
IMAGES OF THE BROWNIAN SHEET

DAVAR KHOSHNEVISAN AND YIMIN XIAO

Abstract. An N-parameter Brownian sheet in Rd maps a non-random com-
pact set F in RN

+ to the random compact set B(F ) in Rd. We prove two

results on the image-set B(F ):
(1) It has positive d-dimensional Lebesgue measure if and only if F has

positive d
2
-dimensional capacity. This generalizes greatly the earlier works of

J. Hawkes (1977), J.-P. Kahane (1985a; 1985b), and one of the present au-
thors (1999).

(2) If dim
H

F > d
2
, then with probability one, we can find a finite number

of points ζ1, . . . , ζm ∈ Rd such that for any rotation matrix θ that leaves F
in RN

+ , one of the ζi’s is interior to B(θF ). In particular, B(F ) has interior-

points a.s. This verifies a conjecture of T. S. Mountford (1989).
This paper contains two novel ideas: To prove (1), we introduce and ana-

lyze a family of bridged sheets. Item (2) is proved by developing a notion of
“sectorial local-non-determinism (LND).” Both ideas may be of independent
interest.

We showcase sectorial LND further by exhibiting some arithmetic proper-
ties of standard Brownian motion; this completes the work initiated by Mount-
ford (1988).
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1. Introduction

Let B = {B(t)}t∈RN
+

denote the (N, d)-Brownian sheet. That is, B is the N -
parameter Gaussian random field with values in Rd; its mean-function is zero, and
its covariance function is given by the following:

(1.1) E [Bi(s)Bj(t)] =

{∏N
k=1 min(sk, tk), if 1 ≤ i = j ≤ d,

0, otherwise.

We have written B(t) in vector form as (B1(t), . . . , Bd(t)), as is customary.
When N = 1, B is just Brownian motion in Rd. In this case, it is well

known (Hawkes, 1977) that for any non-random compact set F ⊆ R+,

(1.2) P {λd(B(F )) > 0} > 0 if and only if Capd/2(F ) > 0.

Here, λd denotes the d-dimensional Lebesgue measure, and for all α > 0, Capα(F )
denotes the α-dimensional Bessel–Riesz capacity of F based on the α-dimensional
energy form Iα; i.e.,

(1.3) Capα(F ) =
[

inf
µ∈P(F )

Iα(µ)
]−1

, where Iα(µ) =
∫∫

µ(ds)µ(dt)
‖s− t‖α ,

and P(F ) denotes the collection of all probability measures that are supported in
F .

According to Taylor’s theorem (Khoshnevisan, 2002, Corollary 2.3.1, p. 525), for
all F ⊂ RN

+ , Capα(F ) = 0 except possibly when α < N . Therefore, when N = 1,
(1.2) has nontrivial content when, and only when, d = 1.

In order to go beyond the one-dimensional case, Kahane (1985a) proposed con-
sidering N -parameter processes (i.e., fractional Brownian motion), and devised a
Fourier-analytic argument which, in the present setting, implies the following for
the Brownian sheet:

(1.4) Capd/2(F ) > 0 =⇒ P {λd(B(F )) > 0} > 0 =⇒ Hd/2(F ) > 0.

Here, Hα denotes the α-dimensional Hausdorff measure (Kahane, 1985a, p. 131,
Remark 4). There is an obvious gap between the enveloping conditions of posi-
tive capacity and measure. In the special case that N = 2, this gap was closed
in Khoshnevisan (1999), but the problem for N > 2 has remained open. One of
the intentions of this article is to complete the existing picture by deriving the
following:

Theorem 1.1. For any choice of N and d, and for all non-random compact sets
F , the d-dimensional Lebesgue measure of B(F ) is positive with positive probability
if and only if Capd/2(F ) > 0.

We will prove also that the following is an equivalent formulation of Theorem 1.1.
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Theorem 1.2. For any choice of N and d, for all non-random compact sets F ,
and for every a ∈ Rd, P{B−1({a}) ∩ F 6= ?} > 0 if and only if Capd/2(F ) > 0.

On one hand, this and Taylor’s theorem together show that if N ≤ d
2 , then

B−1({x}) = ? almost surely for all x ∈ Rd. On the other hand, when N > d
2 ,

the codimension of B−1({x}) is almost surely d
2 (Khoshnevisan, 2002, §4.7, p. 435).

In particular, we can conclude from Theorem 4.7.1 of Khoshnevisan (2002, p. 436)
that the Hausdorff–Besicovitch dimension of B−1({x}) is a.s. N − d

2 . When d = 1,
this last assertion is due to Adler (1978; 1980; 1981). The general case 1 ≤ d < 2N
was treated by Ehm (1981).

In fact, one can go a bit farther at little extra cost. Suppose f : R+ → R+∪{∞}
is a non-increasing measurable function that is finite everywhere except possibly at
zero. We can then define the f -capacity of a Borel set F ⊆ RN

+ as

(1.5) Capf (F ) =
[

inf
µ∈P(F )

If (µ)
]−1

, where If (µ) =
∫∫

f(‖s− t‖)µ(ds)µ(dt).

After combining our Theorem 1.2 with Theorem 15.2 of Peres (1999), we immedi-
ately obtain the following extension of Theorem 5 of Hawkes (1977).

Corollary 1.3. Let f : R+ → R+ ∪ {∞} be a non-increasing measurable function
that is finite on (0,∞). Then for all a ∈ Rd,

(1.6) P
{
Capf

(
B−1({a})) > 0

}
> 0 ⇐⇒

∫ 1

0

f(t) dt
t(d/2)−N+1

<∞.

Our proof of Theorem 1.1 depends on: (i) Ideas from the potential-theory of
multiparameter processes that are nowadays considered standard; and (ii) a novel
analysis of a class of embedded bridged sheets. We write Theorem 1.1 to not only
document it in its definitive form, but to also highlight some of the features of the
said bridges. This bridge-analysis is used in our forthcoming paper with Robert
Dalang and Eulalia Nualart to solve an old open problem on the self-intersections
of Brownian sheets.

Thanks to the Frostman theorem of potential theory and Theorem 1.1, dim
H
F >

d
2 implies that B(F ) can have positive Lebesgue measure, whereas dim

H
F < d

2
implies that B(F ) almost-surely has zero Lebesgue measure. We plan to prove that
much more is true: “If dim

H
F > d

2 , then B(F ) has interior-points almost surely.”
This type of interior-point problem was first studied by Kaufman (1975) in the

case of one-dimensional Brownian motion (N = 1). In this case, Kaufman proved
that if dim

H
F > 1

2 , then B(F ) has interior-points a.s.
Kahane (1985a; 1985b) and Pitt (1978) have extended Kaufman’s result to sym-

metric stable Lévy processes and fractional Brownian motion, respectively.
Mountford (1989) has considered such interior-point problems for the Brownian

sheet, and proved that if dim
H
F > d

2 , then for almost every rotation θF of F
that is in RN

+ , B(θF ) has interior-points a.s.1 Moreover, he has conjectured that
B(F ) has interior-points a.s. (Mountford, 1989, p. 184). We verify this conjecture
by proving that the Brownian sheet has the following striking property:

Theorem 1.4. Let B denote the (N, d)-Brownian sheet, and let F ⊂ RN
+ be any

non-random Borel set that satisfies dim
H
F > d

2 . Then there a.s. exist ζ1, . . . , ζm ∈
1“Almost every rotation” holds with respect to the Haar measure on rotation matrices.
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Rd such that for every rotation matrix θ that leaves θF in RN
+ we can find 1 ≤ j ≤

m such that ζj is interior to B(θF ). In particular, let θ denote the identity to see
that B(F ) has interior-points a.s.

Although fractional Brownian motion is locally non-deterministic, the Brown-
ian sheet is not. This remark accounts for the differences between the methods
of Pitt (1978) and Mountford (1989). As part of our arguments, we prove that the
Brownian sheet satisfies a type of “sectorial local-non-determinism” (Proposition
4.2); this property leads to a unification of many of the methods developed for the
fractional Brownian motion and those for the Brownian sheet. We will show this,
anecdotally, by describing an improvement to older results of Mountford (1988) on
self-intersections of images of ordinary Brownian motion.

