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Abstract

We consider the solution {u(t, x), t ≥ 0, x ∈ R} of a system of d linear stochastic
wave equations driven by a d dimensional symmetric space-time Lévy noise. We pro-
vide a necessary and sufficient condition, on the characteristic exponent of the Lévy
noise, which describes exactly when the zero set of u is nonvoid. We also compute the
Hausdorff dimension of that zero set, when it is nonempty. These results will follow
from more general potential-theoretic theorems on level sets of Lévy sheets.
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1 Introduction and main results

Consider the solution u(t , x) := (u1(t , x) , . . . , ud(t , x)) to the following system of d linear
stochastic wave equations:

∂2ui
∂t2

(t , x) =
∂2ui
∂x2

(t , x) + L̇i(t , x), t ≥ 0, x ∈ R, (1.1)

with initial condition ui(0 , x) = ∂tui(0 , x) = 0, where i ranges in {1 , . . . , d}, and L̇ :=
(L̇1 , . . . , L̇d) is a [totally scattered] d-dimensional Lévy noise on R2 with Lévy exponent Ψ.

Stochastic PDEs (SPDEs) that are driven by [non-Gaussian] Lévy noises are beginning
to receive some attention in the literature. We mention, for example, the work of Mueller
[M98], who investigates nonlinear heat equations in high space dimensions that are driven
by multiplicative space-time stable Lévy noises. See also Mueller, Mytnik, and Stan
[MMS06] who consider heat equations with a multiplicative space-dependent stable Lévy
noise. And the Cauchy problem, in high space dimensions, for the linear wave equation
driven by a space-time Lévy noise is treated in Øksendal, Proske, and Signahl [ØPS06].

We now return to the SPDE (1.1), and define the light cone at (t , x) ∈ R2
+ to be the set

C (t , x) :=
{

(s , y) ∈ R2
+ : 0 ≤ s ≤ t and x− (t− s) ≤ y ≤ x+ (t− s)

}
. (1.2)

Then, 1
21C (t,x) is the Green function for the wave operator. We follow the approach devel-

oped by Walsh [W86], for space-time white noise, and define the solution to the “formal”
equation (1.1) as

u(t , x) =
1
2

∫
R2

+

1C (t,x)(s, y)L(ds dy) for all t ≥ 0, x ∈ R, (1.3)

where L denotes the Lévy sheet the corresponds to L̇ := (L̇1 , . . . , L̇d) [see §2.1], and the
stochastic integral is a Wiener-type integral with respect to L [see §2.3].

The aim of this paper is to study the geometry of the zero set u−1{0} of the solution to
(1.1). In particular, we seek to know when u−1{0} is nonvoid. In order to describe when
u−1{0} 6= ∅, we first analyze the zero set of a Lévy sheet. This will be done in a more
general setting. Then, we devise a “comparison principle” to relate the solution to the SPDE
(1.1) to theorems about additive Lévy process developed earlier in [KX02, KX04, KSX06].
This comparison method might appear to be a little round-about, but as it turns out, it is
not so easy to work directly with the solution to (1.1).

In order to state the main result of this paper we introduce the following regularity
conditions on the characteristic exponent Ψ of the noise L̇; see (2.1) below for a precise
definition of Ψ:

A1. L̇ is symmetric. That is, Ψ(ξ) is real and nonnegative for all ξ ∈ Rd.

A2. Φ(λ) <∞ for all λ > 0, where Φ is the gauge function defined by

Φ(λ) :=
1

(2π)d

∫
Rd
e−λΨ(ξ) dξ for all λ > 0. (1.4)
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A3. For all a > 0 there exists a constant Aa > 0 such that

Ψ(aξ) ≥ AaΨ(ξ) for all ξ ∈ Rd. (1.5)

Remark 1.1. In order to understand condition A3 better, we note that Φ is nonincreasing.
Therefore, in particular, Φ(2λ) ≤ Φ(λ) for all λ > 0. Condition A3 implies that a converse
holds. Namely,

lim sup
λ↓0

Φ(λ)
Φ(2λ)

<∞. (1.6)

Unfortunately, (1.6) by itself does not seem to be enough to imply our main result.

Given an analytic Euclidean set A, we let dimH A denote its Hausdorff dimension [K02,
Appendix C], with the proviso added that the statement “dimH A < 0” means that “A is
empty.”

We are ready to present the main result of this paper; the remainder of the article is
dedicated to proving this fact.

Theorem 1.2. Under conditions A1–A3, the following are equivalent:

(i) Almost surely, u(t , x) = 0 for some t > 0 and x ∈ R;

(ii) with positive probability, u(t , x) = 0 for some t > 0 and x ∈ R;

(iii)
∫ 1

0 λΦ(λ) dλ <∞.

In addition, if one of these conditions holds, then dimH u
−1{0} = 2− ind Φ a.s., where

ind Φ := lim sup
λ↓0

log Φ(λ)
log(1/λ)

. (1.7)

In order to understand Theorem 1.2 better, let us emphasize the special case where
Ψ(ξ) = 1

2‖ξ‖
α for all ξ ∈ Rd, and α ∈ (0 , 2] is a fixed “index of stability.” In this case,

L̇ is called the isotropic stable Lévy noise with index α, and it is easy to see that Φ(λ) =
const · λd/α. Hence, Theorem 1.2 yields the following result.

Corollary 1.3. Consider the solution u to (1.1) where L̇ is the isotropic stable Lévy noise
with index α ∈ (0 , 2]. Then u has zeros if and only if d < 2α. Moreover, if d < 2α, then
dimH u

−1{0} = 2− (d/α) a.s.

When α = 2, L̇ is the standard d-dimensional white noise on R2, and (1.1) simplifies
to the more common form of the linear stochastic wave equation with d i.i.d. components.
In that case, there is indeed a large literature on this topic. See, for example, Dalang
[D99, D01], Dalang and Walsh [DW92], Cabaña [C70, C72], Carmona and Nualart
[CN88a, CN88b], Gaveau [G89, G95], Pyasetskaya [P83], and Walsh [W86].
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One could also consider the case where Ψ(ξ) = ξ′Qξ where Q := (Qij) is a nonsingular
d× d covariance matrix. This leads to the weakly-interacting system

∂2ui
∂t2

(t , x) =
∂2ui
∂x2

(t , x) +
d∑
j=1

QijẆj(t , x), t ≥ 0, x ∈ R, 1 ≤ i ≤ d, (1.8)

with initial condition ui(x , 0) = ∂tui(x , 0) = 0. Here, Ẇ := (Ẇ1 , . . . , Ẇd) denotes a
standard d-dimensional white noise on R2. Corollary 1.3 holds in this case with α = 2, with
the end-result being that the solution has zeros if and only if d < 4. This result is related
closely to a hyperbolic problem that was solved in Dalang and Nualart [DN04]. If we
apply their characterization to the problem of the existence of zeros, then we obtain the
same critical dimension of four as we do here. We add that the theorem of Dalang and
Nualart [DN04] holds in the presence of smooth multiplicative nonlinearities as well.

This paper is organized as follows: In §2 we recall Lévy sheets and their associated
Lévy processes, and present a brief introduction to stochastic integration with respect to a
general Lévy noise. Sections 3, 4 and 5 are devoted to the study of the polar sets of the
zero set of a Lévy sheet and of the random field defined as a sum of a Lévy sheet and an
additive Lévy process, in a general setting. We finally prove Theorem 1.2 in Section 6.

In the rest of this section we give some notation that will be used throughout. The
k-dimensional Lebesgue measure on Rk is denoted by λk. For all x ∈ Rk, ‖x‖ := (x2

1 + · · ·+
x2
k)

1/2 denotes the `2-norm of x, and |x| := |x1|+ · · ·+ |xk| its `1-norm.
The underlying parameter space is RN , or RN

+ = [0 ,∞)N . A typical parameter t ∈ RN

is written as t = (t1, ..., tN ). There is a natural partial order � on RN . Namely, s � t
if and only if si ≤ ti for all i = 1, ..., N . When it is the case that s � t, we define the
interval [s , t] =

∏N
i=1[si , ti]. Finally, s∧ t denotes the N -vector whose ith coordinate is the

minimum of si and ti.
We denote by f̂ the normalized Fourier transform of f ∈ L1(Rd) given by

f̂(ξ) =
∫

Rd
eix·ξ f(x) dx for all ξ ∈ Rd. (1.9)

2 Lévy sheets and their associated processes

In this section we study the structure of the distribution function of the noise L̇, which is
called a Lévy sheet. In fact, we will proceed by studying such sheets under greater generality
that is needed for (1.1). This is primarily because we view Lévy sheets as fundamental
objects themselves.

