, d-dimensional Lévy
sheets. For more detailed information, particularly in the two-parameter case,
see §2 of Dalang and Walsh [11].

Let L̇ be a totally scattered symmetric d-dimensional random measure on
RN that is infinitely divisible in the following sense:

1. If A and B are disjoint Borel subsets of RN then L̇(A) and L̇(B) are
independent;

2. For every Borel set A ⊂ RN of finite Lebesgue measure, the law of L̇(A)
is described by the following:

E[exp{iξ · L̇(A)}] = exp (−λN (A)Ψ(ξ)) for all ξ ∈ Rd, (2.1)
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where Ψ is a real (and hence non-negative) negative-definite function in
the sense of Schoenberg [35]. See also the following Remark.

Remark 2.1. We recall Schoenberg’s theorem: Ψ is negative definite if and
only if Ψ(0) ≥ 0 and ξ 7→ exp(−tΨ(ξ)) is positive definite in the sense of Herzog
and Bochner [1, Theorem 7.8, p. 41]. Equivalently, Ψ is negative definite if it
satisfies the Lévy–Khintchine formula [2, 34]. In the present case, Ψ is also
real-valued, and therefore, Ψ(ξ) ≥ 0 for all ξ ∈ Rd.

The Lévy sheet L with Lévy exponent Ψ is the N -parameter d-dimensional
random field {L(t); t ∈ RN

+} defined as

L(t) := L̇ ([0 , t]) for all t := (t1 , . . . , tN ) ∈ RN
+ . (2.2)

Next we mention a few commonly-used families of Lévy noises and their
corresponding Lévy sheets.

Example 2.2 (White and Stable Noises). Choose and fix a constant χ ∈ (0 ,∞).
When Ψ(ξ) = χ‖ξ‖2 for all ξ ∈ Rd, L̇ is called the d-dimensional white noise
on RN , and L is called the N -parameter, d-dimensional Brownian sheet. The
noise L̇ is the [usual] standard white noise when χ = 1/2, and the random field
L is then called the [usual] standard Brownian sheet.

More generally, if Ψ(ξ) = χ‖ξ‖α for ξ ∈ Rd, then by the Lévy–Khintchine
formula α ∈ (0 , 2], and L̇ is called the d-dimensional isotropic stable noise on
RN with index α. In this case, L is called the N -parameter isotropic stable
sheet in Rd with index α; see Ehm [14].

There are other interesting stable noises that are symmetric. For instance,
one could consider Ψ(ξ) = 1

2

∑d
j=1 |ξj |α. This gives rise to the symmetric noise

each of whose d components are i.i.d. one-dimensional stable noises on RN

with common index α. The resulting random field is a stable sheet with i.i.d.
coordinates, each with the same stability index α.

Example 2.3 (Noises with Stable Components). Let α1, . . . , αd ∈ (0 , 2] be
fixed, and consider Ψ(ξ) = χ

∑d
j=1 |ξj |αj , where χ ∈ (0 ,∞) is fixed. The

resulting random noise L̇ has stable components with index (α1 , . . . , αd), and
the corresponding random field L is the stable sheet with stable components.
These were introduced in the one-parameter case by Pruitt [32], and investigated
further by Hendricks [17, 18, 19, 20].

Let us mention also the following ready consequence of Theorem 1.2.

Corollary 2.4. Consider the solution u to (1.1) where L̇ is Lévy noise with
stable components with index (α1 , . . . , αd) ∈ (0 , 2]d. Then, u has zeros if and
only if

∑d
j=1(1/αj) < 2. If and when

∑d
j=1(1/αj) < 2, then

dimH u
−1{0} = 2−

d∑
j=1

1
αj

a.s. (2.3)
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2.2 The associated processes

Because Ψ is a Lévy exponent there exists a d-dimensional Lévy process X :=
{X(t); t ≥ 0} whose law is described uniquely by E[eiξ·X(t)] = e−tΨ(ξ) for all
t ≥ 0 and ξ ∈ Rd. We may refer to X as the Lévy process associated to L̇.

By the inversion theorem, the transition densities of X are given by

f(t ;x) =
1

(2π)d

∫
Rd

cos(x · ξ)e−tΨ(ξ) dξ for all t ≥ 0, x ∈ Rd. (2.4)

In particular, Φ(λ) is none other than f(λ ; 0).
Now let X1, . . . , XN be N i.i.d. copies of X. Then the additive Lévy process

associated to L̇ is defined as the d-dimensional N -parameter random field X :=
{X(t); t ∈ RN

+}, where

X(t) := X1(t1) + · · ·+XN (tN ) for all t ∈ RN
+ . (2.5)

The density function of X(t) at 0 ∈ Rd is Φ(
∑N
i=1 ti). This should be contrasted

with the fact that the density function of L(t) at 0 ∈ Rd is Φ(
∏N
i=1 ti).

2.3 Stochastic integrals

In this section we proceed to construct Wiener-type stochastic integrals of the
type L̇(ϕ) :=

∫
RN ϕ(t) L̇(dt), where ϕ : RN → R is nonrandom, measurable,

bounded, and compactly supported. There are in place integration theories
that construct L̇(ϕ) abstractly; see, for example the Bartle-type integrals of
Dunford and Schwartz [13]. But in order to mention some of the probabilistic
properties of these integrals, we opt for a more direct approach that is closer to
the original method of Wiener. As our method uses standard ideas to produce
such stochastic integrals, we will only sketch the main steps.

First suppose ϕ is a simple function. That is, ϕ(t) =
∑m
j=1 cj1Aj

, where
A1, . . . , Am are disjoint Borel sets in RN , and c1, . . . , cm are real constants. For
such ϕ we define L̇(ϕ) :=

∑m
j=1 cjL̇(Aj). Because Ψ(0) = 0,

E[exp{iξ · L̇(ϕ)}] = exp

− m∑
j=1

λN (Aj)Ψ(cjξ)


= exp

(
−
∫
RN

Ψ(ϕ(t)ξ) dt
)
.

(2.6)

Next we consider a bounded, compactly-supported measurable function ϕ :
RN → R. Standard measure-theoretic arguments reveal that we can find simple
functions ϕ1, ϕ2, . . . : RN → R+ and a compact set K ⊂ RN such that: (i)
limn→∞ ϕn = ϕ pointwise; (ii) R := supn≥1 supt∈RN |ϕn(t)| < ∞; and (iii)
ϕn(t) = 0, for all t 6∈ K and all n ≥ 1.
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By linearity, and since Ψ is real and nonnegative,

1 ≥ lim inf
n,m→∞

E
[
exp

(
iξ ·
{
L̇(ϕn)− L̇(ϕm)

})]
≥ exp

(
− lim sup
n,m→∞

∫
K

Ψ ({ϕn(t)− ϕm(t)} ξ) dt
)
.