The rest of this paper is organized as follows. Sections 2 and 3 reviews briefly
the order structure of RN and the commuting property of the filtrations associated
to the Brownian sheet. Sections 4 and 5 describe the correlation structure of the
Brownian sheet, sectorial local non-determinism, and an a class of bridged sheets.
Theorems 1.1 and 1.2 are proved in Sections 6 and 7, respectively. In Section 8, we
prove Theorem 1.4. We make further remarks on the images of Brownian motion,
and more general Gaussian random fields, in Sections 9 and 10.

Unspecified positive and finite constants are denoted by A. They are usually
numbered by the equation in which they appear.

2. The Order Structure of RN

We need to introduce a good deal of notation in order to exploit the various
Markov properties of B “in various directions.” This is the sole task of the present
section.

2.1. The Partial Orders. There are 2N natural partial orders on RN . There is
a convenient way to represent them all. Define,

(2.1) ΠN = The power set of {1, . . . , N} .
Then, each π ∈ ΠN can be identified with the partial order 4π on RN as follows:
For all a, b ∈ RN ,

(2.2) a 4π b iff for all i = 1, . . . , N,

{
ai ≤ bi, if i ∈ π,
ai ≥ bi, if i 6∈ π.

We always write 4 in place of the more cumbersome 4{1,...,N}.
An important feature of the totality {4π}π∈ΠN of these partial orders is that

together they order RN . By this we mean that for all a, b ∈ RN , there exists
π = π(a, b) ∈ ΠN such that a 4π b. [Simply, let π(a, b) = {1 ≤ i ≤ N : ai ≤ bi}.]
2.2. The PO-Minimum. Each partial order 4π naturally yields a π-minimum
operation fπ which we describe next.

For each point b ∈ RN , define Sπb to be its “shadow in the direction π”; i.e.,

(2.3) Sπb =
{
a ∈ RN : a 4π b

}
.

Then, given a, b ∈ RN and a partial order π ∈ ΠN , we define afπ b to be the unique
point whose shadow in the direction π is precisely Sπa ∩ Sπb . Let us emphasize the
fact that

(2.4) c 4π a , c 4π b =⇒ c 4π (a fπ b).
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It is easy to prove that such a point always exists.
Each partial order π ∈ ΠN on RN induces N linear orders 4(π,1), · · · ,4(π,N) on

R via the following:

(2.5) 4(π,`)=

{
≤, if ` ∈ π,
≥, if ` 6∈ π,

∀` = 1, . . . , N.

Of course, one obtains only two distinct partial orders this way: ≤ and ≥. However,
in what is to come, the preceding notation will seemlessly do most of the book-
keeping for us.

3. The Associated Filtrations

Consider the σ-algebras

(3.1) Fπ(t) = σ {B(s)}s4πt
, ∀t ∈ RN

+ , π ∈ ΠN .

Informally speaking, knowing Fπ(t) amounts to knowing the portion of the Brow-
nian sheet B that corresponds to the values of s in RN

+ that are less than t in the
partial order π.

It is not difficult to see that for each partial order π ∈ ΠN , the collection Fπ =
{Fπ(t)}t∈RN

+
is a filtration indexed by (RN

+ ,4π); i.e.,

(3.2) s 4π t =⇒ Fπ(s) ⊆ Fπ(t).

For each partial order π ∈ ΠN , we also define N one-parameter families of σ-
algebras, F 1

π , . . . ,F
N
π , as follows:

(3.3) F
`
π(r) = σ (B(s); s` 4(π,`) r) , ∀r ∈ R+.

Note that F `
π is a filtration of σ-algebras indexed by (R+,4(π,`)). Moreover, for all

t ∈ RN
+ , Fπ(t) = ∩N`=1F

`
π(t`).

Following Khoshnevisan (2002, Chapter 1), we say that Fπ is commuting, if for
all times t ∈ RN

+ , the σ-algebrasF 1
π (t1), . . . ,FN

π (tN ) are conditionally independent
given Fπ(t). This is a slightly more general “F4-type” property than the one
of Cairoli and Walsh (1977).

Proposition 3.1. For every π ∈ ΠN , the filtration Fπ is commuting in the partial
order π; i.e., for all bounded random variables Z,

(3.4) E [Z | Fπ(sfπ t)] = E
(
E [Z | Fπ(s)]

∣∣∣Fπ(t)
)
, a.s.

Thus, commuting filtrations refers to the commutation of the conditional expec-
tation operators.

Proof. Define, for all π ∈ ΠN and t ∈ (0,∞)N , define I (t) ∈ (0,∞)N coordinate-
wise as follows:

(3.5) Ij(t) =

{
tj , if j ∈ π,
1/tj, if j 6∈ π.

One can think of the map I as “inversion off of π.”
Now consider the following stochastic process,

(3.6) Wπ(t) =
B (I (t))∏
j 6∈π Ij(t)

, ∀t ∈ RN
+ .
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This is a Brownian sheet, as can be checked by computing covariances. Moreover,

(3.7) σ ({Wπ(s); s 4 t}) = σ ({B (I (s)) ; s 4 t}) = Fπ(t).

Because the filtration, in the partial order 4, of Brownian sheet is commuting (Khosh-
nevisan, 2002, Theorem 2.4.1, p. 237), this shows that Fπ is also commuting. ˜

The preceding leads us to the following useful representation.

Corollary 3.2. For every π ∈ ΠN , j = 1, . . . , N , and r ∈ R+, define the con-
ditional expectation operator, E j,r

π
Y = E[Y |F j

π
(r)] (Y ∈ L1(P)). Then, for all

t ∈ RN
+ and for all P-intergable random variables Z,

(3.8) E [Z |Fπ(t) ] = E 1,t′1
π

· · ·EN,t′N
π

Z,

where (t′1, . . . , t
′
N ) denotes an arbitrary non-random permutation of t = (t1, . . . , tN ).

Thus,

(3.9) E

[
sup
t∈QN

+

(E [Z |Fπ(t) ])2
]
≤ 4NE

[
Z2
]
.

Proof. To prove the first display, we simply follow along the proof of Theorem 3.6.1
of Khoshnevisan (2002, p. 38), but everywhere replace 4 and f by 4π and fπ,
respectively. For the second portion, we apply Doob’s strong (p, p)-inequality for
ordinary martingales N times in succession. For example, see the proof of Cairoli’s
strong (p, p)-inequality (Khoshnevisan, 2002, Theorem 2.3.1, p. 19), but replace 4
everywhere by 4π. ˜

4. Sectorial Local-Nondeterminism

In this and the next section we state and prove some results on the correla-
tion structure of the Brownian sheet B = {B(t)}t∈RN

+
in Rd. In particular, we

prove that B is sectorially locally non-deterministic, and that there is a natural
class of bridged sheets associated to B. These properties will play an important
role in this paper, as well as in studying the self-intersections of the Brownian sheet.

Assumption Throughout Sections 4 and 5, we assume that d = 1.

The following lemma is well known; cf. Lemmas 8.9.1 and 8.9.2 of Adler (1981).
For the sake of completeness, we describe a simpler proof.

Lemma 4.1. Choose and fix two numbers 0 < a < b <∞. If u, v ∈ [a, b]N , then

(4.1)
aN−1

√
N

‖u− v‖ ≤ E
[
(B(u)−B(v))2

]
≤ NbN−1 ‖u− v‖ .

Proof. Let σ(s, t) =
∏N
j=1 sj −

∏N
j=1 tj , and define sf t to be the vector whose ith

coordinate is si ∧ ti. Then clearly,

(4.2) E
[
(B(u)−B(v))2

]
= σ (u, uf v) + σ (v, u f v) .