2.1 Lévy sheets

Let us begin by introducing some standard notation on N -parameter, d-dimensional Lévy
sheets. For more detailed information, particularly in the two-parameter case, see §2 of
Dalang and Walsh [DW92].

Let L̇ be a totally scattered symmetric d-dimensional random measure on RN that is
infinitely divisible in the following sense:
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1. If A and B are disjoint Borel subsets of RN then L̇(A) and L̇(B) are independent;

2. For every Borel set A ⊂ RN of finite Lebesgue measure, the law of L̇(A) is described
by the following:

E[exp{iξ · L̇(A)}] = exp (−λN (A)Ψ(ξ)) for all ξ ∈ Rd, (2.1)

where Ψ is a real (and hence non-negative) negative-definite function in the sense of
Schoenberg [S37]. See also the following Remark.

Remark 2.1. We recall Schoenberg’s theorem: Ψ is negative definite if and only if Ψ(0) ≥
0 and ξ 7→ exp(−tΨ(ξ)) is positive definite in the sense of Herzog and Bochner [BF75,
Theorem 7.8, p. 41]. Equivalently, Ψ is negative definite if it satisfies the Lévy–Khintchine
formula [B96, S99]. In the present case, Ψ is also real-valued, and therefore, Ψ(ξ) ≥ 0 for
all ξ ∈ Rd.

The Lévy sheet L with Lévy exponent Ψ is the N -parameter d-dimensional random field
{L(t); t ∈ RN

+} defined as

L(t) := L̇ ([0 , t]) for all t := (t1 , . . . , tN ) ∈ RN
+ . (2.2)

Next we mention a few commonly-used families of Lévy noises and their corresponding
Lévy sheets.

Example 2.2 (White and Stable Noises). Choose and fix a constant χ ∈ (0 ,∞). When
Ψ(ξ) = χ‖ξ‖2 for all ξ ∈ Rd, L̇ is called the d-dimensional white noise on RN , and L is called
the N -parameter, d-dimensional Brownian sheet. The noise L̇ is the [usual] standard white
noise when χ = 1/2, and the random field L is then called the [usual] standard Brownian
sheet.

More generally, if Ψ(ξ) = χ‖ξ‖α for ξ ∈ Rd, then by the Lévy–Khintchine formula
α ∈ (0 , 2], and L̇ is called the d-dimensional isotropic stable noise on RN with index α. In
this case, L is called the N -parameter isotropic stable sheet in Rd with index α; see Ehm
[E81].

There are other interesting stable noises that are symmetric. For instance, one could
consider Ψ(ξ) = 1

2

∑d
j=1 |ξj |α. This gives rise to the symmetric noise each of whose d

components are i.i.d. one-dimensional stable noises on RN with common index α. The
resulting random field is a stable sheet with i.i.d. coordinates, each with the same stability
index α.

Example 2.3 (Noises with Stable Components). Let α1, . . . , αd ∈ (0 , 2] be fixed, and
consider Ψ(ξ) = χ

∑d
j=1 |ξj |αj , where χ ∈ (0 ,∞) is fixed. The resulting random noise L̇

has stable components with index (α1 , . . . , αd), and the corresponding random field L is
the stable sheet with stable components. These were introduced in the one-parameter case
by Pruitt [PT69], and investigated further by Hendricks [H70, H72, H73, H74].

Let us mention also the following ready consequence of Theorem 1.2.

Corollary 2.4. Consider the solution u to (1.1) where L̇ is Lévy noise with stable compo-
nents with index (α1 , . . . , αd) ∈ (0 , 2]d. Then, u has zeros if and only if

∑d
j=1(1/αj) < 2.

If and when
∑d

j=1(1/αj) < 2, then dimH u
−1{0} = 2−

∑d
j=1(1/αj) a.s.
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2.2 The associated processes

Because Ψ is a Lévy exponent there exists a d-dimensional Lévy process X := {X(t); t ≥ 0}
whose law is described uniquely by E[eiξ·X(t)] = e−tΨ(ξ) for all t ≥ 0 and ξ ∈ Rd. We may
refer to X as the Lévy process associated to L̇.

By the inversion theorem, the transition densities of X are given by

f(t ;x) =
1

(2π)d

∫
Rd

cos(x · ξ)e−tΨ(ξ) dξ for all t ≥ 0, x ∈ Rd. (2.3)

In particular, Φ(λ) is none other than f(λ ; 0).
Now let X1, . . . , XN be N i.i.d. copies of X. Then additive Lévy process associated to L̇

is defined as the d-dimensional N -parameter random field X := {X(t); t ∈ RN
+}, where

X(t) := X1(t1) + · · ·+XN (tN ) for all t ∈ RN
+ . (2.4)

The density function of X(t) at 0 ∈ Rd is Φ(
∑N

i=1 ti). This should be contrasted with the
fact that the density function of L(t) at 0 ∈ Rd is Φ(

∏N
i=1 ti).

2.3 Stochastic integrals

In this section we proceed to the construct Wiener-type stochastic integrals of the type
L̇(ϕ) :=

∫
RN ϕ(t) L̇(dt), where ϕ : RN → R is nonrandom, measurable, bounded, and

compactly supported. There are in place integration theories that construct L̇(ϕ) abstractly;
see, for example the Bartle-type integrals of Dunford and Schwartz [DS58]. But in order
to mention some of the probabilistic properties of these integrals, we opt for a more direct
approach that is closer to the original method of Wiener. As our method uses standard
ideas to produce such stochastic integrals, we will only sketch the main steps.

First suppose ϕ is a simple function. That is, ϕ(t) =
∑m

j=1 cj1Aj , where A1, . . . , Am
are disjoint Borel sets in RN , and c1, . . . , cm are real constants. For such ϕ we define
L̇(ϕ) :=

∑m
j=1 cjL̇(Aj). Because Ψ(0) = 0,

E[exp{iξ · L̇(ϕ)}] = exp

− m∑
j=1

λN (Aj)Ψ(cjξ)

 = exp
(
−
∫

RN
Ψ(ϕ(t)ξ) dt

)
. (2.5)

Next we consider a bounded, compactly-supported measurable function ϕ : RN → R.
Standard measure-theoretic arguments reveal that we can find simple functions ϕ1, ϕ2, . . . :
RN → R+ and a compact set K ⊂ RN such that: (i) limn→∞ ϕn = ϕ pointwise; (ii)
R := supn≥1 supt∈RN |ϕn(t)| <∞; and (iii) ϕn(t) = 0, for all t 6∈ K and all n ≥ 1.

By linearity, and since Ψ is real and nonnegative,

1 ≥ lim inf
n,m→∞

E
[
exp

(
iξ ·
{
L̇(ϕn)− L̇(ϕm)

})]
≥ exp

(
− lim sup
n,m→∞

∫
K

Ψ ({ϕn(t)− ϕm(t)} ξ) dt
)
.

(2.6)
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Let c := Rmax1≤j≤d |ξj |, and note that Ψ is uniformly continuous on [−c , c]d. Therefore,
limn,m→∞ E[exp(iξ·{L̇(ϕn)−L̇(ϕm)})] = 1. Consequently, {L̇(ϕn)}n≥1 is a Cauchy sequence
in L0(P), and hence L̇(ϕn) converges in probability. The limit is denoted by L̇(ϕ) and has
the following properties. As they can be proved directly from the preceding construction,
we list them below without proof.

Proposition 2.5. Let B denote the algebra of all nonrandom, bounded, compactly supported
measurable functions from RN to R. Then there is an “iso-Lévy” process {L̇(ϕ)}ϕ∈B with
the following properties:

(i) E[exp{iξ · L̇(ϕ)}] = exp(−
∫

RN Ψ(ϕ(t)ξ) dt) for all ξ ∈ Rd and ϕ ∈ B.

(ii) If ϕ1, ϕ2 ∈ B, then L̇(ϕ1 + ϕ2) = L̇(ϕ1) + L̇(ϕ2) a.s.

(iii) If a ∈ R and ϕ ∈ B, then L̇(aϕ) = aL̇(ϕ) a.s.

That is, L̇ defines a random linear functional in the sense of Minlos [M58, M59].
Alternatively, one might write

∫
ϕdL in place of L̇(ϕ).

3 The image of a Lévy sheet

Theorem 1.2 is a consequence of the more general results of this section. Before we describe
them we need to introduce some notation.