(2.7)

Let c := Rmax1≤j≤d |ξj |, and note that Ψ is uniformly continuous on [−c , c]d.
Therefore, limn,m→∞ E[exp(iξ · {L̇(ϕn) − L̇(ϕm)})] = 1. Consequently, the se-
quence {L̇(ϕn)}n≥1 is Cauchy in L0(P), and hence L̇(ϕn) converges in probabil-
ity. The limit is denoted by L̇(ϕ) and has the following properties. As they can
be proved directly from the preceding construction, we list them below without
proof.

Proposition 2.5. Let B denote the algebra of all nonrandom, bounded, com-
pactly supported measurable functions from RN to R. Then there is an “iso-
Lévy” process {L̇(ϕ)}ϕ∈B with the following properties:

(i) E[exp{iξ · L̇(ϕ)}] = exp(−
∫
RN Ψ(ϕ(t)ξ) dt) for all ξ ∈ Rd and ϕ ∈ B.

(ii) If ϕ1, ϕ2 ∈ B, then L̇(ϕ1 + ϕ2) = L̇(ϕ1) + L̇(ϕ2) a.s.

(iii) If a ∈ R and ϕ ∈ B, then L̇(aϕ) = aL̇(ϕ) a.s.

That is, L̇ defines a random linear functional in the sense of Minlos [27, 28].
Alternatively, one might write

∫
ϕdL in place of L̇(ϕ).

3 The image of a Lévy sheet

Theorem 1.2 is a consequence of the more general results of this section. Before
we describe them we need to introduce some notation.

Throughout the rest of the paper {L(t); t ∈ RN
+} denotes a d-dimensional N -

parameter Lévy sheet whose Lévy exponent Ψ satisfies the symmetry condition
A1, and whose gauge function Φ satisfies the regularity conditions A2 and A3.
Occasionally we need the corresponding Lévy noise, which we denote by L̇. Note
that the Lévy sheet that arises from the SPDE (1.1) is one such random field
with N = 2.

We assume that the underlying sample space Ω is the collection of all cadlag
functions ω : RN

+ 7→ Rd. Thus, ω ∈ Ω if and only if:

1. For any net of elements {tα}α∈R in RN
+ such that tα � tβ whenever α ≤ β,

and tα converges to some t ∈ RN
+ as α →∞, then limα→∞ ω(tα) = ω(t);

and

2. for any net of elements {tα}α∈R in RN
+ such that tα � tβ whenever α ≥ β,

then limα→∞ ω(tα) exists.
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We say that the Lévy process L is in canonical form if

L(t)(ω) = ω(t) for all ω ∈ Ω and t ∈ RN
+ . (3.1)

Throughout, we will assume that our Lévy process L is in canonical form
under a fixed probability measure P. This assumption is made tacitly, and does
not incur any loss in generality.

Define Px to be the law of the process x+ L for every x ∈ Rd. That is, for
every Borel subset A of Ω,

Px{ω ∈ Ω : ω ∈ A} = P{ω ∈ Ω : x+ ω ∈ A}. (3.2)

Let Ex denote the corresponding expectation operator. We will be primarily
interested in the sigma-finite (but infinite) measure,

Pλd
(•) :=

∫
Rd

Px(•) dx. (3.3)

We will write Eλd
for the corresponding “expectation operator.” That is,

Eλd
(Z) :=

∫
Ω

Z(ω) Pλd
(dω) =

∫
Rd

Ex(Z) dx for all Z ∈ L1(Pλd
). (3.4)

Let P(G) denote the collection of all probability measures on any Euclidean
set G, and define for all µ ∈P(RN

+ ),

I(µ) :=
∫∫

Φ(‖s− t‖)µ(dt)µ(ds). (3.5)

For all compact sets G ⊂ RN
+ , we consider also the capacity of G,

Cap(G) :=
[

inf
µ∈P(G)

I(µ)
]−1

, (3.6)

where inf ∅ := ∞, and 1/∞ := 0. Let L(G) := ∪t∈G{L(t)} denote the range
of G under the random map t 7→ L(t). The following is the main result of this
section.

Theorem 3.1. Let G be a nonrandom compact subset of (0 ,∞)N . Then there
exists a positive and finite constant c = c(G) such that

c−1 Cap(G) ≤ Pλd
{0 ∈ L(G)} = E

[
λd
(
L(G)

)]
≤ cCap(G). (3.7)

Moreover, c depends on G only through infx∈G |x| and supx∈G |x|.

As a consequence of this theorem and Theorem 5.1 of Khoshnevisan and
Xiao [23], we have the following equivalence theorem between the Lévy sheets
of this paper and their associated additive Lévy processes.
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Corollary 3.2. Let {X(t); t ∈ RN
+} denote the additive Lévy process associated

to L. Then for all nonrandom compact sets G in RN
+ there exists a positive and

finite constant c = c(G) such that

c−1 E
[
λd
(
X(G)

)]
≤ E

[
λd
(
L(G)

)]
≤ cE

[
λd
(
X(G)

)]
. (3.8)

Moreover, c depends only on G through infx∈G |x| and supx∈G |x|.

Example 3.3. Suppose L is an isotropic α-stable Lévy sheet. Then, we can
either calculate directly, or apply the preceding together with Corollary 5.4 of
Khoshnevisan and Xiao [23], to find that

E
[
λd
(
L(G)

)]
> 0 ⇔ Cap(G) > 0 ⇔ Cd/α(G) > 0, (3.9)

where Cβ denotes the standard β-dimensional Riesz capacity. See Appendix D
of Khoshnevisan [21] for information on these capacities.

Example 3.4. Suppose L is a Lévy sheet with stable components of index
(α1 , . . . , αd) ∈ [0 , 2)d. Then,

E
[
λd
(
L(G)

)]
> 0 ⇔ Cap(G) > 0 ⇔ CPd

j=1(1/αj)(G) > 0, (3.10)

where Cβ is as in the previous example.

Our proof of Theorem 3.1 proceeds by first establishing an elementary lemma.

Lemma 3.5. For all f ∈ L1(Rd) and t ∈ RN
+ ,

Eλd
[f(L(t))] =

∫
Rd

f(x) dx. (3.11)

Proof. Because f is measurable and integrable, Fubini’s theorem applies, and
we have

Eλd
[f(L(t))] = E

[∫
Rd

f (x+ L(t)) dx
]
, (3.12)

and this is manifestly equal to
∫
Rd f(x) dx.

The next lemma is nearly as simple, but particularly useful to us.