Clearly,

(4.3) aN−1 max
1≤j≤N

(uj − uj ∧ vj) ≤ σ (u, uf v) ≤ NbN−1 max
1≤j≤N

(uj − uj ∧ vj).
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A similar expression holds for σ(v, uf v), but everywhere replace uj − uj ∧ vj with
vj − uj ∧ vj . Add the two series of inequalities, and use the fact that uj + vj −
2(uj ∧ vj) = |uj − vj |, to obtain

(4.4) aN−1 max
1≤j≤N

|uj − vj | ≤ E
[
(B(u)−B(v))2

]
≤ NbN−1 max

1≤j≤N
|uj − vj |.

The lemma follows from this and the elementary fact that for all N -vectors x,
N−1/2‖x‖ ≤ max1≤j≤N |xj | ≤ ‖x‖. ˜

The Brownian sheet is not locally non-deterministic (LND) with respect to the
incremental variance E

[
(B(u)−B(v))2

]
. However, it satisfies the following “secto-

rial” type of local non-determinism; cf. Khoshnevisan (2002, Lemma 3.3.2, p. 486)
for a prefatory version.

Proposition 4.2 (Sectorial LND). For all positive real number a, integers n ≥ 1,
and all u, v, t1, . . . , tn ∈ [a,∞)N ,

Var
(
B(u) | B(t1), . . . , B(tn)

) ≥ aN−1

2

N∑
k=1

min
1≤j≤n

∣∣∣uk − tjk

∣∣∣ ,(4.5)

Var
(
B(u)−B(v) | B(t1), . . . , B(tn)

)
≥ aN−1

2

N∑
k=1

min
(

min
1≤j≤n

∣∣∣uk − tjk

∣∣∣+ min
1≤j≤n

∣∣∣vk − tjk

∣∣∣ , |uk − vk|
)
.

(4.6)

The proof is divided in two distinct steps. The first is the analysis of the N = 1
case; we present this portion next.

Lemma 4.3. Let {X(t)}t≥0 denote standard Brownian motion on the line. Then
for all times s, t, s1, . . . , sm ≥ 0,

Var (X(s) | X ) ≥ 1
2

min
1≤j≤m

|s− sj | ,(4.7)

Var (X(t)−X(s) | X ) ≥ 1
2

min
(

min
1≤j≤m

|s− sj |+ min
1≤j≤m

|t− sj | , |t− s|
)
,

(4.8)

where X denotes the σ-algebra generated by (X(s1), . . . , X(sm)).

Proof. Equation (4.7) follows from (4.8). Indeed, let t = sj in (4.8), and then
optimize over all j to obtain (4.7).

Equation (4.8) is proved by analyzing two different cases. Throughout, we as-
sume, without any loss of generality, that s < t.

Case 1: The first case is where some sj falls between s and t. Recall that if F
and F ′ are linear subspaces (equivalently, σ-algebras) in the Gauss space L2(P),
then for every Gaussian variate G ∈ L2(P),

(4.9) F ⊂ F ′ =⇒ Var(G |F ) ≥ Var(G |F ′).

Moreover, both conditional variances are non-random. This elementary fact, used
in conjunction with the Markov property, allows us to assume without any further
loss in generality that m = 4 and s1 < s < s2 < s3 < t < s4.

Now define ξ1 = X(s1), ξ2 = X(s) −X(s1), ξ3 = X(s2) −X(s), ξ4 = X(s3) −
X(s2), ξ5 = X(t)−X(s3), and ξ6 = X(s4)−X(t). These are independent Gaussian
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variables, andX is the linear subspace of L2(P) that is spanned by ξ1, (ξ1+ξ2+ξ3),
(ξ1 + ξ2 + ξ3 + ξ4), and (ξ1 + ξ2 + ξ3 + ξ4 + ξ5 + ξ6). Therefore, by the independence
of the ξj ’s,

Var (X(t)−X(s) | X )

= Var (ξ3 + ξ5 | ξ2 + ξ3, ξ4, ξ5 + ξ6)

= inf
α,β∈R

E
[
(ξ3 + ξ5 − α(ξ2 + ξ3)− β(ξ5 + ξ6))

2
]

=
(s2 − s)(s− s1)

s2 − s1
+

(s4 − t)(t− s3)
s4 − s3

,

(4.10)

whence (4.8) in the present case.
Case 2: The remaining case is where no sj falls in (s, t). In this case, the

Markov property shows that we can assume, without loss of generality, that m = 2
and s1 < s < t < s2. A direct calculation reveals that in this case,

(4.11) Var (X(t)−X(s) | X ) =
(t− s)(s2 − s1 − t+ s)

s2 − s1
,

from which (4.8) follows. ˜

Proof of Proposition 4.2. Let 〈a〉 = (a, . . . , a) designate the lower-left corner of
[a,∞)N , and for all r ≥ 0 and 1 ≤ k ≤ N define

(4.12) Xk(r) =
B(

k − 1 terms︷ ︸︸ ︷
a, . . . , a , a+ r, a, . . . , a)−B(〈a〉)

a(N−1)/2
.

The process {Xk(r)}r≥0 is a standard Brownian motion on the line.
For all t ∈ [a,∞)N , we decompose the rectangle [0, t] into the following disjoint

union:

(4.13) [0, t] = [0, a]N ∪
N⋃
j=1

D(tj) ∪∆(a, t),

where D(tj) = {s ∈ [0, 1]N : 0 ≤ si ≤ a if i 6= j, a < sj ≤ tj} and ∆(a, t) can be
written as a union of 2N−N−1 sub-rectangles of [0, t]. Then we have the following
decomposition: For all t ∈ [a,∞)N ,

(4.14) B(t) = B(〈a〉) + a(N−1)/2
N∑
k=1

Xk(tk − a) +B′(a, t).

Here, B′(a, t) =
∫
∆(a,t)

dW (s) and W is an N -parameter Brownian sheet in R inde-
pendent of B, and all the processes on the right-hand side of (4.14) are independent
from one another.
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Thus,

Var
(
B(u) | B(t1), · · · , B(tn)

)
= inf
α∈Rn

E


B(u)−

n∑
j=1

αjB(tj)

2


≥ aN−1 inf
α∈Rn

N∑
k=1

Var

Xk(uk − a)−
n∑
j=1

αjXk(t
j
k − a)


≥ aN−1

N∑
k=1

Var
(
Xk(uk − a) | Xk(t1k − a), . . . , Xk(tnk − a)

)
.

(4.15)

Therefore, (4.5) follows from (4.7).
A simple modification of the preceding argument shows that (4.6) follows from

(4.8); we omit the details. ˜

We conclude this section with the following result.

Lemma 4.4. Let n ≥ 1 be a fixed integer. Then for all distinct t1, . . . , tn ∈ (0,∞)N ,
the random variables B(t1), . . . , B(tn) are linearly independent.

Proof. When all the coordinates of t1, . . . , tn are distinct, this follows from Propo-
sition 4.2. In general, it suffices to show that for all constants α1, . . . , αn ∈ R, if
Var(

∑n
j=1 αjB(tj)) = 0, then α1 = · · · = αn = 0. The said variance is equal to∫

RN
+

(
∑n

j=1 αj1[0, tj ](s))2 ds (Khoshnevisan, 2002, p. 142), which is assumed to be

zero. Thus,
∑n
j=1 αj1[0,tj ](s) = 0 for a.e. s ∈ RN

+ , whence α1 = · · · = αn = 0. ˜

5. Analysis of Bridges

For all s ∈ RN
+ we define the process {Bs(t)}t∈RN

+
as

(5.1) Bs(t) = B(t)−
N∏
j=1

(
sj ∧ tj
sj

)
B(s), ∀t ∈ RN

+ .

In the case that s has some coordinates that are zero we define 0 ÷ 0 = 1 to
ensure that the preceding is well-defined. Clearly, Bs(s) = 0 and B0 = B. Thus,
the process Bs is a realization of the sheet B “conditioned to be zero at time s.”
Alternatively, Bs(t) is the conditional least-squares estimator of B(t) given B(s);
i.e.,

(5.2) Bs(t) = B(t)− E [B(t) | B(s)] .