Throughout the rest of the paper {L(t); t ∈ RN
+} denotes a d-dimensional N -parameter

Lévy sheet whose Lévy exponent Ψ satisfies the symmetry condition A1, and whose gauge
function Φ satisfies the regularity conditions A2 and A3. Occasionally we need the corre-
sponding Lévy noise, which we denote by L̇. Note that the Lévy sheet that arises from the
SPDE (1.1) is one such random field with N = 2.

We assume that the underlying sample space Ω is the collection of all cadlag functions
ω : RN

+ 7→ Rd. Thus, ω ∈ Ω if and only if:

1. For any net of elements {tα}α∈R in RN
+ such that tα � tβ whenever α ≤ β, and tα

converges to some t ∈ RN
+ as α→∞, then limα→∞ ω(tα) = ω(t); and

2. for any net of elements {tα}α∈R in RN
+ such that tα � tβ whenever α ≥ β, then

limα→∞ ω(tα) exists.

We say that the Lévy process L is in canonical form if

L(t)(ω) = ω(t) for all ω ∈ Ω and t ∈ RN
+ . (3.1)

Throughout, we will assume that our Lévy process L is in canonical form under a fixed
probability measure P. This assumption is made tacitly, and does not incur any loss in
generality.

Define Px to be the law of the process x+ L for every x ∈ Rd. That is, for every Borel
subset A of Ω,

Px{ω ∈ Ω : ω ∈ A} = P{ω ∈ Ω : x+ ω ∈ A}. (3.2)
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Let Ex denote the corresponding expectation operator. We will be primarily interested in
the sigma-finite (but infinite) measure,

Pλd(•) :=
∫

Rd
Px(•) dx. (3.3)

We will write Eλd for the corresponding “expectation operator.” That is,

Eλd(Z) :=
∫

Ω
Z(ω) Pλd(dω) =

∫
Rd

Ex(Z) dx for all Z ∈ L1(Pλd). (3.4)

Let P(G) denote the collection of all probability measures on any Euclidean set G, and
define for all µ ∈P(RN

+ ),

I(µ) :=
∫∫

{s,t∈RN+ : s 6=t}

Φ(‖s− t‖)µ(dt)µ(ds). (3.5)

For all compact sets G ⊂ RN
+ , we consider also the capacity of G,

Cap(G) :=
[

inf
µ∈P(G)

I(µ)
]−1

, (3.6)

where inf ∅ := ∞, and 1/∞ := 0. Let L(G) := ∪t∈G{L(t)} denote the range of G under
the random map t 7→ L(t). The following is the main result of this section.

Theorem 3.1. Let G be a nonrandom compact subset of (0 ,∞)N . Then there exists a
positive and finite constant c = c(G) such that

c−1 Cap(G) ≤ Pλd {0 ∈ L(G)} = E
[
λd
(
L(G)

)]
≤ cCap(G). (3.7)

Moreover, c depends on G only through infx∈G |x| and supx∈G |x|.

As a consequence of this theorem and Theorem 5.1 of Khoshnevisan and Xiao
[KX03], we have the following equivalence theorem between the Lévy sheets of this pa-
per and their associated additive Lévy processes.

Corollary 3.2. Let {X(t); t ∈ RN
+} denote the additive Lévy process associated to L. Then

for all nonrandom compact sets G in RN
+ there exists a positive and finite constant c = c(G)

such that
c−1 E

[
λd
(
X(G)

)]
≤ E

[
λd
(
L(G)

)]
≤ cE

[
λd
(
X(G)

)]
. (3.8)

Moreover, c depends only on G through infx∈G |x| and supx∈G |x|.

Example 3.3. Suppose L is an isotropic α-stable Lévy sheet. Then, we can either calculate
directly, or apply the preceding together with Corollary 5.4 of Khoshnevisan and Xiao
[KX03], to find that

E
[
λd
(
L(G)

)]
> 0 ⇐⇒ Cap(G) > 0 ⇐⇒ Cd/α(G) > 0, (3.9)

where Cβ denotes the standard β-dimensional Riesz capacity. See Appendix D of Khosh-
nevisan [K02] for information on these capacities.
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Example 3.4. Suppose L is a Lévy sheet with stable components of index (α1 , . . . , αd) ∈
[0 , 2)d. Then,

E
[
λd
(
L(G)

)]
> 0 ⇐⇒ Cap(G) > 0 ⇐⇒ CPd

j=1(1/αj)
(G) > 0, (3.10)

where Cβ is as in the previous example.

Our proof of Theorem 3.1 proceeds by first establishing an elementary lemma.

Lemma 3.5. For all f ∈ L1(Rd) and t ∈ RN
+ ,

Eλd [f(L(t))] =
∫

Rd
f(x) dx. (3.11)

Proof. Because f is measurable and integrable, Fubini’s theorem applies, and we have

Eλd [f(L(t))] = E
[∫

Rd
f (x+ L(t)) dx

]
, (3.12)

and this is manifestly equal to
∫

Rd f(x) dx.

The next lemma is nearly as simple, but particularly useful to us.

Lemma 3.6. If f and g are two probability densities on Rd such that f̂ , ĝ ∈ L1(Rd), then

Eλd [f(L(t))g(L(s))] =
1

(2π)d

∫
Rd
e−`(s,t)Ψ(ξ)ĝ(ξ)f̂(ξ) dξ, (3.13)

where ` is the symmetric function:

`(s , t) := λN ([0 , s]4 [0 , t]) for all s, t ∈ RN
+ . (3.14)

Proof. We write

Eλd [f(L(t))g(L(s))] = E
[∫

Rd
f (x+ L(t)) g (x+ L(s)) dx

]
=
∫

Rd
f(y) E

[
g (y + L(s)− L(t))

]
dy

=
∫

Rd
f(y)

∫
Rd
g(y − z)µs,t(dz) dy,

(3.15)

where µs,t denotes the distribution of L(t) − L(s). By the inversion theorem of Fourier
analysis,

Eλd [f(L(s))g(L(t))] =
1

(2π)d

∫
Rd
f(y)

∫
Rd

∫
Rd
e−i(y−z)·ξ ĝ(ξ) dξ µs,t(dz) dy

=
1

(2π)d

∫
Rd
µ̂s,t(ξ)ĝ(ξ)f̂(ξ) dξ.

(3.16)
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In order to compute the Fourier transform of µs,t we first note that

L(t)− L(s) = L̇ ([0 , t])− L̇ ([0 , s])

= L̇ ([0 , t] \ [0 , s])− L̇ ([0 , s] \ [0 , t]) .
(3.17)

The last two random variables are independent from one another. Moreover, by symmetry,
−L̇([0 , s] \ [0 , t]) has the same distribution as L̇([0 , s] \ [0 , t]). Therefore, L(t) − L(s) has
the same distribution as L̇([0 , s]4[0 , t]). From this and (2.1) it follows that µ̂s,t(ξ) =
exp(−`(s , t)Ψ(ξ)). We plug this in to (3.16), in order to conclude the proof.

Next we recall a well-known estimate for the function ` that was defined in (3.14); see
[K02, Lemma 1.3.1, p. 460] for a proof.

Lemma 3.7. If u � v are in (0 ,∞)N , then there exist positive and finite constants a and
b such that

a‖s− t‖ ≤ `(s , t) ≤ b‖s− t‖ for all s, t ∈ [u , v]. (3.18)

Lemma 3.8. If G ⊂ RN
+ is compact and nonrandom, then

Pλd
{

0 ∈ L(G)
}
≥ const · Cap(G). (3.19)

Moreover, the constant depends on G only through infx∈G |x| and supx∈G |x|.

Proof. Without loss of generality, we assume that Cap(G) > 0; otherwise there is nothing
to prove. In that case, there exists µ ∈P(G) such that I(µ) <∞. Because Φ(0) is infinite,
for any such probability measure µ, it holds that

I(µ) =
∫∫

RN+×RN+
Φ(‖s− t‖)µ(ds)µ(dt). (3.20)

For all µ ∈ P(G) and all f probability density function on Rd, define the random
variable

J(f ;µ) :=
∫

RN+
f(L(t))µ(dt). (3.21)

By Lemma 3.5, Eλd [J(f)] = 1. On the other hand, by Lemma 3.6,

Eλd
(
|J(f ;µ)|2

)
=

1
(2π)d

∫∫
RN+×RN+

∫
Rd
e−`(s,t)Ψ(ξ)|f̂(ξ)|2 dξ µ(ds)µ(dt) (3.22)

≤ 1
(2π)d

∫∫
RN+×RN+

∫
Rd
e−`(s,t)Ψ(ξ) dξ µ(ds)µ(dt).