Lemma 3.6. If f and g are two probability densities on Rd such that f̂ , ĝ ∈
L1(Rd), then

Eλd
[f(L(t))g(L(s))] =

1
(2π)d

∫
Rd

e−`(s,t)Ψ(ξ)ĝ(ξ)f̂(ξ) dξ, (3.13)

where ` is the symmetric function:

`(s , t) := λN ([0 , s]4 [0 , t]) for all s, t ∈ RN
+ . (3.14)
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Proof. We write

Eλd
[f(L(t))g(L(s))] = E

[∫
Rd

f (x+ L(t)) g (x+ L(s)) dx
]

=
∫
Rd

f(y) E
[
g (y + L(s)− L(t))

]
dy

=
∫
Rd

f(y)
∫
Rd

g(y − z)µs,t(dz) dy,

(3.15)

where µs,t denotes the distribution of L(t)− L(s). By the inversion theorem of
Fourier analysis,

Eλd
[f(L(s))g(L(t))] =

1
(2π)d

∫
Rd

dy f(y)
∫
Rd

∫
Rd

e−i(y−z)·ξ ĝ(ξ) dξ µs,t(dz)

=
1

(2π)d

∫
Rd

µ̂s,t(ξ)ĝ(ξ) f̂(ξ) dξ.

(3.16)

In order to compute the Fourier transform of µs,t we first note that

L(t)− L(s) = L̇ ([0 , t])− L̇ ([0 , s])

= L̇ ([0 , t] \ [0 , s])− L̇ ([0 , s] \ [0 , t]) .
(3.17)

The last two random variables are independent from one another. Moreover,
by symmetry, −L̇([0 , s] \ [0 , t]) has the same distribution as L̇([0 , s] \ [0 , t]).
Therefore, L(t) − L(s) has the same distribution as L̇([0 , s]4[0 , t]). From this
and (2.1) it follows that µ̂s,t(ξ) = exp(−`(s , t)Ψ(ξ)). We plug this in to (3.16),
in order to conclude the proof.

Next we recall a well-known estimate for the function ` that was defined in
(3.14); see [21, Lemma 1.3.1, p. 460] for a proof.

Lemma 3.7. If u � v are in (0 ,∞)N , then there exist positive and finite
constants a and b such that

a‖s− t‖ ≤ `(s , t) ≤ b‖s− t‖ for all s, t ∈ [u , v]. (3.18)

Lemma 3.8. If G ⊂ RN
+ is compact and nonrandom, then

Pλd

{
0 ∈ L(G)

}
≥ const · Cap(G). (3.19)

Moreover, the constant depends on G only through infx∈G |x| and supx∈G |x|.
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Proof. Without loss of generality, we assume that Cap(G) > 0; otherwise there
is nothing to prove. In that case, there exists µ ∈P(G) such that

I(µ) ≤ 2
Cap(G)

<∞. (3.20)

We choose and fix this µ throughout.
For all probability density functions f on Rd define the random variable

J(f ;µ) :=
∫
RN

+

f(L(t))µ(dt). (3.21)

By Lemma 3.5, Eλd
[J(f ;µ)] = 1. On the other hand, by Lemma 3.6,

Eλd

(
|J(f ;µ)|2

)
=

1
(2π)d

∫∫
(RN

+ )2

∫
Rd

e−`(s,t)Ψ(ξ)|f̂(ξ)|2 dξ µ(ds)µ(dt)

≤ 1
(2π)d

∫∫
(RN

+ )2

∫
Rd

e−`(s,t)Ψ(ξ) dξ µ(ds)µ(dt).
(3.22)

Now we apply Lemma 3.7 to see that there exists a positive and finite constant
a— depending on G only through infx∈G |x| and supx∈G |x| — such that

Eλd

(
|J(f ;µ)|2

)
≤ 1

(2π)d

∫∫
Φ(a‖s− t‖)µ(ds)µ(dt)

≤ Aa I(µ)

≤ 2Aa
Cap(G)

.

(3.23)

The second bound follows from A3, and the third from (3.20).
By the Paley–Zygmund inequality [21, Lemma 1.4.1, Chap. 3] can be applied

to the σ-finite measure Pλd
, and this implies that

Pλd
{J(f ;µ) > 0} ≥ |(Eλd

[J(f ;µ)]|2

Eλd
(|J(f ;µ)|2)

≥ Cap(G)
2Aa

. (3.24)

Let f be a probability density function on B(0 ; 1), where B(x ; r) denotes
the open (Euclidean) ball of radius r > 0 centered at x ∈ Rd. For all δ > 0
define fδ(x) := δ−df(x/δ), as x varies over Rd. Note that fδ is a probability
density on B(0 ; δ). Furthermore, if ω is such that J(fδ ;µ)(ω) > 0, then there
exists t ∈ G such that L(t)(ω) ∈ B(0 ; δ). Hence, it follows that

Pλd
{L(G) ∩B(0 ; δ) 6= ∅} ≥ Cap(G)

2Aa
. (3.25)

From here, we can deduce the lemma by letting δ tend to zero.
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For all t ∈ RN
+ , we denote by F 0(t) the σ-algebra generated by {L(s); s � t}.

Let F 1(t) denote the completion of F 0(t) with respect to Px for all x ∈ Rd.
Finally, define

F (t) :=
⋂
u�t

F 1(u). (3.26)

In the language of the general theory of random fields, F := {F (t); t ∈ RN
+}

is the augmented N -parameter filtration of L.
The following is an analogue of the “Markov property,” in the present setting.

Proposition 3.9. If s � t are in RN
+ , then for all measurable functions f :

Rd 7→ R+,
Eλd

[
f(L(t))

∣∣F (s)
]

=
(
TLs,tf

)
(L(s)), (3.27)

where (
TLs,tf

)
(y) := E[f(L(t)− L(s) + y)] for all y ∈ RN

+ . (3.28)

Proof. Consider measurable functions f, g, h1, ..., hm : Rd 7→ R+ and times
t, s, s1, ..., sm ∈ RN

+ such that t � s � sj , for all j = 1, ...,m. Because L̇(A) and
L̇(B) are independent when A ∩B = ∅,

Eλd

f(L(t)) · g(L(s)) ·
m∏
j=1

hj(L(sj))


=
∫
Rd

E

f(L(t) + x) · g(L(s) + x) ·
m∏
j=1

hj(L(sj) + x)

dx

=
∫
Rd

E[f(L(t)− L(s) + y)] E

 m∏
j=1

hj(L(sj)− L(s) + y)

 g(y) dy.

(3.29)

Set f = h1 = · · · = hm ≡ 1 to see that Pλd
{L(s) ∈ •} = λd(•), and the desired

result follows.

The next result is Cairoli’s maximal inequality. This inequality is proved as
a consequence of the commuting property of the N -parameter filtration F .

Proposition 3.10. For all Y ∈ L2(Pλd
), there exists a modification of t 7→

Eλd
[Y |F (t)] that is right-continuous in every variable, uniformly in all its other

variables, and satisfies

Eλd

(
sup
t∈RN

+

∣∣Eλd

[
Y
∣∣F (t)

]∣∣2) ≤ 4NEλd
[Y 2]. (3.30)
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Remark 3.11. It might help to recall that a function F : RN
+ → R is right-

continuous in every variable, uniformly in all its other variables, if and only if
for all j = 1, . . . , N and tj ∈ R+,

lim
sj→tj

sup
si: i 6=j

|F (s)− F (t)| = 0, (3.31)

where ti = si for all i 6= j.