Hence, for all fixed s, t ∈ RN
+ , Bs(t) is independent of B(s). It turns out that much

more is true, viz.,

Lemma 5.1. Fix a partial order π ∈ ΠN and a point s ∈ RN
+ . Then,

(5.3) {Bs(t)}t<πs
is independent of Fπ(s).
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Proof. Because Bs is a Gaussian process it suffices to check that if t <π s <π u,
then E[Bs(t)B(u)] = 0. Now

E [B(t)B(u)] =
∏
j∈π

uj ·
∏
j 6∈π

tj ,

E [B(s)B(u)] =
∏
j∈π

uj ·
∏
j 6∈π

sj.
(5.4)

The lemma follows because
∏N
j=1(sj ∧ tj) =

∏
j∈π sj ·

∏
j 6∈π tj . ˜

Next we prove that the local dynamics of the bridge {Bs(t)}t<πs are similar to
those of the sheet B; compare to Lemma 4.1.

Lemma 5.2. For each a > 0, all partial orders π ∈ ΠN , and every s, u and
v ∈ [a, b]N that satisfy s 4π u, v,

(5.5)
aN−1

2N
‖u− v‖ ≤ E

[
(Bs(u)−Bs(v))

2
]
≤ NbN−1‖u− v‖.

Proof. Thanks to (5.2),

(5.6) E
[
(Bs(u)−Bs(v))

2
]

= Var (B(u)−B(v) | B(s)) .

By (4.9), this is bounded above by E[(B(u)−B(v))2], which is at most N bN−1‖u−
v‖; cf. Lemma 4.1. This proves the upper bound.

For the lower bound, we apply (4.6) in (5.6) and obtain

E
[
(Bs(u)−Bs(v))

2
]
≥ aN−1

2
√
N

N∑
k=1

min (|uk − sk|+ |vk − sk| , |uk − vk|)

=
aN−1

2
√
N

N∑
k=1

|uk − vk|,
(5.7)

owing to the triangle inequality. The lower bound follows. ˜

Lemma 5.3. Fix two numbers 0 < a < b <∞. Then there exists a finite constant
A5.8 > 1, which depends only on (N, a, b), such that for all s, t ∈ [a, b]N and all
ε > 0,

(5.8) A−1
5.8 exp

(
− ε2

A5.8 ‖s− t‖
)
· ε

‖s− t‖1/2
≤ P {|Bs(t)| ≤ ε} ≤ A5.8

ε

‖s− t‖1/2
.

Proof. We derive the upper bound first.

P {|Bs(t)| ≤ ε} =
1√

2πVarBs(t)

∫ ε

−ε
exp

(
− z2

VarBs(t)

)
dz

≤ ε

√
2

πVarBs(t)
.

(5.9)

For the s and t in question we can find a partial order π ∈ ΠN such that s 4π t.
Therefore, thanks to Lemmas 4.1 and 5.2, we have,

(5.10)
aN−1

2N
‖s− t‖ ≤ VarBs(t) ≤ bN−1‖s− t‖.

The upper bound follows. The lower bound is derived similarly. ˜
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We end with a final elementary lemma on Gaussian ball-estimates:

Lemma 5.4. Suppose Y is a centered one-dimensional Gaussian random variable
with variance σ2. Let α and β be two fixed positive numbers. Then, for all x ∈
[−ασ,+ασ],

(5.11) P{|Y − x| ≤ ε} ≥
e

− 1
2α

2−αβP{|Y | ≤ ε}, if ε ≤ βσ,√
2
π
βe−σ

2(α+β)2/2, if ε > βσ.

Proof. Evidently,

P{|Y − x| ≤ ε} =
∫ ε

−ε
e−(z+x)2/(2σ2) dz

σ
√

2π

≥ e−
1
2α

2−αε/σ
∫ ε

−ε
e−z

2/(2σ2) dz

σ
√

2π
.

(5.12)

When ε ≤ βσ, the result follows immediately; when ε > βσ, use
∫ ε
−ε ≥

∫ βσ
−βσ in the

first line of (5.12), and then change variables [w = z/σ] to deduce the lemma. ˜

6. Proof of Theorem 1.1

6.1. First Part. We can first consider Fn = F ∩ [1/n, n]N , prove the theorem with
F replaced by Fn, and then let n ↑ ∞. This shows that we might as well assume
the following:

(6.1) F ⊆ [a, b]N , where 0 < a < b <∞.

For all x ∈ Rd, ε > 0, and µ ∈P(F ), define

(6.2) lεµ(x) =
∫

1{|B(s)−x|≤ε}
(2ε)d

µ(ds).

Also define pt to be the probability density function of B(t); i.e.,

(6.3) pt(x) =
e−‖x‖

2/(2
QN

j=1 tj)

(2π
∏N
j=1 tj)d/2

, ∀x ∈ Rd, t ∈ RN
+ .

By Fatou’s lemma,

E
[
lεµ(x)

]
= (2ε)−d

∫
F

∫
{|y−x|≤ε}

ps(y) dy µ(ds)

≥ (1 + o(1))
∫
ps(x)µ(ds) (ε→ 0).

(6.4)

Thanks to (6.1), we can find a positive and finite constant A6.5 = A6.5(N, d, a, b),
such that for all ε ∈ (0, 1), µ ∈P(F ), and x ∈ Rd,

(6.5) E
[
lεµ(x)

] ≥ A6.5 exp
(
− ‖x‖2

2A6.5

)
.

Lemma 6.1. Given (6.1) there exists a positive finite constant A6.6 = A6.6(d,N, a)
such that for all x ∈ Rd, s, t ∈ RN

+ , and ε > 0,

(6.6) P {|B(s)− x| ≤ ε , |B(t)− x| ≤ ε} ≤ A6.6

(
(2ε)2

‖t− s‖1/2
∧ 1
)d

.



12 KHOSHNEVISAN AND XIAO

Consequently,

(6.7) E
[(
Lεµ(x)

)2] ≤ A6.6 Id/2(µ).

Proof. We will derive (6.6); (6.7) follows from (6.6) and a Fubini–Tonelli argument.
We also note that because of the independence of the coordinates, it suffices to
prove (6.6) when d = 1.

Define

(6.8) Cs,t =
N∏
j=1

(
sj ∧ tj
sj

)
.

Note that 0 ≤ Cs,t ≤ 1. Then, recall (5.1) and Lemma 5.1 to deduce that

P {|B(s)− x| ≤ ε , |B(t)− x| ≤ ε}
= P {|B(s)− x| ≤ ε , |Bs(t) + Cs,tB(s)− x| ≤ ε}
≤ P {|B(s)− x| ≤ ε} · sup

z∈R
P {|Bs(t) + z| ≤ ε} .

(6.9)

Gaussian laws are unimodal, and this means that the supremum is achieved at
z = 0; i.e.,

(6.10) P {|B(s)− x| ≤ ε , |B(t)− x| ≤ ε} ≤ P {|B(s)− x| ≤ ε} · P {|Bs(t)| ≤ ε} .
Thanks to (6.3) and (6.1),

(6.11) P{|B(s)− x| ≤ ε} =
∫ x+ε

x−ε
ps(y) dy ≤ 2εps(0) ≤ ε

√
2

πaN
.

On the other hand, by Lemma 5.3, P{|Bs(t)| ≤ ε} ≤ A5.8ε‖s− t‖−1/2, whence the
lemma. ˜

We are ready to derive half of Theorem 1.1.

Proof of Theorem 1.1: First Half. Thanks to (6.5), Lemma 6.1, and the Paley–
Zygmund inequality [see, e.g., Kahane (Kahane, 1985a, p. 8)], for all µ ∈ P(F )
and all ε ∈ (0, 1),

P {dist (x,B(F )) < ε} ≥ P
{
lεµ(x) > 0

} ≥ (
E[lεµ(x)]

)2
E
[(
lεµ(x)

)2]
≥ A6.6 ·A6.5

Id/2(µ)
exp

(
−‖x‖

2

A6.5

)
.