Now we apply Lemma 3.7 to see that there exists a positive and finite constant a— depend-
ing on G only through infx∈G |x| and supx∈G |x| — such that

Eλd
(
|J(f ;µ)|2

)
≤ 1

(2π)d

∫∫
RN+×RN+

Φ(a‖s− t‖)µ(ds)µ(dt) ≤ Aa I(µ). (3.23)
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The second bound follows from A3 and (3.20).
Now, the Paley–Zygmund inequality [K02, Lemma 1.4.1, Chap. 3] can be applied to the

σ-finite measure Pλd , and this implies that

Pλd{J(f ;µ) > 0} ≥ |(Eλd [J(f ;µ)]|2

Eλd(|J(f ;µ)|2)
≥ 1
Aa I(µ)

, (3.24)

where 1/0 :=∞ is allowed.
Let f be a probability density function on B(0 ; 1), where B(x ; r) denotes the open

(Euclidean) ball of radius r > 0 centered at x ∈ Rd. For all ε > 0 define fε(x) := ε−df(x/ε),
as x varies over Rd. Note that fε is a probability density on B(0 ; ε). Furthermore, if ω
is such that J(fε;µ)(ω) > 0, then there exists t ∈ G such that L(t) ∈ B(0 ; ε). Hence, it
follows that for all µ ∈P(G) such that I(µ) <∞,

Pλd {L(G) ∩B(0 ; ε) 6= ∅} ≥ 1
Aa I(µ)

. (3.25)

From here, we can deduce the lemma by first letting ε tend to zero, and then optimizing
over all µ ∈P(G).

For all t ∈ RN
+ , we denote by F 0(t) the sigma-algebra generated by {L(s); s � t}. Let

F 1(t) denote the completion of F 0(t) with respect to Px for all x ∈ Rd. Finally, define

F (t) :=
⋂
u�t

F 1(u). (3.26)

In the language of the general theory of random fields, F := {F (t); t ∈ RN
+} is the aug-

mented N -parameter filtration of L.
The following is an analogue of the “Markov property,” in the present setting.

Proposition 3.9. If s � t are in RN
+ , then for all measurable functions f : Rd 7→ R+,

Eλd
[
f(L(t))

∣∣F (s)
]

=
(
TLs,tf

)
(L(s)), (3.27)

where (
TLs,tf

)
(y) := E[f(L(t)− L(s) + y)] for all y ∈ RN

+ . (3.28)

Proof. Consider measurable functions f, g, h1, ..., hm : Rd 7→ R+ and times t, s, s1, ..., sm ∈
RN

+ such that t � s � sj , for all j = 1, ...,m. Because L̇(A) and L̇(B) are independent
when A ∩B = ∅,

Eλd

f(L(t)) · g(L(s)) ·
m∏
j=1

hj(L(sj))


=
∫

Rd
E

f(L(t) + x) · g(L(s) + x) ·
m∏
j=1

hj(L(sj) + x)

 dx
=
∫

Rd
E[f(L(t)− L(s) + y)] E

 m∏
j=1

hj(L(sj)− L(s) + y)

 g(y) dy.

(3.29)
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Set f = h1 = · · · = hm ≡ 1 to see that Pλd{L(s) ∈ •} = λd(•), and the desired result
follows.

The next result is Cairoli’s maximal inequality. This inequality is proved as a conse-
quence of the commuting property of the N -parameter filtration F .

Proposition 3.10. For all Y ∈ L2(Pλd), there exists a version of t 7→ Eλd [Y |F (t)] that
is cadlag in every variable, uniformly in the remaining N − 1 variables, and satisfies

Eλd

(
sup
t∈RN+

∣∣Eλd [Y ∣∣F (t)
]∣∣2) ≤ 4NEλd [Y

2]. (3.30)

Proof. When L is the Brownian sheet and the infinite measure Pλd is replaced by the
probability measure P, this result follows from Cairoli’s maximal inequality and the Cairoli–
Walsh commutation theorem. See Chapter 7 of Khoshnevisan [K02, §2].

In order to prove the present form of the proposition, we need to replace the Gaussian
Brownian sheet with the more general random field L, and more significantly, P with Pλd .
Fortunately, none of this requires us to introduce too many new ideas. Therefore, we merely
outline the requisite changes in the existing theory to accomodate the present formulation
of this proposition.

We appeal to a close analogy with the usual N -parameter theory of processes, and say
that F is a commuting N parameter filtration with respect to Pλd if for all s, t ∈ RN

+ and
every F (s)-measurable random variable Y ∈ L2(Pλd),

Eλd [Y |F (t)] = Eλd [Y |F (s ∧ t)], (3.31)

off of a Pλd-null set. In the case that N = 2 and P is replaced by Pλd , (3.31) reduces
essentially to hypothesis (F4) of Cairoli and Walsh [CW75]. The general case is studied
in Chapter 7 of Khoshnevisan [K02, §2.1], among other places.

It is known that (3.31) implies the “Cairoli maximal inequality” announced in the state-
ment of the proposition. In the case that Pλd is replaced everywhere by P, this is covered
by Theorem 2.3.2 of [K02, p. 235]. It is not hard to adapt the proof so that the result
continues to holds for Pλd . Thus, it suffices to derive (3.31).

Next, we prove (3.31), but only in the case that N = 2. When N > 2, the same ideas
continue to work, but the notation is more cumbersome to write [and read!].

Define Dn to be the collection of all left-open right-closed dyadic cubes of side length
2−n in R2. That is,

Q ∈ Dn iff Q =
(
j

2n
,
j + 1

2n

]
×
(
k

2n
,
k + 1

2n

]
for some j, k ∈ Z. (3.32)

For all s ∈ (0 ,∞)2 and n ≥ 0, let Fn(s) denote the sigma-algebra generated by all random
variables of the form L̇(A), as A ranges over all elements of Dn that are contained in
(0 , s1] × (0 , s2]. For every fixed integer n ≥ 1, Fn defines a two-parameter filtration. We
might note that if A and B are disjoint elements of Dn, then L̇(A) and L̇(B) are i.i.d. copies
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of one another. Therefore, {Fn(k/2n , (k + 1)/2n)}∞k=0 is in fact a two-parameter filtration
that is defined by a two-parameter random walk [K02, Chap. 4]. Consequently, Proposition
1.2.1 of Khoshnevisan [K02, p. 107] implies that for all F (s)-measurable random variables
Y ∈ L2(P), the following holds with P-probability one:

E [Y |Fn(t) ] = E [Y |Fn(s ∧ t) ] . (3.33)

And this is valid for all s, t ∈ (0 ,∞)2 that respectively have the form s = (k/2n , (k+1)/2n)
and t = (j/2n , (j + 1)/2n) for integers j, k ≥ 0. Let us call such s and t dyadic vectors of
depth 2−n.

It is possible to combine the inclusion–exclusion formula [K02, p. 107] with the proof of
Proposition 1.2.1 of [K02, p. 107], and derive from the preceding that for all dyadic vectors
s and t of depth 2−n, and all F (s)-measurable random variables Y ∈ L2(Pλd), the following
holds outside a Pλd-null set:

Eλd [Y |Fn(t) ] = Eλd [Y |Fn(s ∧ t) ] . (3.34)

The nested property of dyadic cubes is inherited by the Fn’s. That is, Fn(t) ⊆ Fn+1(t)
and Fn(s ∧ t) ⊆ Fn+1(s ∧ t). Therefore, we can apply Doob’s one-parameter martingale
convergence theorem [which is easily adapted to work for Pλd as well] to deduce that for
all dyadic vectors s and t [of any common fixed depth], the following holds off of a Pλd-null
set:

Eλd

[
Y

∣∣∣∣∣
∞∨
n=0

Fn(t)

]
= Eλd

[
Y

∣∣∣∣∣
∞∨
n=0

Fn(s ∧ t)

]
. (3.35)

We augment the sigma-algebras ∨∞n=0Fn(s) and ∨∞n=0Fn(s∧t) in the usual way to conclude
from this that (3.31) holds for all fixed dyadic vectors s and t. [See the construction of F via
F 0, for instance.] Standard arguments involving right continuity imply that the same fact is
valid for all s, t ∈ (0 ,∞)2; in the case that Pλd is replaced everywhere by P, these arguments
are summarized in Corollary 2.3.1 of [K02, p. 236]. The case of Pλd is proved by very much
the same arguments. This development implies (3.31), whence the proposition.