Proof. When L is the Brownian sheet and the infinite measure Pλd
is replaced by

the probability measure P, this result follows from Cairoli’s maximal inequality
and the Cairoli–Walsh commutation theorem. See Chapter 7 of Khoshnevisan
[21, §2].

In order to prove the present form of the proposition, we need to replace
the Gaussian Brownian sheet with the more general random field L, and more
significantly, P with Pλd

. Fortunately, none of this requires us to introduce
too many new ideas. Therefore, we merely outline the requisite changes in the
existing theory to accomodate the present formulation of this proposition.

We appeal to a close analogy with the usualN -parameter theory of processes,
and say that F is a commuting N parameter filtration with respect to Pλd

if
for all s, t ∈ RN

+ and every F (s)-measurable random variable Y ∈ L2(Pλd
),

Eλd
[Y |F (t)] = Eλd

[Y |F (s ∧ t)], (3.32)

off of a Pλd
-null set. In the case that N = 2 and Pλd

is replaced by P, (3.32)
reduces essentially to hypothesis (F4) of Cairoli and Walsh [5]. The general
case [P] is studied—using the same methods as Cairoli and Walsh—in Chapter
7 of Khoshnevisan [21, §2.1], among other places. The same methods also prove
(3.32) for Pλd

. We will not reproduce the steps, as they are standard.
It is known that (3.32) implies the “Cairoli maximal inequality” announced

in the statement of the proposition. In the case that Pλd
is replaced everywhere

by P, this is covered by Theorem 2.3.2 of [21, p. 235]. One adapts the proof so
that the result continues to holds for Pλd

. This proves the proposition.

Lemma 3.12. If G is a nonrandom compact set in RN
+ , then

Pλd
{0 ∈ L(G)} ≤ const · Cap(G). (3.33)

Moreover, the constant depends on G only through the quantities supx∈G |x| and
infx∈G |x|.

Proof. Without loss of generality we may assume that

Pλd
{0 ∈ L(G)} > 0. (3.34)

Otherwise there is nothing to prove.
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Let f be a probability density on Rd, and consider an arbitrary µ ∈P(G).
In accord with Proposition 3.9, for all s ∈ G,

Eλd
[J(f ;µ)|F (s)] ≥

∫
t�s

(
TLs,tf

)
(L(s))µ(dt) Pλd

-a.s., (3.35)

where J(f ;µ) is defined in (3.21). The two sides of (3.35) are right-continuous
in s, both coordinatewise. See Dalang and Walsh [11], and also Ehm [14].
Therefore, for all probability densities f on Rd such that f̂ ∈ L1(Rd), and for
all µ ∈P(G), the following statement holds:

There exists one null set off which (3.35) holds for all s ∈ G. (3.36)

Path regularity of L implies the existence of a random variable σ with values
in G ∪ {ρ}—where ρ is an abstract “cemetery” point not in G—which has the
following properties:

1. σ = ρ if and only if L(s) 6= 0 for every s ∈ G;

2. L(σ) = 0 on {σ 6= ρ}.

For all integers k ≥ 1 and all Borel sets E ⊂ RN
+ , define

µk(E) :=
Pλd
{σ ∈ E , σ 6= ρ , |L(0)| ≤ k}
Pλd
{σ 6= ρ , |L(0)| ≤ k}

. (3.37)

Thanks to (3.34) and the monotone convergence theorem,

lim
k→∞

Pλd
{σ 6= ρ , |L(0)| ≤ k} = Pλd

{0 ∈ L(G)} > 0. (3.38)

Therefore, there exists k0 > 0 such that µk is well defined for all k ≥ k0. In
fact, µk is a probability measure on G, provided that k ≥ k0.

Define for all k ≥ k0 and all probability densities f on Rd,

Qk(f) := sup
u∈G

Eλd
[J(f ;µk)| F (u)]. (3.39)

Then, thanks to (3.35) and (3.36), and because L(σ) = 0 a.s. on {σ 6= ρ},

Qk(f) ≥ Eλd
[J(f ;µk) |F (s)]

∣∣∣
s=σ
· 1{σ 6=ρ}

≥ 1{σ 6=ρ , |L(0)|≤k} ·
∫
t�σ

(
TLσ,tf

)
(0)µk(dt) Pλd

-a.s.,
(3.40)

provided that f̂ ∈ L1(Rd). [Specifically, (3.36) insures that we can apply (3.35)
with the choice s := σ(ω) for every ω such that σ(ω) 6= ρ.] We can square both
sides and integrate [Pλd

] to find that

Eλd

(
|Qk(f)|2

)
≥ Pλd

{σ 6= ρ , |L(0)| ≤ k} ·
∫
RN

+

(∫
t�s

(
TLs,tf

)
(0)µk(dt)

)2

µk(ds).
(3.41)
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Since µk is a probability measure on G [k ≥ k0], the Cauchy–Schwarz inequality
implies that

Eλd

(
|Qk(f)|2

)
≥ Λ2Pλd

{σ 6= ρ , |L(0)| ≤ k} , (3.42)

where

Λ :=
∫
RN

+

∫
t�s

(TLs,tf)(0)µk(dt)µk(ds). (3.43)

Suppose also that f̂(ξ) ≥ 0 for all ξ ∈ Rd. Because f, f̂ ∈ L1(Rd), we can
apply the inversion theorem to f—in the same manner as in the proof of Lemma
3.6—to find that for all s, t ∈ G with s � t,

(TLs,tf)(0) =
1

(2π)d

∫
Rd

e−`(s,t)Ψ(ξ)f̂(ξ) dξ

≥ 1
(2π)d

∫
Rd

e−b‖s−t‖Ψ(ξ)f̂(ξ) dξ.
(3.44)

Here, b is a positive and finite constant that depends only on the distance
between G and the axes of RN

+ , as well as supx∈G |x|; see Lemma 3.7. Conse-
quently,

Λ ≥ 1
2N (2π)d

∫∫
(RN

+ )2

∫
Rd

e−b‖s−t‖Ψ(ξ)f̂(ξ) dξ µk(ds)µk(dt). (3.45)

According to A3, bΨ(ξ) ≤ Ψ(ξ/A1/b). Therefore, the preceding implies that

Λ ≥
Ad1/b

2N (2π)d

∫∫
(RN

+ )2

∫
Rd

e−‖s−t‖Ψ(ξ)f̂(ξA1/b) dξ µk(ds)µk(dt). (3.46)

Now, thanks to Proposition 3.10 and (3.22),

Eλd

(
|Qk(f)|2

)
≤ 4NEλd

(
|J(f ;µk)|2

)
≤ 4N

(2π)d

∫∫
(RN

+ )2

∫
Rd

e−`(s,t)Ψ(ξ)|f̂(ξ)|2 dξ µk(ds)µk(dt).