(6.12)

The constants on the right-hand side do not depend on ε ∈ (0, 1) or µ ∈P(F ). Let
ε→ 0 and optimize over µ ∈P(F ) to deduce from the path-continuity ofB that the
probability of the event {x ∈ B(F )} is at least A6.6A6.5 exp(−‖x‖2/A6.5)Capd/2(F ).
Integrate this bound to deduce that whenever Capd/2(F ) > 0, the expected value
of λd(B(F )) is positive. ˜

Remark 6.2. As we mentioned in the Introduction, we can also use the Fourier
analytic method of J.-P. Kahane (1985a; 1985b) to prove that Capd/2(F ) > 0
implies λd(B(F )) > 0 a.s. The constructive proof in this paper makes it possible
to control the value of E{λd(B(F ))} in terms of the capacity Capd/2(F ).
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6.2. Second Part: Step 1. We divide the proof into three steps. In this first step,
we derive the main technical inequality which is equation (6.19) below. Throughout
this portion of the argument, µ is an arbitrary probability measure on the fixed
compact set F ⊂ RN

+ , and x ∈ Rd is some fixed spatial point. We also choose and
fix a partial order π ∈ ΠN throughout.

Define Cs,t by (6.8). Then,

E
[
lεµ(x)

∣∣ Fπ(s)
] ≥ ∫

t<πs

P {|B(t)− x| ≤ ε | Fπ(s)}
(2ε)d

µ(dt)

=
∫
t<πs

P {|Bs(t) + Cs,tB(s)− x| ≤ ε | Fπ(s)}
(2ε)d

µ(dt).
(6.13)

Now, as events, we have the obvious inclusion,{
|B(s)− x| < ε

2

}
∩
{
|Bs(t)− (1− Cs,t)x| ≤ ε

2

}
⊆ {|Bs(t) + Cs,tB(s)− x| ≤ ε} .

(6.14)

The preceding two displays together yield the following bound: Almost surely on
the event {|B(s)− x| < ε/2},

(6.15) E
[
lεµ(x)

∣∣ Fπ(s)
] ≥ ∫

t<πs

P
{|Bs(t)− (1− Cs,t)x| ≤ ε

2

}
(2ε)d

µ(dt).

[The conditioning can be removed thanks to Lemma 5.1.]
Next, for all s 4π t, (6.8) implies

1− Cs,t =
∏
j 6∈π

s−1
j ·

∏
j 6∈π

sj −
∏
j 6∈π

tj


=
∏
j 6∈π

s−1
j · E [(B1(u)−B1(v))B1(u)] ,

(6.16)

where B1 denotes the first coordinate process of the Brownian sheet B, and u and
v are defined as follows: For all j ∈ π, uj = vj = 1 and for all j 6∈ π, uj = sj and
vj = tj. By Lemma 4.1, the Cauchy–Bunyakovsky–Schwarz inequality, and (6.1),

1− Cs,t ≤
∏
j 6∈π

s−1
j ·

√
E
[
(B1(u)−B1(v))

2
]
· E
[
(B1(u))

2
]

≤
∏
j 6∈π

s−1
j ·

√
N b(N−1)/2‖u− v‖1/2

N∏
j=1

u
1/2
j

≤
√
N b(N−1)/2‖s− t‖1/2.

(6.17)

In particular, we can find a positive and finite constant A6.18 = A6.18(a, b, d,N)
such that for all s, t ∈ [a, b]N , 1 − Cs,t ≤ A6.18‖s− t‖1/2. Plug this into (6.15) to
obtain the following: Almost surely on the event {|B(s)− x| < ε/2},

E
[
lεµ(x)

∣∣ Fπ(s)
]

≥ (2ε)−d
∫
t<πs

inf
|z|≤A6.18‖s−t‖1/2·|x|

P
{
|Bs(t)− z| < ε

2

}
µ(dt).

(6.18)
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Hold x ∈ Rd fixed. We can deduce from Lemmas 5.4 and 5.3, and equation (5.10),
that there exists a finite constant A6.19 = A6.19(a, b, d,N, x) ∈ (0, 1) such that
whenever ε ∈ (0, A6.19),

E
[
lεµ(x)

∣∣ Fπ(s)
]

≥ A6.19

∫
t<πs

[
1

max
(
ε , ‖t− s‖1/2

)]d µ(dt) · 1{|B(s)−x|<ε/2}.
(6.19)

6.3. Step 2. For the second portion of our proof, let us assume that F has a
nonempty interior, and of course (6.1) is enforced as well.

We will also make use of the fact that F has a countable dense subset. For
simplicity, we assume it is a subset of the rational numbers QN

+ . By continuity, the
distance between x and B(F ) is less than ε if and only if there exists a rational time-
point t ∈ QN

+ ∩F such that dist(x,B(t)) < ε. Moreover, the absolute-continuity of
the distribution of B(s)—for a given rational time-point s—tells us that the latter
happens with positive probability. But it can happen also that with some positive
probability dist(x,B(t)) ≥ ε.

In order to properly describe this last assertion, we let ∂ 6∈ RN
+ denote a

cemetery-point (in time), and define QN
∂ = QN

+ ∪ {∂}. Now enumerate all ra-
tional time-points to deduce the existence of a (QN

∂ ∩ F )-valued random variable
Tε such that:

(1) Tε = ∂ if and only if dist(x,B(F )) ≥ ε;
(2) On the event {Tε 6= ∂}, Tε ∈ F (a.s.), and dist(x,B(Tε)) < ε.

Because (6.19) holds almost surely simultaneously for all rational time-points s and
all partial orders π ∈ ΠN , it follows that sups∈QN

+
|E[lεµ(x) |Fπ(s)]|2 is bounded

below by

(6.20)

A6.19

∫
t<πs

[
1

max
(
ε , ‖Tε/2 − t‖1/2

)]d µ(dt)

2

· 1{Tε/2 6=∂}.

So far, everything works for an arbitrary probability measure µ on F . Now we
describe a special choice for µ. Namely, we apply the preceding with µ replaced by
µε ∈P(F ), where

(6.21) µε(G) = P
{
Tε/2 ∈ G

∣∣ Tε/2 6= ∂
}
, ∀ Borel sets G ⊆ RN

+ .
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Integrate (6.20) [dP] to conclude that

E

(
sup
s∈QN

+

∣∣E [ lεµε
(x)
∣∣ Fπ(s)

]∣∣2)

≥ E


A6.19

∫
t<πs

[
1

max
(
ε , ‖Tε/2 − t‖1/2

)]d µε(dt)
2

· 1{Tε/2 6=∂}


= A2

6.19

∫ (∫
t<πs

[
1

‖s− t‖1/2
∧ 1
ε

]d
µε(dt)

)2

µε(ds) · P{Tε/2 6= ∂}

≥ A2
6.19

(∫∫
t<πs

[
1

‖s− t‖1/2
∧ 1
ε

]d
µε(dt)µε(ds)

)2

· P{Tε/2 6= ∂}

= A2
6.19Q

2
ε,π · P{Tε/2 6= ∂}.

(6.22)

[In the fourth line, we have appealed to the Cauchy–Bunyakovsky–Schwarz inequal-
ity.] On the other hand,

E

(
sup
s∈QN

+

∣∣E [ lεµε
(x)
∣∣ Fπ(s)

]∣∣2)

≤ 4N sup
s∈QN

+

E
(∣∣E [ lεµε

(x)
∣∣ Fπ(s)

]∣∣2)
= 4NE

[(
lεµε

(x)
)2]

≤ A6.23

∫∫ [
1

‖s− t‖1/2
∧ 1
ε

]d
µε(dt)µε(ds)

= A6.23Qε.