Lemma 3.11. If G is a nonrandom compact set in RN
+ , then

Pλd {0 ∈ L(G)} ≤ const · Cap(G). (3.36)

Moreover, the constant depends on G only through the quantities supx∈G |x| and infx∈G |x|.

Proof. Without loss of generality we may assume that

Pλd {0 ∈ L(G)} > 0. (3.37)

Otherwise there is nothing to prove.
Let f be a probability density on Rd, and consider an arbitrary µ ∈ P(G). In accord

with Proposition 3.9, for all s ∈ G,

Eλd [J(f ;µ)|F (s)] ≥
∫
t�s

(
TLs,tf

)
(L(s))µ(dt) Pλd-a.s., (3.38)
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where J(f ;µ) is defined in (3.21). The two sides of (3.38) are right-continuous in s and
have left limits, both coordinatewise. See Dalang and Walsh [DW92], and also Ehm
[E81]. Therefore, for all probability densities f on Rd such that f̂ ∈ L1(Rd), and for all
µ ∈P(G), the following statement holds:

There exists one null set off which (3.38) holds for all s ∈ G. (3.39)

Path regularity of L implies the existence of a random variable σ with values in G∪{ρ}—
where ρ is an abstract “cemetery” point not in G—which has the following properties:

1. σ = ρ if and only if L(s) 6= 0 for every s ∈ G;

2. L(σ) = 0 on {σ 6= ρ}.

For all integers k ≥ 1 and all Borel sets E ⊂ RN
+ , define

µε,k(E) :=
Pλd {σ ∈ E , σ 6= ρ , |L(0)| ≤ k}

Pλd {σ 6= ρ , |L(0)| ≤ k}
. (3.40)

Thanks to (3.37) and the monotone convergence theorem, limk→∞ Pλd{σ 6= ρ , |L(0)| ≤
k} = Pλd{0 ∈ L(G)} > 0. Therefore, there exists kε > 0 such that µε,k is well defined for
all k ≥ kε. In fact, µε,kis a probability measure on G, provided that k ≥ kε.

Define for all ε > 0, k ≥ kε, and all probability densities f on Rd,

Qε,k(f) := sup
u∈G

Eλd [J(f ;µε,k)| F (u)]. (3.41)

Then, thanks to (3.38) and (3.39),

Qε,k(f) ≥ 1{σ 6=ρ , |L(0)|≤k} ·
∫
t�σ

(
TLσ,tf

)
(0)µε,k(dt) Pλd-a.s., (3.42)

provided that f̂ ∈ L1(Rd). We can square both sides and integrate [Pλd ] to find that

Eλd
(
|Qε,k(f)|2

)
≥ Pλd {σ 6= ρ , |L(0)| ≤ k} ·

∫
RN+

(∫
t�s

(
TLs,tf

)
(0)µε,k(dt)

)2

µε,k(ds).
(3.43)

Since µε,k is a probability measure on G [ε > 0 and k ≥ kε], the Cauchy–Schwarz inequality
implies that

Eλd
(
|Qε,k(f)|2

)
≥ Λ2Pλd {σ 6= ρ , |L(0)| ≤ k} , (3.44)

where

Λ :=
∫

RN+

∫
t�s

(TLs,tf)(0)µε,k(dt)µε,k(ds). (3.45)
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Suppose also that f̂(ξ) ≥ 0 for all ξ ∈ Rd. Because f, f̂ ∈ L1(Rd), can apply the
inversion theorem to f—in the same manner as in the proof of Lemma 3.6—to find that for
all s, t ∈ G with s � t, and for all ε > 0,

(TLs,tf)(0) =
1

(2π)d

∫
Rd
e−`(s,t)Ψ(ξ)f̂(ξ) dξ

≥ 1
(2π)d

∫
Rd
e−b‖s−t‖Ψ(ξ)f̂(ξ) dξ.

(3.46)

Here, b is a positive and finite constant that depends only on the distance between G and
the axes of RN

+ , as well as supx∈G |x|; see Lemma 3.7. Consequently,

Λ ≥ 1
2N (2π)d

∫∫
RN+×RN+

∫
Rd
e−b‖s−t‖Ψ(ξ)f̂(ξ) dξ µε,k(ds)µε,k(dt). (3.47)

According to A3, bΨ(ξ) ≤ Ψ(ξ/A1/b). Therefore, the preceding implies that

Λ ≥
Ad1/b

2N (2π)d

∫∫
RN+×RN+

∫
Rd
e−‖s−t‖Ψ(ξ)f̂(ξA1/b) dξ µε,k(ds)µε,k(dt). (3.48)

Now, thanks to Proposition 3.10 and (3.22),

Eλd
(
|Qε,k(f)|2

)
≤ 4NEλd

(
|J(f ;µε,k)|2

)
≤ 4N

(2π)d

∫∫
RN+×RN+

∫
Rd
e−`(s,t)Ψ(ξ)|f̂(ξ)|2 dξ µε,k(ds)µε,k(dt).

(3.49)

Therefore, Lemma 3.7 implies that there exists a positive and finite constant a that depends
only on the distance between G and the axes of RN

+ , as well as supx∈G |x|, such that

Eλd
(
|Qε,k(f)|2

)
≤ 4N

(2π)d

∫∫
RN+×RN+

∫
Rd
e−a‖s−t‖Ψ(ξ)|f̂(ξ)|2 dξ µε,k(ds)µε,k(dt)

≤ 4N

(2π)dAda

∫∫
RN+×RN+

∫
Rd
e−‖s−t‖Ψ(ξ)|f̂(ξ/Aa)|2 dξ µε,k(ds)µε,k(dt).

(3.50)

See A3 for the last inequality. This, (3.44), and (3.48) together imply that

c

∫∫
RN+×RN+

∫
Rd
e−‖s−t‖Ψ(ξ)|f̂(ξ/Aa)|2 dξ µε,k(ds)µε,k(dt)

≥

(∫∫
RN+×RN+

∫
Rd
e−‖s−t‖Ψ(ξ)f̂(ξA1/b) dξ µε,k(ds)µε,k(dt)

)2

× Pλd {σ 6= ρ , |L(0)| ≤ k} ,

(3.51)

where c := 16N (2π)d/(AaA2
1/b)

d.
The preceding is valid for every probability density f on Rd whose Fourier transform is

integrable and nonnegative. Now we make a particular choice of f . Namely, we replace f
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by fη, where fη(x) := η−dg(x/η), for η > 0, and g is the density function of an isotropic
stable random variable of index α ∈ (0 , 2] satisfying

1
α
≥ log2

(
AaA1/b

)
. (3.52)

Note that ĝ(ξ) = exp(−‖ξ‖α) for all ξ ∈ Rd. Hence, as f̂η(ξ) = exp(−ηα‖ξ‖α) for all ξ ∈ Rd,
we have

|f̂η(ξ/Aa)|2 = exp
(
−2ηα‖ξ‖α

Aαa

)
≤ exp

(
−ηα‖ξ‖αAα1/b

)
= f̂η(ξA1/b).

(3.53)

Thus, we find that

Pλd {σ 6= ρ , |L(0)| ≤ k}

≤ c

[∫∫
‖s−t‖≥θ

∫
Rd
e−‖s−t‖Ψ(ξ) exp

(
−2ηα‖ξ‖α

Aαa

)
dξ µε,k(ds)µε,k(dt)

]−1

.
(3.54)

where θ > 0 is an arbitrary parameter. Replace k by kε and let η ↓ 0 to deduce that for all
ε > 0,

Pλd {0 ∈ L(G) , |L(0)| ≤ kε} ≤ c̃

[∫∫
‖s−t‖≥θ

Φ(‖s− t‖)µε,kε(ds)µε,kε(dt)

]−1

. (3.55)

We may observe that {µε,kε}ε>0 is a collection of probability measures, all of which are
supported on the same compact set G. Therefore, by Prohorov’s theorem we can extract
a subsequence of ε’s along which µε,kε converges weakly to some µ∗ ∈P(G). Because Φ is
uniformly continuous on [θ ,∞), it follows that

lim inf
ε→0+

Pλd {0 ∈ L(G) , |L(0)| ≤ kε} ≤ c̃

[∫∫
‖s−t‖≥θ

Φ(‖s− t‖)µ∗(ds)µ∗(dt)

]−1

. (3.56)

Because we can always ensure that limε→0+ kε = ∞, the monotone convergence theorem
insures that the left-hand side is precisely Pλd{0 ∈ L(G)}. Finally, let θ ↓ 0 and appeal to
the monotone convergence theorem once again to find that Pλd{0 ∈ L(G)} ≤ c̃/I(µ∗), and
this is at most a constant c̃ times the capacity Cap(G) of G. This concludes the proof.