Therefore, Lemma 3.7 implies that there exists a positive and finite constant a
that depends only on the distance between G and the axes of RN

+ , as well as
supx∈G |x|, such that

Eλd

(
|Qk(f)|2

)
≤ 4N

(2π)d

∫∫
(RN

+ )2

∫
Rd

e−a‖s−t‖Ψ(ξ)|f̂(ξ)|2 dξ µk(ds)µk(dt)

≤ 4N

(2π)dAda

∫∫
(RN

+ )2

∫
Rd

e−‖s−t‖Ψ(ξ)|f̂(ξ/Aa)|2 dξ µk(ds)µk(dt).
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See A3 for the last inequality. This, (3.42), and (3.46) together imply that

c

∫∫
(RN

+ )2

∫
Rd

e−‖s−t‖Ψ(ξ)|f̂(ξ/Aa)|2 dξ µk(ds)µk(dt)

≥

(∫∫
(RN

+ )2

∫
Rd

e−‖s−t‖Ψ(ξ)f̂(ξA1/b) dξ µk(ds)µk(dt)

)2

× Pλd
{σ 6= ρ , |L(0)| ≤ k} ,

(3.47)

where c := 16N (2π)d/(AaA2
1/b)

d.
The preceding is valid for every probability density f on Rd whose Fourier

transform is integrable and nonnegative. Now we make a particular choice of
f . Namely, we replace f by fη, where fη(x) := η−dg(x/η), for η > 0, and g is
the density function of an isotropic stable random variable of index α ∈ (0 , 2]
satisfying

1
α
≥ log2

(
AaA1/b

)
. (3.48)

Note that ĝ(ξ) = exp(−‖ξ‖α) for all ξ ∈ Rd. Hence, as f̂η(ξ) = exp(−ηα‖ξ‖α)
for all ξ ∈ Rd, we have

|f̂η(ξ/Aa)|2 = exp
(
−2ηα‖ξ‖α

Aαa

)
≤ exp

(
−ηα‖ξ‖αAα1/b

)
= f̂η(ξA1/b).

(3.49)

Thus, we find that

Pλd
{σ 6= ρ , |L(0)| ≤ k}

≤ c

 ∫∫
‖s−t‖≥θ

∫
Rd

e−‖s−t‖Ψ(ξ) exp
(
−2ηα‖ξ‖α

Aαa

)
dξ µk(ds)µk(dt)


−1

.
(3.50)

where θ > 0 is an arbitrary parameter. Consequently, for all k ≥ k0,

Pλd
{0 ∈ L(G) , |L(0)| ≤ k}

≤ c̃

[∫∫
‖s−t‖≥θ

Φ(‖s− t‖)µk(ds)µk(dt)

]−1

.
(3.51)

We may observe that {µk}k≥k0 is a collection of probability measures, all of
which are supported on the same compact set G. Therefore, by Prohorov’s
theorem we can extract a subsequence of k’s along which µk converges weakly
to some µ∗ ∈ P(G). Because Φ is uniformly continuous on [θ ,∞), it follows
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that

lim inf
k→∞

Pλd
{0 ∈ L(G) , |L(0)| ≤ k}

≤ c̃

[∫∫
‖s−t‖≥θ

Φ(‖s− t‖)µ∗(ds)µ∗(dt)

]−1

.
(3.52)

By the monotone convergence theorem the left-hand side is precisely Pλd
{0 ∈

L(G)}. Finally, let θ ↓ 0 and appeal to the monotone convergence theorem once
again to find that Pλd

{0 ∈ L(G)} ≤ c̃/I(µ∗), and this is at most c̃Cap(G) by
the definition of Cap(G). This concludes the proof.

We conclude this section by proving Theorem 3.1.

Proof of Theorem 3.1. First note that

Pλd
{0 ∈ L(G)} =

∫
Rd

P {−x ∈ L(G)} dx

= E
[
λd
(
L(G)

)]
.

(3.53)

This proves the identity in Theorem 3.1. Moreover, Lemma 3.12 proves that the
preceding is at most cCap(G), whence follows the upper bound of the theorem.

Similarly,
Pλd

{
0 ∈ L(G)

}
= E

[
λd

(
L(G)

)]
. (3.54)

But the set-difference between L(G) and its euclidean closure is a denumerable
union of sets each of which is at most (d−1)-dimensional. See Dalang and Walsh
[11, Proposition 2.1] for the case N = 2; the general case is proved similarly. It
follows that

E
[
λd

(
L(G) \ L(G)

)]
= 0. (3.55)

Thus,

Pλd
{0 ∈ L(G)} = E

[
λd
(
L(G)

)]
= E

[
λd

(
L(G)

)]
= Pλd

{
0 ∈ L(G)

}
.

(3.56)

Apply Lemma 3.8 to finish the proof.

4 A perturbed random field

Let X be a d-dimensional N -parameter additive Lévy process with Lévy expo-
nent νΨ, where ν ∈ (0 ,∞) is fixed. We assume also that X is independent of
L. Define

F (t) := L(t) + X(t) for all t ∈ RN
+ . (4.1)

The following proves that the contents of Theorem 3.1 remain unchanged if L
is replaced by the perturbed random field F .
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Theorem 4.1. Let G denote a nonrandom compact subset of (0 ,∞)N . Then,
there exists a positive and finite constant c = c(G , ν) such that

c−1 Cap(G) ≤ Pλd
{0 ∈ F (G)} = E

[
λd
(
F (G)

)]
≤ cCap(G). (4.2)

Moreover, c depends on G only through infx∈G |x| and supx∈G |x|.

Proof. Write Pz for the law of z + F , and Pλd
:=
∫
Rd Pz dz, as before. Also,

Eλd
denotes the corresponding expectation operator. As in Lemma 3.5, if f ∈

L1(Rd) and t ∈ RN
+ , then

Eλd
[f(F (t))] =

∫
Rd

f(x) dx. (4.3)

Also, the proof of Lemma 3.6 implies that if f and g are two probability densities
on Rd such that f̂ , ĝ ∈ L1(Rd), then for all s, t ∈ RN

+ ,

Eλd
[f(F (t))g(F (s))] =

1
(2π)d

∫
Rd

e−(`(s ,t)+c
PN

j=1 |tj−sj |)Ψ(ξ)ĝ(ξ)f̂(ξ) dξ. (4.4)

Finally, as in Proposition 3.9 we have

Eλd

[
f(F (t))

∣∣F (s)
]

=
(
TFs,tf

)
(F (s)), (4.5)

valid for all s, t ∈ RN
+ , and all measurable functions f : Rd → R+. Here,(

TFs,tf
)

(y) := E [f(F (t) + y)] for all s, t ∈ RN
+ , y ∈ Rd. (4.6)

As the filtration of X is also commuting [23, Lemma 4.2 and its proof], the
remainder of the proof of Theorem 3.1 goes through in the present case without
any drastic changes.

5 Polar sets for the level sets

The aim of this section is to compute the Hausdorff dimension of the zero set
L−1{0} of an N -parameter, d-dimensional Lévy sheet L, provided that Condi-
tions A1, A2, and A3 are assumed throughout.