(6.23)

Brief justification: The first line follows from Corollary 3.2; and the third line follows
from (6.6) and the Fubini–Tonelli theorem. We reemphasize that the constants
A6.19 and A6.23 do not depend on ε or π. Add the preceding over all π ∈ ΠN to
obtain

2NA6.23Qε ≥ A2
6.19

∑
π∈ΠN

Q
2
ε,π · P{Tε/2 6= ∂}

≥ 21−NA2
6.19

( ∑
π∈ΠN

Qε,π

)2

· P{Tε/2 6= ∂}

≥ 21−NA2
6.19Q

2
ε · P{Tε/2 6= ∂}.

(6.24)

Solve for the probability, using the fact that Qε is strictly positive, to obtain

(6.25) P {dist(x,B(F )) < ε/2} ≤ 22N−1A6.23

A2
6.19

∫∫ [
1

‖s− t‖1/2
∧ 1
ε

]d
µε(dt)µε(ds)

Now, {µε}ε∈(0,1) is a collection of probability measures on the compact set F ; let
µ0 denote any (weak) limit-measure. Then, µ0 is also a probability measure on F ,
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and by the Fatou lemma and the path-continuity of B,

(6.26) P {x ∈ B(F )} ≤ 22N−1A6.23

A2
6.19Id/2(µ0)

,

and this is valid even if µ0 has infinite d
2 -dimensional energy as long as we interpret

1÷∞ as zero.

6.4. Step 3. If F has an interior, then (6.26) provides us with a hitting estimate;
we note once more that A6.19 and A6.23 of the latter equation depend only on
(d, a, b,N, x). For a general compact set F ⊆ [a, b]N , and given η ∈ (0, 1), let F η

denote the closed η-enlargement of F . Equation (6.26) provides us with a positive
finite constant A∗ = A∗(a, b, d,N, x) and a probability measure µη, on F η, such
that P{x ∈ B(F η)} ≤ A∗/Id/2(µη). By the Fatou lemma and weak compactness,
we can find a probability measure µ∗ on F such that lim infη→0 Id/2(µη) ≥ Id/2(µ∗).
Because A∗ does not depend on η, path-continuity of B shows that P{x ∈ B(F )} ≤
A∗/Id/2(µ∗) ≤ A∗Capd/2(F ). In particular, if F has zero d

2 -dimensional capacity,
then P{x ∈ B(F )} = 0 for all x. A final appeal to the Fubini–Tonelli theorem
demonstrates that in this case, the expectation of λd(B(F )) is zero. This completes
our proof.

7. Proof of Theorem 1.2

Our proof of Theorem 1.1 contains the proof of Theorem 1.2; cf. (6.12) and
(6.26). However, for the sake of future use we prove the following more general
result. It extends some results of Kahane (1972; 1985b) on stable Lévy processes.

Proposition 7.1. Let B = {B(t)}t∈RN
+

denote the (N, d) Brownian sheet. Let
E ⊂ Rd and F ⊂ (0,∞)N be fixed Borel sets. Then the following are equivalent:

(1) With positive probability, F ∩B−1(E) 6= ?.
(2) With positive probability, E ∩B(F ) 6= ?.
(3) With positive probability, λd(E 	B(F )) > 0.

Proof. Items (1) and (2) are manifestly equivalent. To prove (2) ⇔ (3), we note
that (2) is equivalent to the following:

(7.1) ∃δ > 0 such that P
{
E ∩B

(
F ∩ (δ,∞)N

)
6= ?

}
> 0.

Hence, without loss of generality, we can assume that F ⊂ (δ,∞)N for some δ > 0.
Fix a τ ∈ (0, δ)N so that τ 4 t for all t ∈ F . Define the random field Bτ =
{Bτ (t)}t∈RN

+
by

(7.2) Bτ (t) = B(τ + t)−B(τ), ∀t ∈ RN
+ .

Observe that

(7.3) E ∩B(F ) = ? ⇐⇒ B(τ) /∈ E 	Bτ (F − τ).

Because B(τ) is independent of the random Borel set E 	 Bτ (F − τ) and the
distribution of B(τ) is equivalent to λd, we have

(7.4) B(τ) /∈ E 	Bτ (F − τ), a.s. ⇐⇒ λd (E 	Bτ (F − τ)) = 0, a.s.
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Note that Bτ (F − τ) = B(F ) 	 {B(τ)}, so that the translation-invariance of the
Lebesgue measure, (7.3), and (7.4) together imply that

(7.5) E ∩B(F ) = ?, a.s. ⇐⇒ λd (E 	B(F )) = 0, a.s.

This proves the equivalence of (2) and (3), whence the proposition. ˜

8. Proof of Theorem 1.4

Our proof of Theorem 1.4 relies on developing moment-estimates for the local
times of the Brownian sheet on F , as well as a Fourier-analytic argument. Our argu-
ment is closely-related to the methods of Kaufman (1975), Kahane (1985a), Mount-
ford (1989), and Xiao (1997).

8.1. First Reduction. Without loss of generality, we can [and will] assume that
F is compact. Otherwise, we can consider a compact subset F ′ ⊆ F such that
dim

H
F ′ > d

2 ; see Falconer (1990, Theorem 4.10). Because B(F ′) ⊆ B(F ), this
proves that there is no harm in assuming that (6.1) holds for some 0 < a < b. This
compactness assumption on F is in force throughout this section.

Because we have assumed that dim
H
F > d

2 , we can choose a γ ∈ (0, 1) such
that

(8.1) dim
H
F >

γ + d

2
.

Then by Frostman’s lemma, there exists a probability measure µ on F such that

(8.2) A8.2 = sup
s∈RN

∫
µ(dt)

‖s− t‖(γ+d)/2
<∞.

See Kahane (1985a, p. 130) or Khoshnevisan (2002, p. 517).

8.2. Second Reduction. Fix some c > 0 and define

(8.3) F` = {t = (t1, . . . , tN ) ∈ F : t` = c} ` = 1, . . . , N.

Suppose there exists ` ∈ {1, . . . , N} such that µ(F`) > 0, where µ is the measure
that satisfies (8.2). By Frostman’s lemma, the Hausdorff dimension F` strictly
greater than (d/2). Identify F` with a set in RN−1

+ (ignore the `th coordinate), and
denote the set in RN−1

+ by F ′
` . The preceding development, and Frostman’s lemma,

together prove that dim
H

(F ′
`) > (d/2). It then suffices to prove that B̃(F ′

`) has an
interior point, where B̃ is (N − 1)-parameter Brownian sheet in Rd. Therefore, we
may assume—without loss of generality—that the probability measure µ of (8.2)
has the following property: For all c > 0 and ` = 1, . . . , N ,

(8.4) µ {t = (t1, . . . , tN ) ∈ F : t` = c} = 0.

Now consider the push-forward µ ◦ B−1 of µ by B. If µ ◦ B−1 � λd, then B
is said to have a local time on F . The local time lµ(x) is defined as the Radon–
Nikodým derivative dµ ◦ B−1/dλd at x ∈ Rd. Another way of writing this is this:
If f : Rd → R+ is Borel measurable, then with probability one,

(8.5)
∫
F

f(B(s))µ(ds) =
∫
Rd

f(x)lµ(x) dx.

It is well known that (8.2) implies that lµ is in L2(λd) almost surely; cf. Geman
and Horowitz (1980, Theorem 22.1) or Kahane (1985a, Theorem 4, p. 204). In fact,
lµ is the L2(P× λd)-limit of lεµ as ε tends to 0; cf. (6.2).
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8.3. Continuity in the Space-Variable. Note that B(F ) is compact and {x :
lµ(x) > 0} is a subset of B(F ). Hence, in order to prove that B(F ) has interior-
points, it suffices to demonstrate that lµ(x) has a version which is continuous in
x (Pitt, 1978, p. 324; Geman and Horowitz, 1980, p. 12). We are going to have to
do more to prove the uniform result for θF , but for now, we concentrate on θ being
equal to the identity matrix.