We conclude this section by proving Theorem 3.1.

Proof of Theorem 3.1. First note that

Pλd {0 ∈ L(G)} =
∫

Rd
P {−x ∈ L(G)} dx

= E
[
λd
(
L(G)

)]
.

(3.57)

16



This proves the identity in Theorem 3.1. Moreover, Lemma 3.11 proves that the preceding
is at most cCap(G), whence follows the upper bound of the theorem.

Similarly,
Pλd

{
0 ∈ L(G)

}
= E

[
λd

(
L(G)

)]
. (3.58)

But the set-difference between L(G) and its euclidean closure is a denumerable union of sets
each of which is at most (d−1)-dimensional. See Dalang and Walsh [DW92, Proposition
2.1] for the case N = 2; the general case is proved similarly. It follows that

E
[
λd

(
L(G) \ L(G)

)]
= 0. (3.59)

Thus,

Pλd {0 ∈ L(G)} = E
[
λd
(
L(G)

)]
= E

[
λd

(
L(G)

)]
= Pλd

{
0 ∈ L(G)

}
.

(3.60)

Apply Lemma 3.8 to finish the proof.

4 A perturbed random field

Let X be a d-dimensional N -parameter additive Lévy process with Lévy exponent νΨ, where
ν ∈ (0 ,∞) is fixed. We assume also that X is independent of L. Define

F (t) := L(t) + X(t) for all t ∈ RN
+ . (4.1)

The following proves that the contents of Theorem 3.1 remain unchanged if L is replaced
by the perturbed random field F .

Theorem 4.1. Let G denote a nonrandom compact subset of (0 ,∞)N . Then, there exists
a positive and finite constant c = c(G , ν) such that

c−1 Cap(G) ≤ Pλd {0 ∈ F (G)} = E
[
λd
(
F (G)

)]
≤ cCap(G). (4.2)

Moreover, c depends on G only through infx∈G |x| and supx∈G |x|.

Proof. Write Pz for the law of z + F , and Pλd :=
∫

Rd Pz dz, as before. Also, Eλd denotes
the corresponding expectation operator. As in Lemma 3.5, if f ∈ L1(Rd) and t ∈ RN

+ , then

Eλd [f(F (t))] =
∫

Rd
f(x) dx. (4.3)

Also, the proof of Lemma 3.6 implies that if f and g are two probability densities on Rd

such that f̂ , ĝ ∈ L1(Rd), then for all s, t ∈ RN
+ ,

Eλd [f(F (t))g(F (s))] =
1

(2π)d

∫
Rd
e−(`(s ,t)+c

PN
j=1 |tj−sj |)Ψ(ξ)ĝ(ξ)f̂(ξ) dξ. (4.4)
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Finally, as in Proposition 3.9 we have

Eλd
[
f(F (t))

∣∣F (s)
]

=
(
TFs,tf

)
(F (s)), (4.5)

valid for all s, t ∈ RN
+ , and all measurable functions f : Rd → R+. Here,(

TFs,tf
)

(y) := E [f(F (t) + y)] for all s, t ∈ RN
+ , y ∈ Rd. (4.6)

As the filtration of X is also commuting [KX03, Lemma 4.2 and its proof], the remainder of
the proof of Theorem 3.1 goes through in the present case without any drastic changes.

5 Polar sets for the level sets

The aim of this section is to compute the Hausdorff dimension of the zero set L−1{0} of an
N -parameter, d-dimensional Lévy sheet L, provided that Conditions A1, A2, and A3 are
assumed throughout.

Recall that a nonrandom set G is polar for a random set S if P{S ∩ G 6= ∅} = 0. We
begin by describing all sets that are polar for the level sets of the random field L and its
perturbation F .

Theorem 5.1. Let G be a nonrandom compact subset of (0 ,∞)N . Then, the following are
equivalent:

(i) P{L−1{0} ∩G 6= ∅} > 0;

(ii) P{F−1{0} ∩G 6= ∅} > 0;

(iii) Cap(G) > 0.

We can apply the preceding together with Corollary 2.13 of Khoshnevisan and Xiao
[KX03] in order to deduce the following equivalence theorem between the Lévy sheets of
this paper and their associated additive Lévy processes.

Corollary 5.2. Let {X(t)}t∈RN+
denote the additive Lévy process associated to L. Then for

all nonrandom compact sets G in RN
+ there exists a positive and finite constant c such that

c−1 P
{
X−1{0} ∩G 6= ∅

}
≤ P

{
L−1{0} ∩G 6= ∅

}
≤ cP

{
X−1{0} ∩G 6= ∅

}
. (5.1)

Moreover, c depends only on G through infx∈G |x| and supx∈G |x|.

Proof of Theorem 5.1. There exists α > 0 such that G ⊆ (α , 1/α)N . Therefore, if t ∈ G
then Px-a.s. for all x ∈ Rd,

L(t) = L(a) + L̇ ([0 , t] \ [0 , a]) , (5.2)

where a := (α , . . . , α) ∈ (0 ,∞)N , and the two terms on the right-hand side describe
independent random fields. We can decompose the right-most term as follows:

L̇ ([0 , t] \ [0 , a]) =
N∑
j=1

Lj(πj(t− a)) + L̃(t− a), (5.3)

where:
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(1) L1, . . . , LN , L̃ are totally independent d-dimensional random fields;

(2) each Lj is an (N − 1)-parameter Lévy sheet with Lévy exponent Ψ;

(3) L̃ is an N -parameter Lévy sheet with Lévy exponent Ψ; and

(4) πj maps t ∈ RN
+ to πjt ∈ RN−1

+ , which is the same vector as t, but with tj removed.

This identity is valid Px-a.s. for all x ∈ Rd. But because we can choose path-regular versions
of L1, . . . , LN and L̃, it follows that Px-a.s. for all x ∈ Rd,

L(t) = L(a) +
N∑
j=1

Lj
(
πj (t− a)

)
+ L̃ (t− a) for all t ∈ G. (5.4)

Moreover, the N + 2 processes on the right-hand side (viewed as random fields indexed by
t) are totally independent under Px for all x ∈ Rd. Note that

P
{
L−1{0} ∩G 6= ∅

}
= P {∃ t ∈ G : L(t) = 0}

=
∫

Rd
P

∃ t ∈ G :
N∑
j=1

Lj
(
πj (t− a)

)
+ L̃ (t− a) = −x

P {L(a) ∈ dx}

=
∫

Rd
P

∃ t ∈ G :
N∑
j=1

Lj
(
πj (t− a)

)
+ L (t− a) = −x

P {L(a) ∈ dx} .

(5.5)

Thanks to (1.4) and the inversion theorem,

P {L(a) ∈ dx}
dx

=
1

(2π)d

∫
Rd

exp
(
−ix · ξ − αNΨ(ξ)

)
dξ, (5.6)

and this bounded above, uniformly for all x ∈ Rd, by the positive and finite constant
c := c(α) := (2π)−d

∫
Rd exp(−αNΨ(ξ)) dξ. Consequently,

P
{
L−1{0} ∩G 6= ∅

}
≤ c

∫
Rd

P

∃ t ∈ G :
N∑
j=1

Lj
(
πj (t− a)

)
+ L (t− a) = −x

 dx

= cE [λd (W (G	 {a}))] ,

(5.7)

where W :=
∑N

j=1(Lj ◦ πj) + L, and G 	 {a} := {t − a; t ∈ G}. Because G 	 {a} is
a nonrandom compact subset of (0 ,∞)N , one can prove—in exactly the same manner
that we proved Theorem 4.1—that E[λd(W (G 	 {a}))] ≤ const · Cap(G 	 {a}), where the
constant depends only on G and α. We omit the details. Because I(µ) is convolution-based,
G 7→ Cap(G) is translation invariant, whence we have Cap(G	{a}) = Cap(G). This proves
that (1) implies (3).
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Next we prove that (3) implies (1). As above let α > 0 such that G ⊂ (α , 1/α)N . For
any ε > 0 and µ ∈P(RN

+ ), we define a radom measure on RN
+ by

Jε(B) =
1

(2ε)d

∫
B

1B(0,ε)(L(t))µ(dt) for all B ⊂ RN
+ Borel set. (5.8)

We shall need the following two lemmas.