Recall that a nonrandom set G is polar for a random set S if P{S ∩ G 6=
∅} = 0. We begin by describing all sets that are polar for the level sets of the
random field L and its perturbation F .

Theorem 5.1. Let G be a nonrandom compact subset of (0 ,∞)N . Then, the
following are equivalent:

(i) P{L−1{0} ∩G 6= ∅} > 0;

(ii) P{F−1{0} ∩G 6= ∅} > 0;
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(iii) Cap(G) > 0.

We can apply the preceding together with Corollary 2.13 of Khoshnevisan
and Xiao [23] in order to deduce the following equivalence theorem between the
Lévy sheets of this paper and their associated additive Lévy processes.

Corollary 5.2. Let {X(t)}t∈RN
+

denote the additive Lévy process associated to
L. Then for all nonrandom compact sets G in (0 ,∞)N there exists a positive
and finite constant c such that

c−1 P
{
X−1{0} ∩G 6= ∅

}
≤ P

{
L−1{0} ∩G 6= ∅

}
≤ cP

{
X−1{0} ∩G 6= ∅

}
.

Moreover, c depends only on G through infx∈G |x| and supx∈G |x|.

Proof of Theorem 5.1. There exists α > 0 such that G ⊆ (α , 1/α)N . Therefore,
if t ∈ G then Px-a.s. for all x ∈ Rd,

L(t) = L(a) + L̇ ([0 , t] \ [0 , a]) , (5.1)

where a := (α , . . . , α) ∈ (0 ,∞)N , and the two terms on the right-hand side
describe independent random fields. We can decompose the right-most term as
follows:

L̇ ([0 , t] \ [0 , a]) =
N∑
j=1

Lj(πj(t− a)) + L̃(t− a), (5.2)

where:

(1) L1, . . . , LN , L̃ are totally independent d-dimensional random fields;

(2) each Lj is an (N − 1)-parameter Lévy sheet with Lévy exponent Ψ;

(3) L̃ is an N -parameter Lévy sheet with Lévy exponent Ψ; and

(4) πj maps t ∈ RN
+ to πjt ∈ RN−1

+ , which is the same vector as t, but with
tj removed.

This identity is valid Px-a.s. for all x ∈ Rd. But because we can choose path-
regular versions of L1, . . . , LN and L̃, it follows that Px-a.s. for all x ∈ Rd,

L(t) = L(a) +
N∑
j=1

Lj
(
πj (t− a)

)
+ L̃ (t− a) for all t ∈ G. (5.3)

Moreover, the N + 2 processes on the right-hand side (viewed as random fields
indexed by t) are totally independent under Px for all x ∈ Rd. Note that

P
{
L−1{0} ∩G 6= ∅

}
= P {∃ t ∈ G : L(t) = 0}

=
∫
Rd

P

∃ t ∈ G :
N∑
j=1

Lj
(
πj (t− a)

)
+ L̃ (t− a) = −x

P {L(a) ∈ dx}

=
∫
Rd

P

∃ t ∈ G :
N∑
j=1

Lj
(
πj (t− a)

)
+ L (t− a) = −x

P {L(a) ∈ dx} .
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Thanks to (1.5) and the inversion theorem,

P {L(a) ∈ dx}
dx

=
1

(2π)d

∫
Rd

exp
(
−ix · ξ − αNΨ(ξ)

)
dξ, (5.4)

and this is bounded above, uniformly for all x ∈ Rd, by the positive and finite
constant c := c(α) := (2π)−d

∫
Rd exp(−αNΨ(ξ)) dξ. Consequently,

P
{
L−1{0} ∩G 6= ∅

}
≤ c

∫
Rd

P

∃ t ∈ G :
N∑
j=1

Lj
(
πj (t− a)

)
+ L (t− a) = −x

 dx

= cE [λd (W (G	 {a}))] ,

(5.5)

where W :=
∑N
j=1(Lj ◦ πj) + L, and G 	 {a} := {t − a; t ∈ G}. Because

G	{a} is a nonrandom compact subset of (0 ,∞)N , one can prove—in exactly
the same manner that we proved Theorem 4.1—that E[λd(W (G 	 {a}))] ≤
const ·Cap(G	{a}), where the constant depends only on G and α. We omit the
details. Because I(µ) is convolution-based, G 7→ Cap(G) is translation invariant,
whence we have Cap(G	 {a}) = Cap(G). This proves that (1) implies (3).

Next we prove that (3) implies (1). As above let α > 0 such that G ⊂
(α , 1/α)N . For any ε > 0 and µ ∈P(RN

+ ), we define a radom measure on RN
+

by

Jε(B) =
1

(2ε)d

∫
B

1B(0,ε)(L(t))µ(dt) for all Borel sets B ⊂ RN
+ . (5.6)

We shall need the following two lemmas.

Lemma 5.3. For every µ ∈P(G), lim infε→0+ E[Jε(G)] > 0.

Proof. By Fatou’s lemma,

lim inf
ε→0+

E[Jε(G)] = lim inf
ε→0+

∫
G

P {|L(t)| ≤ ε}
(2ε)d

µ(dt)

≥
∫
G

p(t)µ(dt),
(5.7)

where p(t) denotes the density function of L(t) at zero. By the inversion the-
orem, p(t) = Φ(

∏N
j=1 tj), and this is strictly positive uniformly for all t ∈ G.

This implies the desired result.

Lemma 5.4. Let K : RN
+ ×RN

+ 7→ R+ be a measurable function. Then there
exists a finite positive constant c, depending only on G, such that for every
µ ∈P(G) and all ε > 0,

E
[∫∫

G×G
K(s , t)Jε(ds)Jε(dt)

]
≤ c

∫∫
G×G

K(s , t)Φ(‖s− t‖)µ(dt)µ(ds).
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In particular,
E
(
|Jε(G)|2

)
≤ cI(µ). (5.8)

Proof. By Fubini’s theorem,

E
[∫∫

G×G
K(s , t)Jε(ds)Jε(dt)

]
=

1
(2ε)2d

∫∫
G×G

K(s , t)P {|L(s)| ≤ ε, |L(t)| ≤ ε} µ(dt)µ(ds).
(5.9)

We define

N1(s , t) := L(s)− L(s ∧ t),
N2(s , t) := L(t)− L(s ∧ t).

(5.10)

Clearly,

P {|L(s)| ≤ ε, |L(t)| ≤ ε} ≤ P {|L(s ∧ t) +N1(s , t)| ≤ ε, |L(t)− L(s)| ≤ 2ε} .

Note that L(s∧ t), N1(s , t), and N2(s , t) are mutually independent; this follows
immediately from considering the representation of L via L̇. Thus,

P {|L(s)| ≤ ε, |L(t)| ≤ ε} ≤ sup
x∈Rd

Px {|L(s ∧ t)| ≤ ε} × P {|L(t)− L(s)| ≤ 2ε} .