Theorem 8.1. Let F be a compact set in RN
+ that satisfies (6.1), and suppose

µ ∈ P(F ) satisfies (8.2). Then for every even integer n ≥ 2, there exists a finite
constant A8.6—that depends only on (a, b, d,N, γ,A8.2, n)—such that

(8.6) E

 sup
u,v∈Rd:
u6=v

|lµ(u)− lµ(v)|n
|u− v|bn/(N+1)cγ

 ≤ A8.6,

where bxc denotes 1 if x ≤ 1, and the largest integer ≤ x if x > 1. Consequently,
there exists a version of {lµ(x)}x∈Rd that is uniformly Hölder-continuous with index
η for any η that satisfies

(8.7) 0 < η < min
(

1,
2

N + 1

(
dim

H
F − d

2

))
,

Before proving Theorem 8.1, we develop two technical lemmas.
For the first lemma, define

(8.8) F̃ =
{
v = (v1, . . . , vn) ∈ Fn; vj` = vi` for some i 6= j and 1 ≤ ` ≤ N

}
.

Lemma 8.2. If ν ∈ P(F ) satisfies (8.4), then the set F̃ is νn-null, where νn =
ν × · · · × ν (n times).

Proof. This follows from (8.4) and the Fubini–Tonelli theorem. ˜

Lemma 8.3. Let {Zi}ni=1 be linearly-independent centered Gaussian variables. If
g : R → R+ is Borel measurable, then

(8.9)
∫
Rn

g(v1) e−
1
2 Var(v·Z) dv =

(2π)(n−1)/2

Q1/2

∫ ∞

−∞
g(z/σ1) e−

1
2 z

2
dz,

where σ2
1 = Var(Z1 |Z2, . . . , Zn), and Q = detCov(Z1, . . . , Zn) denotes the deter-

minant of the covariance matrix of Z.

Proof. In the case that g is bounded this follows from Cuzick and DuPreez (1982,
Lemma 2). To prove the general case, replace g by g∧k and let k tend to infinity. ˜

We will use the following elementary formula to estimate the determinant of the
covariance matrix of a Gaussian vector Z:

(8.10) detCov(Z1, . . . , Zn) = Var(Z1)
n∏
j=2

Var
(
Zj

∣∣∣{Zi}i≤j−1

)
.

We are ready to present the following.
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Proof of Theorem 8.1. By the Fourier inversion theorem, for every x, y ∈ Rd, and
all even integers n ≥ 2,

E [(lµ(x)− lµ(x + y))n]

= (2π)−nd
∫
Fn

∫
Rnd

n∏
j=1

[
e−iu

j ·x − e−iu
j ·(x+y)

]
× e−

1
2Var(Pn

j=1 u
j ·B(tj)) du µn(dt).

(8.11)

Here, u = (u1, . . . , un), t = (t1, . . . , tn), and for each j, uj and tj are respectively
in Rd and (0,∞)N . The details that lead to (8.11) are explained in Geman and
Horowitz (1980, Eq. 25.7); see also Pitt (1978).

Consider the non-decreasing function Λ(u) = inf{1, |u|γ} and the elementary
inequality

(8.12) |eiu − 1| ≤ 2Λ(u), ∀u ∈ R.

This is valid because γ is in (0, 1). By the triangle inequality,

(8.13)
∣∣e−iuj ·x − e−iu

j ·(x+y)∣∣ ≤ d∑
k=1

∣∣e−iuj
kyk − 1

∣∣.
By expanding the product in (8.11), using (8.13) and (8.12), we obtain

E [(lµ(x) − lµ(x+ y))n]

≤ (2π)−nd 2n
∑′ ∫

Fn

∫
Rnd

n∏
j=1

Λ(ujkj
ykj

) e−
1
2Var(Pn

j=1 u
j ·B(tj)) du

︸ ︷︷ ︸
=M=M(k,t)

µn(dt).(8.14)

Here,
∑′ signifies the sum over all sequences k = (k1, · · · , kn) ∈ {1, . . . , d}n. In

accord with Lemma 8.2, the outer integral in (8.14) can be taken to be over Fn\F̃ .
Fix k = (k1, · · · , kn) ∈ {1, . . . , d}n and t1, . . . , tn ∈ F , we proceed to estimate

the integralM in (8.14). We will assume that tj` (1 ≤ j ≤ n, 1 ≤ ` ≤ N) are distinct
(Lemma 8.2). Lemma 4.4 implies that the Gaussian random variables {Bk(tj); k =
1, . . . , d, j = 1, . . . , n} are linearly independent. Hence, by applying the generalized
Hölder’s inequality, Lemma 8.3, and the independence of the coordinate-processes
B1, . . . , Bd of B, the quantity M is bounded above by

n∏
j=1

{∫
Rnd

Λn(ujkj
ykj

) e−
1
2Var(Pn

i=1
Pd

`=1 u
i
`B`(t

i)) du
}1/n

=
(2π)(nd−1)/2

[detCov(B1(t1), . . . , B1(tn))]d/2

×
n∏
j=1

{∫ ∞

−∞
Λn
( ykj

σj(t)
z
)
e−

1
2 z

2
dz

}1/n

.

(8.15)

Here, σ2
j (t) is the conditional variance of Bkj (tj) given B`(ti) (` 6= kj and 1 ≤ i ≤ n,

or ` = kj and i 6= j).
Since B1, . . . , Bd are i.i.d., we have

(8.16) σ2
j

(
t
)

= Var
(
B1(tj)

∣∣∣ {B1(ti)
}
i6=j
)
.
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For j = n, we use Λ(u) ≤ 2|u|γ and Stirling’s formula to derive

(8.17)
{∫ ∞

−∞
Λn
( ykn

σn(t)
z
)
e−

1
2 z

2
dz

}1/n

≤ A8.17n
γ
( ‖y‖
σn(t)

)γ
.

Hence, it follows from (8.10), (8.14), (8.15), (8.16) and (8.17) that

max
k∈{1,...,d}n

∫
Fn

M
(
k, t
)
µn(dt) ≤

∫
Fn

A8.18 ‖y‖γ
[detCov(B1(t1), . . . , B1(tn−1))]d/2

× 1

σd+γn (t)

n−1∏
j=1

{∫ ∞

−∞
Λn
( ‖y‖
σj(t)

z

)
e−

1
2 z

2
dz

}1/n

µn(dt),
(8.18)

where A8.18 is a constant depending on d, γ and n only. We can estimate the pre-
ceding integral iteratively by integrating in the order µ(dtn), µ(dtn−1), . . . , µ(dt1).

Let t1, . . . , tn−1 ∈ F be fixed points such that tj` (1 ≤ j ≤ n− 1, 1 ≤ ` ≤ N) are
distinct. We consider the integral

(8.19) N =
∫
F

1

σd+γn

(
t
) n−1∏
j=1

{∫ ∞

−∞
Λn
( ‖y‖
σj(t)

z
)
e−

1
2 z

2
dz

}1/n

µ(dtn).

It follows from Proposition 4.2 that for every 1 ≤ j ≤ n,

(8.20) σ2
j

(
t
) ≥ aN−1

2

N∑
`=1

min
i6=j

∣∣∣ti` − tj`

∣∣∣ .
In order to estimate the sum in (8.20) as a function of tn, we introduce N

permutations Γ1, . . . ,ΓN of {1, . . . , n− 1} such that for every ` = 1, . . . , N ,

(8.21) t
Γ`(1)
` < t

Γ`(2)
` < . . . < t

Γ`(n−1)
` .

For convenience, we denote tΓ`(0)
` = a and tΓ`(n)

` = b for all 1 ≤ ` ≤ N .
For every (i1, . . . , iN) ∈ {1, . . . , n − 1}N , let τi1,··· ,iN = (tΓ1(i1)

1 , . . . , t
ΓN (iN )
N ) be

the “center” of the rectangle

(8.22) Ii1,··· ,iN =
N∏
`=1

[
t
Γ`(i`)
` − 1

2
(
t
Γ`(i`)
` − tΓ`(i`−1)

`

)
, t

Γ`(i`)
` +

1
2
(
t
Γ`(i`+1)
` − tΓ`(i`)

`

))
with the convention that the left-end point of the interval is a whenever i` = 1; and
the interval is closed and its right-end is b whenever i` = n−1. Thus the rectangles
{Ii1,··· ,iN} form a partition of [a, b]N .