Lemma 5.3. For every µ ∈P(G),

lim inf
ε→0+

E[Jε(G)] > 0. (5.9)

Proof. By Fatou’s lemma,

lim inf
ε→0+

E[Jε(G)] = lim inf
ε→0+

∫
G

P {|L(t)| ≤ ε}
(2ε)d

µ(dt)

≥
∫
G
p(t)µ(dt),

(5.10)

where p(t) denotes the density function of L(t) at zero. By the inversion theorem, p(t) =
Φ(
∏N
j=1 tj). Because µ is supported in [α , 1/α]N ,

inf
t∈G

p(t) ≥ 1
(2π)d

∫
Rd

exp
(
−Ψ(ξ)α−N

)
dξ := c1 > 0, (5.11)

where c1 = c1(α). This implies the desired result.

Lemma 5.4. Let K : RN
+ ×RN

+ 7→ R+ be a measurable function. Then there exists a finite
positive constant c, depending only on G, such that for every µ ∈P(G) and all ε > 0,

E
[∫∫

G×G
K(s , t) Jε(ds) Jε(dt)

]
≤ c

∫∫
G×G

K(s , t)Φ(‖s− t‖)µ(dt)µ(ds). (5.12)

In particular,
E
(
|Jε(G)|2

)
≤ cI(µ). (5.13)

Proof. By Fubini’s theorem,

E
[∫∫

G×G
K(s , t) Jε(ds)Jε(dt)

]
=

1
(2ε)2d

∫∫
G×G

K(s , t)P {|L(s)| ≤ ε, |L(t)| ≤ ε} µ(dt)µ(ds).
(5.14)

We define

N1(s , t) := L(s)− L(s ∧ t),
N2(s , t) := L(t)− L(s ∧ t).

(5.15)
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Clearly,

P {|L(s)| ≤ ε, |L(t)| ≤ ε} = P {|L(s ∧ t) +N1(s , t)| ≤ ε, |L(s ∧ t) +N2(s , t)| ≤ ε}
≤ P {|L(s ∧ t) +N1(s , t)| ≤ ε, |N2(s , t)−N1(s , t)| ≤ 2ε}
= P {|L(s ∧ t) +N1(s , t)| ≤ ε, |L(t)− L(s)| ≤ 2ε} .

(5.16)

Note that L(s∧t), N1(s , t), and N2(s , t) are mutually independent; this follows immediately
from considering the representation of L via L̇. Thus,

P {|L(s)| ≤ ε, |L(t)| ≤ ε} ≤ sup
x∈Rd

Px {|L(s ∧ t)| ≤ ε} × P {|L(t)− L(s)| ≤ 2ε} . (5.17)

Because of symmetry, L(s ∧ t) is a 16d-weakly unimodal random vector [KX03, Corollary
2.2]. That is,

sup
x∈Rd

Px {|L(s ∧ t)| ≤ ε} ≤ 16dP {|L(s ∧ t)| ≤ ε} . (5.18)

But if s, t ∈ G, then s ∧ t is also in [α , 1/α]N . Hence, by (5.6) the density of L(s ∧ t) is
bounded, uniformly in s and t in G. Consequently, we can find a positive and finite constant
c2 = c2(α) such that

sup
x∈Rd

Px {|L(s ∧ t)| ≤ ε} ≤ c2(2ε)d for all ε > 0, s, t ∈ G. (5.19)

Consequently,

E
[∫∫

G×G
K(s , t) Jε(ds) Jε(dt)

]
≤ c3

∫∫
G×G

K(s , t)p(s , t)µ(dt)µ(ds), (5.20)

where p(s , t) is the density of L(t)− L(s) at zero. By the inversion theorem,

p(s , t) =
1

(2π)d

∫
Rd
e−`(s,t)Ψ(ξ) dξ

≤ 1
(2π)d

∫
Rd
e−a‖s−t‖Ψ(ξ) dξ,

(5.21)

where a ∈ (0 ,∞) depends only on G; see Lemma 3.7. Thanks to A3 we can write

p(s , t) ≤ 1
(2π)d

∫
Rd
e−‖s−t‖Ψ(Aaξ) dξ

=
1
Ada

Φ(‖t− s‖),
(5.22)

and this concludes the proof.

Let us now continue the proof that (3) implies (1). Note that (3) implies the existence
of µ ∈P(G) such that I(µ) <∞. Then there exists a continuous function ρ : RN 7→ [1,∞)
such that lims 7→s0 ρ(s) = ∞ for every s0 ∈ RN with at least one coordinate equals 0 and
such that ∫∫

G×G
ρ(s− t)Φ(‖s− t‖)µ(dt)µ(ds) <∞. (5.23)
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See Khoshnevisan and Xiao [KX02, p. 73] for a construction of ρ.
Consider now the sequence of random measures {Jε}ε>0. It follows from Lemmas

5.3, 5.4, and a second-moment argument, that we can extract a subsequence {Jεn}n∈N—
converging weakly to a random measure J —such that

P {J (G) > 0} ≥ (inf0<ε<1 E[Jε(G)])2

supε>0 E(|Jε(G)|2)
> 0. (5.24)

See Khoshnevisan and Xiao [KX02, proof of Lemma 3.6], and Khoshnevisan, Xiao, and
Shieh [KSX06, p. 26]). Moreover,∫∫

G×G
ρ(s− t) J (dt) J (ds) ≤ c

∫∫
G×G

ρ(s− t)Φ(‖s− t‖)µ(dt)µ(ds). (5.25)

This and (5.23) together imply that a.s.,

J {s ∈ G : sj = a for some j} = 0 for all a ∈ R+. (5.26)

In order to deduce (1), it suffices to prove that the random measure J is supported on
L−1{0} ∪G. For this purpose, it suffices to prove that for every δ > 0, J (D(δ)) = 0 a.s.,
where D(δ) := {s ∈ G : |L(s)| > δ}. Because of (5.26), the proof of this fact follows exactly
the arguments of Khoshnevisan and Xiao [KX02, p. 76].

The equivalence of (2) and (3) is proved in exactly the same way, and is therefore
omitted.

Next we derive our first dimension result.

Theorem 5.5. Let G be a nonrandom compact subset of RN
+ . Then, almost surely on

{L−1{0} ∩G 6= ∅},

dimH

(
L−1{0} ∩G

)
= sup

{
q ∈ (0 , N) : I(q)(µ) <∞ for some µ ∈P(G)

}
, (5.27)

where
I(q)(µ) :=

∫∫
{s,t∈RN+ : s 6=t}

Φ(‖t− s‖)
‖t− s‖q

µ(ds)µ(dt). (5.28)

Corollary 5.6. Almost surely on {L−1{0} 6= ∅}, dimH L
−1{0} = N − ind Φ.

Example 5.7. If L is an isotropic stable Lévy sheet of index α ∈ (0 , 2], then we can
combine Corollary 5.6 with Example 3.5 of Khoshnevisan, Xiao, and Shieh [KSX06] to find
that a.s. on {L−1{0} ∩G 6= ∅},

dimH

(
L−1{0} ∩G

)
= dimH G− (d/α). (5.29)

Also, dimH L
−1{0} = N − (d/α) a.s. on {L−1{0} 6= ∅}. This last fact was first proved in

[E81].
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It is not easy to produce a direct proof of Theorem 5.5. Therefore, instead we use a
“comparison principle” to deduce the theorem from an analogous [known] result on the
associated additive Lévy process.

Proof of Theorem 5.5. Let X denote the additive Lévy process associated to L, and choose
and fix an integer M ≥ 1 and a real number α ∈ (0 , 2]. Consider M independent isotropic
stable Lévy processes of index α, S1, . . . , SM , all taking values in RN . We assume that
{S1 , . . . , SM , L ,X} are independent. Consider the M -parameter, N -valued additive stable
Lévy process,

S(u) := S1(u1) + · · ·+ SM (uM ), for all u ∈ RM
+ . (5.30)

Suppose N > αM . Then, by Propositions 4.7 and 4.8 of Khoshnevisan, Shieh, and
Xiao [KSX06] we deduce that

P
{
X−1{0} ∩G ∩S(RM

+ ) = ∅
}
> 0 ⇐⇒ inf

µ∈P(G)
I(N−αM)(µ) <∞. (5.31)

A standard approximation argument can be used in conjunction with Theorem 5.1 to
deduce that for all nonrandom analytic sets F ⊂ RN

+ ,

P
{
X−1{0} ∩ F = ∅

}
> 0 ⇐⇒ P

{
L−1{0} ∩ F = ∅

}
> 0. (5.32)

Thanks to the independence properties of S we can apply the preceding with F := G ∩
S(RM

+ ) [first condition on S and then take expectations]. Consequently, (5.31) implies that

P
{
L−1{0} ∩G ∩S(RM

+ ) = ∅
}
> 0 ⇐⇒ inf

µ∈P(G)
I(N−αM)(µ) <∞. (5.33)

Now the rest proof of the proof of Theorem 5.5 follows exactly as the proof of Theorem 3.2
of Khoshnevisan and Xiao [KX03] and is therefore omitted.