Because of symmetry, L(s ∧ t) is a 16d-weakly unimodal random vector [23,
Corollary 2.2]. That is,

sup
x∈Rd

Px {|L(s ∧ t)| ≤ ε} ≤ 16dP {|L(s ∧ t)| ≤ ε} . (5.11)

But if s, t ∈ G, then s ∧ t is also in [α , 1/α]N . Hence, by (5.4) the density of
L(s ∧ t) is bounded, uniformly in s and t in G. Consequently, we can find a
positive and finite constant c2 = c2(α) such that

sup
x∈Rd

Px {|L(s ∧ t)| ≤ ε} ≤ c2(2ε)d for all ε > 0, s, t ∈ G. (5.12)

Consequently,

E
[∫∫

G×G
K(s , t)Jε(ds)Jε(dt)

]
≤ c3

∫∫
G×G

K(s , t)p(s , t)µ(dt)µ(ds),

where p(s , t) is the density of L(t)− L(s) at zero. By the inversion theorem,

p(s , t) =
1

(2π)d

∫
Rd

e−`(s,t)Ψ(ξ) dξ

≤ 1
(2π)d

∫
Rd

e−a‖s−t‖Ψ(ξ) dξ,
(5.13)
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where a ∈ (0 ,∞) depends only on G; see Lemma 3.7. Thanks to A3 we can
write

p(s , t) ≤ 1
(2π)d

∫
Rd

e−‖s−t‖Ψ(Aaξ) dξ

=
1
Ada

Φ(‖t− s‖),
(5.14)

and this concludes the proof.

Let us now continue the proof that (3) implies (1). Note that (3) implies
the existence of µ ∈P(G) such that I(µ) <∞. Then there exists a continuous
function ρ : RN 7→ [1,∞) such that lims7→s0 ρ(s) = ∞ for every s0 ∈ RN with
at least one coordinate equals 0 and such that∫∫

G×G
ρ(s− t)Φ(‖s− t‖)µ(dt)µ(ds) <∞. (5.15)

See Khoshnevisan and Xiao [22, p. 73] for a construction of ρ.
Consider now the sequence of random measures {Jε}ε>0. It follows from

Lemmas 5.3, 5.4, and a second-moment argument, that we can extract a subse-
quence {Jεn}n∈N—converging weakly to a random measure J —such that

P {J (G) > 0} ≥ (inf0<ε<1 E[Jε(G)])2

supε>0 E(|Jε(G)|2)
> 0. (5.16)

See Khoshnevisan and Xiao [22, proof of Lemma 3.6], and Khoshnevisan, Xiao,
and Shieh [26, p. 26]). Moreover,∫∫

G×G
ρ(s− t)J (dt)J (ds) ≤ c

∫∫
G×G

ρ(s− t)Φ(‖s− t‖)µ(dt)µ(ds). (5.17)

This and (5.15) together imply that a.s.,

J {s ∈ G : sj = a for some j} = 0 for all a ∈ R+. (5.18)

In order to deduce (1), it suffices to prove that the random measure J is
supported on L−1{0} ∪ G. For this purpose, it suffices to prove that for every
δ > 0, J (D(δ)) = 0 a.s., where D(δ) := {s ∈ G : |L(s)| > δ}. Because of
(5.18), the proof of this fact follows exactly the arguments of Khoshnevisan and
Xiao [22, p. 76].

The equivalence of (2) and (3) is proved in exactly the same way, and is
therefore omitted.

Next we derive our first dimension result.

Theorem 5.5. Let G be a nonrandom compact subset of RN
+ . Then, almost

surely on {L−1{0} ∩G 6= ∅},

dimH

(
L−1{0} ∩G

)
= sup

{
q ∈ (0 , N) : I(q)(µ) <∞ for some µ ∈P(G)

}
,
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where

I(q)(µ) :=
∫∫

Φ(‖t− s‖)
‖t− s‖q

µ(ds)µ(dt). (5.19)

Corollary 5.6. Almost surely on {L−1{0} 6= ∅}, dimH L
−1{0} = N − ind Φ.

Example 5.7. If L is an isotropic stable Lévy sheet of index α ∈ (0 , 2], then we
can combine Corollary 5.6 with Example 3.5 of Khoshnevisan, Xiao, and Shieh
[26] to find that a.s. on {L−1{0} ∩G 6= ∅},

dimH

(
L−1{0} ∩G

)
= dimH G−

d

α
. (5.20)

Also, dimH L
−1{0} = N − (d/α) a.s. on {L−1{0} 6= ∅}. This last fact was first

proved in [14].

It is not easy to produce a direct proof of Theorem 5.5. Therefore, instead we
use a “comparison principle” to deduce the theorem from an analogous [known]
result on the associated additive Lévy process.

Proof of Theorem 5.5. Let X denote the additive Lévy process associated to L,
and choose and fix an integer M ≥ 1 and a real number α ∈ (0 , 2]. Consider M
independent isotropic stable Lévy processes of index α, S1, . . . , SM , all taking
values in RN . We assume that {S1 , . . . , SM , L ,X} are independent. Consider
the M -parameter, N -valued additive stable Lévy process,

S(u) := S1(u1) + · · ·+ SM (uM ), for all u ∈ RM
+ . (5.21)

Suppose N > αM . Then, by Propositions 4.7 and 4.8 of Khoshnevisan,
Shieh, and Xiao [26] we deduce that

P
{
X−1{0} ∩G ∩S(RM

+ ) = ∅
}
> 0 ⇔ inf

µ∈P(G)
I(N−αM)(µ) <∞. (5.22)

A standard approximation argument can be used in conjunction with The-
orem 5.1 to deduce that for all nonrandom analytic sets F ⊂ RN

+ ,

P
{
X−1{0} ∩ F = ∅

}
> 0 ⇔ P

{
L−1{0} ∩ F = ∅

}
> 0. (5.23)

Thanks to the independence properties of S we can apply the preceding with
F := G ∩ S(RM

+ ) [first condition on S and then take expectations]. Conse-
quently, (5.22) implies that

P
{
L−1{0} ∩G ∩S(RM

+ ) = ∅
}
> 0 ⇔ inf

µ∈P(G)
I(N−αM)(µ) <∞. (5.24)

Now the rest proof of the proof of Theorem 5.5 follows exactly as the proof of
Theorem 3.2 of Khoshnevisan and Xiao [23] and is therefore omitted.
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We use a similar comparison principle to deduce Corollary 5.6.

Proof of Corollary 5.6. Let X denote the additive Lévy process associated to
L, and assume that L and X are independent. Thanks to Theorem 5.5, and
Theorem 3.2 of Khoshnevisan and Xiao [26], the following holds with probability
one.

dimH

(
L−1{0} ∩G

)
1{L−1{0}∩G 6=∅} = dimH

(
X−1{0} ∩G

)
1{X−1{0}∩G6=∅}.