We use a similar comparison principle to deduce Corollary 5.6.

Proof of Corollary 5.6. Let X denote the additive Lévy process associated to L, and assume
that L and X are independent. Thanks to Theorem 5.5, and Theorem 3.2 of Khoshnevisan
and Xiao [KSX06], the following holds with probability one.

dimH

(
L−1{0} ∩G

)
1{L−1{0}∩G 6=∅} = dimH

(
X−1{0} ∩G

)
1{X−1{0}∩G 6=∅}. (5.34)

Now consider a nonrandom upright cube G ⊂ (0 ,∞)N ; that is a closed set G of
the form G =

∏N
i=1[ai , bi]. Then, the proof of Theorem 1.1 of [KSX06] states that

dimH

(
X−1{0} ∩G

)
= N − ind Φ almost surely on {X−1{0} ∩G 6= ∅}.

Hence, dimH

(
L−1{0} ∩G

)
= N − ind Φ almost surely on {L−1{0} ∩G 6= ∅}. Because

we need to consider only upright cubes that have rational coordinates, a limiting argument
finishes the proof.
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6 Proof of Theorem 1.2

We now return to the problem in the Introduction, and study the SPDE (1.1).
Let x0 ∈ R be fixed, and let S (x0) be the collection of all (t , x) ∈ R+ × R such

that t ≥ |x− x0|. Elementary geometric considerations lead us to the following equivalent
formulation:

S (x0) = {(t , x) ∈ R+ × R : (x0 , 0) ∈ C (t , x)} . (6.1)

We will need the following well-known result. See the Introduction in Dalang and Walsh
[DW92] for the case x0 = 0, for example.

Lemma 6.1. Let x0 ∈ R be fixed. Then, we can write

u(t , x) =
1
2
F̃ (t− x , t+ x) for all (t , x) ∈ S (x0), (6.2)

where F̃ is a copy of the perturbed random field F of §4 with N = 2 and ν = 1
2 .

Our proof of Theorem 1.2 requires two more simple lemmas.

Lemma 6.2. Let x0 ∈ R be fixed and let G be a nonrandom compact subset of (0 ,∞)2 ∩
S (x0). Then,

P
{
u−1{0} ∩G 6= ∅

}
> 0 ⇐⇒ Cap(G) > 0. (6.3)

Proof. Define the rotation map ρ : R2 → R2 by ρ(t , x) := (t − x , t + x). Its inverse is
described by ρ−1(u , v) = 1

2(v + u , v − u). According to Lemma 6.1,

u =
1
2

(F̃ ◦ ρ) on S (x0). (6.4)

Now the process 1
2F is the perturbed version of 1

2L, and the latter is a Lévy sheet with
Lévy exponent ξ 7→ Ψ(ξ/2). Thanks to Theorem 5.1, the restriction of F−1{0} to S (x0)
has the same polar sets as the restriction of L−1{0} on S (x0). Consequently, if G is any
nonrandom compact subset of S (x0) ∩ (0 ,∞)2, then

P
{
u−1{0} ∩G 6= ∅

}
> 0 ⇐⇒ Cap

(
ρ−1G

)
> 0. (6.5)

Note that if µ ∈ P(G) then µ ◦ ρ ∈ P(ρ−1G) and I(µ) = I(µ ◦ ρ). Consequently,
Cap(ρ−1G) = Cap(G) and the lemma follows.

Lemma 6.3. Let G be a nonrandom compact subset of (0 ,∞)2. Then,

P
{
u−1{0} ∩G 6= ∅

}
> 0 ⇐⇒ Cap(G) > 0. (6.6)
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Proof. If P{u−1{0}∩G 6= ∅} is positive then there must exist x0 ∈ R such that P{u−1{0}∩
G ∩S (x0) 6= ∅} is positive. Then Lemma 6.2 implies that Cap(G ∩S (x0)) > 0. Because
Cap(G) ≥ Cap(G ∩S (x0)), this proves the “⇒” portion of the lemma.

The converse is proved similarly. Indeed, it can be shown that Cap is a Choquet capacity,
whence Cap(G) = supx0∈R Cap(G ∩ S (x0)), thanks to Choquet’s capacitability theorem.

Finally we prove Theorem 1.2 via a comparison argument.

Proof of Theorem 1.2. Let X be the 2-parameter d-dimensional additive Lévy process that
is associated to L. Lemma 6.3 used in conjunction with Theorem 5.1 and Corollary 5.2
implies that the zero sets of u and X have the same polar sets. Consequently, for all
integers n ≥ 1,

P
{
u−1{0} ∩ [−n , n]× [0 , n] 6= ∅

}
> 0

⇐⇒ P
{
X−1{0} ∩ [−n , n]× [0 , n] 6= ∅

}
> 0.

(6.7)

Let n tend to infinity to find that

P
{
u−1{0} 6= ∅

}
> 0 ⇐⇒ P

{
X−1{0} 6= ∅

}
> 0. (6.8)

According to Proposition 3.1 of [KX02] this last condition holds if and only if∫
[0,1]2

Φ(‖z‖) dz <∞. (6.9)

Integration in polar coordinates proves “(2) ⇔ (3)” in Theorem 1.2. Since “(1) ⇒ (2)”
holds tautaologically, in order to prove that (1) and (3) are equivalent, it suffices to prove
that if u−1{0} is nonempty with positive probability, then it is nonempty a.s.

With this in mind, let us assume that P{u−1{0} 6= ∅} > 0. Then there exists an integer
n ≥ 1 large enough such that

P
{
u−1{0} ∩ C (n , 0) 6= ∅

}
> 0. (6.10)

Thanks to (1.3), u(t , x) = 1
2 L̇(C (t , x)). We have observed in Proposition 2.5 that L̇

has the following two propeties: (i) For all a ∈ R2 and A ⊂ R2 Borel-measurable, L̇(a+A)
has the same law as L̇(A); and (ii) L̇(A) and L̇(B) are independent whenever A and B are
disjoint measurable subsets of R2. It follows from this that{

u−1{0} ∩ C (n , 2kn)
}∞
k=0

are i.i.d. random sets. (6.11)

Used in conjunction with (6.10) and Borel–Cantelli’s lemma for independent events, this
implies that

P

{
u−1{0} ∩

∞⋃
k=0

C (n , 2kn) 6= ∅

}
= 1. (6.12)

Because ∪∞k=0C (n , 2kn) ⊂ R+ × R this proves that (2) ⇒ (1).
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In order to complete the proof of Theorem 1.2 we assume that
∫ 1

0 λΦ(λ) dλ < ∞, and
proceed to compute the Hausdorff dimension of u−1{0}. A comparison argument, similar
to the one employed at the beginning of this proof, shows that if G is a nonrandom compact
subset of (0 ,∞)2, then a.s.,

dimH

(
u−1{0} ∩G

)
1{u−1{0}∩G 6=∅} = dimH

(
X−1{0} ∩G

)
1{X−1{0}∩G6=∅}. (6.13)

Let G = [0 , n]× [−n , n] and then let n→∞ to find that a.s.,

dimH

(
u−1{0}

)
1{u−1{0}6=∅} = dimH

(
X−1{0}

)
1{X−1{0}6=∅}. (6.14)

Because we have assumed that
∫ 1

0 λΦ(λ) dλ < ∞, the already-proven equivalence of (1)–
(3) shows that 1{u−1{0}6=∅} = 1 a.s. Therefore, Theorem 1.1 of Khoshnevisan, Shieh,
and Xiao [KSX06, Eq. (1.11)] implies the stated formula for the Hausdorff dimension of
u−1{0}.
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tions, Ecole d’Eté de Probabilités de Saint-Flour XIV, Lect. Notes in Math. 1180,
Springer-Verlag, 266–437.

28