Now consider a nonrandom upright cube G ⊂ (0 ,∞)N ; that is a closed set
G of the form G =

∏N
i=1[ai , bi]. Then, the proof of Theorem 1.1 of [26] states

that dimH

(
X−1{0} ∩G

)
= N − ind Φ almost surely on {X−1{0} ∩G 6= ∅}.

Hence, dimH

(
L−1{0} ∩G

)
= N−ind Φ almost surely on {L−1{0}∩G 6= ∅}.

Because we need to consider only upright cubes that have rational coordinates,
a limiting argument finishes the proof.

6 Proof of Theorem 1.2

We now return to the problem in the Introduction, and study the SPDE (1.1).
Let x0 ∈ R be fixed, and let S (x0) be the collection of all (t , x) ∈ R+ ×R

such that t ≥ |x − x0|. Elementary geometric considerations lead us to the
following equivalent formulation:

S (x0) = {(t , x) ∈ R+ ×R : (x0 , 0) ∈ C (t , x)} . (6.1)

We will need the following well-known result. See the Introduction in Dalang
and Walsh [11] for the case x0 = 0, for example.

Lemma 6.1. Let x0 ∈ R be fixed. Then, we can write

u(t , x) =
1
2
F̃ (t− x , t+ x) for all (t , x) ∈ S (x0), (6.2)

where F̃ is a copy of the perturbed random field F of §4 with N = 2 and ν = 1
2 .

Our proof of Theorem 1.2 requires two more simple lemmas.

Lemma 6.2. Let x0 ∈ R be fixed and let G be a nonrandom compact subset of
(0 ,∞)2 ∩S (x0). Then,

P
{
u−1{0} ∩G 6= ∅

}
> 0 ⇔ Cap(G) > 0. (6.3)

Proof. Define the rotation map ρ : R2 → R2 by ρ(t , x) := (t − x , t + x). Its
inverse is described by ρ−1(u , v) = 1

2 (v + u , v − u). According to Lemma 6.1,

u =
1
2

(F̃ ◦ ρ) on S (x0). (6.4)
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Now the process 1
2F is the perturbed version of 1

2L, and the latter is a Lévy sheet
with Lévy exponent ξ 7→ Ψ(ξ/2). Thanks to Theorem 5.1, the restriction of
F−1{0} to S (x0) has the same polar sets as the restriction of L−1{0} on S (x0).
Consequently, if G is any nonrandom compact subset of S (x0)∩ (0 ,∞)2, then

P
{
u−1{0} ∩G 6= ∅

}
> 0 ⇔ Cap

(
ρ−1G

)
> 0. (6.5)

Note that if µ ∈P(G) then µ◦ρ ∈P(ρ−1G) and I(µ) = I(µ◦ρ). Consequently,
Cap(ρ−1G) = Cap(G) and the lemma follows.

Lemma 6.3. Let G be a nonrandom compact subset of (0 ,∞)2. Then,

P
{
u−1{0} ∩G 6= ∅

}
> 0 ⇔ Cap(G) > 0. (6.6)

Proof. If P{u−1{0} ∩ G 6= ∅} is positive then there must exist x0 ∈ R such
that P{u−1{0} ∩ G ∩ S (x0) 6= ∅} is positive. Then Lemma 6.2 implies that
Cap(G∩S (x0)) > 0. Because Cap(G) ≥ Cap(G∩S (x0)), this proves the “⇒”
portion of the lemma.

The converse is proved similarly. Indeed, it can be shown that Cap is a Cho-
quet capacity, whence Cap(G) = supx0∈R Cap(G∩S (x0)), thanks to Choquet’s
capacitability theorem [12, Theorem 28, p. 52-III].

Finally we prove Theorem 1.2 via a comparison argument.

Proof of Theorem 1.2. Let X be the 2-parameter d-dimensional additive Lévy
process that is associated to L. Lemma 6.3 used in conjunction with Theorem
5.1 and Corollary 5.2 implies that the zero sets of u and X have the same polar
sets. Consequently, for all integers n ≥ 1,

P
{
u−1{0} ∩ [−n , n]× [0 , n] 6= ∅

}
> 0

⇔ P
{
X−1{0} ∩ [−n , n]× [0 , n] 6= ∅

}
> 0.

(6.7)

Let n tend to infinity to find that

P
{
u−1{0} 6= ∅

}
> 0 ⇔ P

{
X−1{0} 6= ∅

}
> 0. (6.8)

According to Proposition 3.1 of [22] this last condition holds if and only if∫
[0,1]2

Φ(‖z‖) dz <∞. (6.9)

Integration in polar coordinates proves “(2) ⇔ (3)” in Theorem 1.2. Since “(1)
⇒ (2)” holds tautaologically, in order to prove that (1) and (3) are equivalent,
it suffices to prove that if u−1{0} is nonempty with positive probability, then it
is nonempty a.s.
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With this in mind, let us assume that P{u−1{0} 6= ∅} > 0. Then there
exists an integer n ≥ 1 large enough such that

P
{
u−1{0} ∩ C (n , 0) 6= ∅

}
> 0. (6.10)

Thanks to (1.3), u(t , x) = 1
2 L̇(C (t , x)). We have observed in Proposition

2.5 that L̇ has the following two properties: (i) For all a ∈ R2 and A ⊂ R2

Borel-measurable, L̇(a+A) has the same law as L̇(A); and (ii) L̇(A) and L̇(B)
are independent whenever A and B are disjoint measurable subsets of R2. It
follows from this that {u−1{0} ∩ C (n , 2kn)}∞k=0 are i.i.d. random sets. Used
in conjunction with (6.10) and Borel–Cantelli’s lemma for independent events,
this implies that

P

{
u−1{0} ∩

∞⋃
k=0

C (n , 2kn) 6= ∅

}
= 1. (6.11)

Because ∪∞k=0C (n , 2kn) ⊂ R+ ×R this proves that (2) ⇒ (1).
In order to complete the proof of Theorem 1.2 we assume that

∫ 1

0
λΦ(λ) dλ

is finite, and proceed to compute the Hausdorff dimension of u−1{0}. A com-
parison argument, similar to the one employed at the beginning of this proof,
shows that if G is a nonrandom compact subset of (0 ,∞)2, then a.s.,

dimH

(
u−1{0} ∩G

)
1{u−1{0}∩G 6=∅} = dimH

(
X−1{0} ∩G

)
1{X−1{0}∩G 6=∅}.

Let G = [0 , n]× [−n , n] and then let n→∞ to find that a.s.,

dimH

(
u−1{0}

)
1{u−1{0}6=∅} = dimH

(
X−1{0}

)
1{X−1{0}6=∅}. (6.12)

Because we have assumed that
∫ 1

0
λΦ(λ) dλ < ∞, the already-proven equiva-

lence of (1)–(3) shows that 1{u−1{0}6=∅} = 1 a.s. Therefore, Theorem 1.1 of
Khoshnevisan, Shieh, and Xiao [26, Eq. (1.11)] implies the stated formula for
the Hausdorff dimension of u−1{0}.
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