For every tn ∈ F , let Ii1,··· ,iN be the unique rectangle containing tn. Then (8.20)
yields the following estimate:

(8.23) σ2
n

(
t
) ≥ aN−1

2

N∑
`=1

∣∣∣tn` − t
Γ`(i`)
`

∣∣∣ ≥ A8.23‖tn − τi1,··· ,iN ‖.

For every j = 1, . . . , n− 1, we say that Ii1,··· ,iN cannot see tj from direction ` if

(8.24) tj` /∈
[
t
Γ`(i`)
` − 1

2
(
t
Γ`(i`)
` − t

Γ`(i`−1)
`

)
, t

Γ`(i`)
` +

1
2
(
t
Γ`(i`+1)
` − t

Γ`(i`)
`

)]
.

We emphasize that if Ii1,··· ,iN cannot not see tj from all N directions, then

(8.25)
∣∣tj` − tn`

∣∣ ≥ 1
2

min
i6=j,n

∣∣∣tj` − ti`

∣∣∣ for all 1 ≤ ` ≤ N.
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Thus tn does not contribute to the sum in (8.20). More precisely, the latter means
that

(8.26) σ2
j

(
t
) ≥ aN−1

4

N∑
`=1

min
i6=j,n

∣∣∣tj` − ti`

∣∣∣ .
The right hand side of (8.26) only depends on t1, . . . , tn−1, which will be denoted
by σ̃2

j (t). Hence we have

(8.27)
∫ ∞

−∞
Λn
( ‖y‖
σj(t)

z
)
e−

1
2 z

2
dz ≤

∫ ∞

−∞
Λn
( ‖y‖
σ̃j(t)

z
)
e−

1
2 z

2
dz.

If Ii1,··· ,iN sees tj from a direction, then, except in the special case tj = τi1,··· ,iN ,
it is impossible to control σ2

j

(
t
)

from below as in (8.23) and (8.26) [recall that B
is not LND with respect to E(B(u)− B(v))2]. We say that tj is a “bad point” for
Ii1,··· ,iN . In this case, we use the inequality Λ(u) ≤ 2 to derive

(8.28)
∫ ∞

−∞
Λn
( ‖y‖
σj(t)

z
)
e−

1
2 z

2
dz ≤ 2n

√
2π.

It is important to note that, because of (8.21), the rectangle Ii1,··· ,iN can only have
at most N bad points tj (1 ≤ j ≤ n− 1), i.e., at most one in each direction.

It follows from (8.23), (8.27) and (8.28) that∫
Ii1,··· ,iN

1

σd+γn

(
t
) n−1∏
j=1

{∫ ∞

−∞
Λn
( ‖y‖
σj(t)

z
)
e−

1
2 z

2
dz

}1/n

µ(dtn)

≤ A

∫
Ii1,··· ,iN

µ(dtn)∥∥tn − τi1,··· ,iN
∥∥(d+γ)/2

×
∏

j /∈Θi1...iN

{∫ ∞

−∞
Λn
( ‖y‖
σ̃j(t)

z
)
e−

1
2 z

2
dz

}1/n

≤ A8.29

∏
j /∈Θi1...iN

{∫ ∞

−∞
Λn
( ‖y‖
σ̃j(t)

z
)
e−

1
2 z

2
dz

}1/n

,

(8.29)

where Θi1,...,iN = {1 ≤ j ≤ n − 1 : tj is a bad point for Ii1,··· ,iN } and the last
inequality follows from (8.2). Recall that the cardinality of Θi1,...,iN ≤ N and
Θi1,...,iN may be the same for different (i1, . . . , iN).

Summing (8.29) over all (i1, . . . , iN) ∈ {1, . . . , n − 1}N and regrouping Θi1...iN ,
we derive that the integral N is bounded above by

A8.29

∑
i1,...,iN

∏
j /∈Θi1...iN

{∫ ∞

−∞
Λn
( ‖y‖
σ̃j(t)

z
)
e−

1
2 z

2
dz

}1/n

≤ A8.30

∑
Θ

∏
j /∈Θ

{∫ ∞

−∞
Λn
( ‖y‖
σ̃j(t)

z
)
e−

1
2 z

2
dz

}1/n

,

(8.30)

where the last summation is taken over all Θ ⊂ {1, . . . , n − 1} with #Θ ≤ N and
A8.30 depends on (d, a, b,N, γ, n) only. Note that the number of terms in the last
sum is at most (n− 1)N .
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Put (8.30) into (8.18) to obtain

max
k∈{1,...,d}n

∫
Fn

M
(
k, t
)
µn(dt)

≤
∑
Θ

∫
Fn−1

A8.31 ‖y‖γ
[detCov(B1(t1), . . . , B1(tn−1))]d/2

×
∏
j /∈Θ

{∫ ∞

−∞
Λn
( ‖y‖
σ̃j(t)

z
)
e−

1
2 z

2
dz

}1/n

µn−1(dt).

(8.31)

We observe that:
(i) Increasing the number of elements in Θ changes only the integrals in (8.31)

by a constant factor [recall (8.28)]; and
(ii) detCov(B1(t1), . . . , B1(tn−1)) is symmetric in t1, . . . , tn−1.

Based on these observations we can deduce that the following is valid uniformly for
all k ∈ {1, . . . , d}n:∫

Fn

M
(
k, t
)
µn(dt) ≤

∫
Fn−1

A8.32 ‖y‖γ
[detCov(B1(t1), . . . , B1(tn−1))]d/2

×
n−1∏

j=N+1

{∫ ∞

−∞
Λn
( ‖y‖
σ̃j(t)

z
)
e−

1
2 z

2
dz

}1/n

µn−1(dt).
(8.32)

Here, A8.32 is a constant depending only on (d, a, b,N, γ, n), and the last product∏n−1
j=N+1 · · · can be replaced by 1 if n ≤ N + 1.
By repeating the preceding argument and integrating µ(dtn−1), . . . , µ(dt1) iter-

atively and by (8.14), we obtain

(8.33) E [(lµ(x)− lµ(x + y))n] ≤ A8.33 ‖y‖b n
N+1cγ ,

where A8.33 is a constant depending on (d, a, b,N, γ, n) only and ‖y‖b n
N+1cγ comes

from the first b n
N+1c-steps of integration. This, together with a multiparameter

version of the Kolmogorov continuity theorem (Khoshnevisan, 2002, Theorem 2.5.1,
p. 165) proves Equation (8.6), but where u and v are restricted to a given compact
set. It follows readily that we can construct a version of {lµ(x)}x∈Rd that is Hölder-
continuous with parameter < γ on all compact subsets of Rd. But x 7→ lµ(x) is, by
definition, a compact-support function because µ lives on the compact set F ⊂ RN

+ ,
and B is continuous. With a bit of measure theory, this completes our proof. ˜

8.4. Continuity in the Rotation-Variable. We hold F and µ fixed as in the
previous subsection. Let R denote the collection of all N -by-N rotation matrices
that leave F in RN

+ ; i.e., θ ∈ R if and only if θ is a rotation matrix such that
θF ⊂ RN

+ . We endow all square matrices with their `2 matrix-norm; i.e., for all
N -by-N matrices M ,

(8.34) ‖M‖ = sup
x∈RN : ‖x‖=1

(x ·Mx)1/2 = sup
x∈RN : ‖x‖=1

‖Mx‖ .

Define,

(8.35) µθ(G) = µ
(
θ−1G

)
, ∀Borel sets G ⊂ RN

+ .

Manifestly, µθ is in P(F ), and satisfies (8.2) where µ is now replaced by µθ, but
the constant A8.2 remains unchanged. Thanks to Theorem 8.1, lµθ

is a.s. Hölder
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continuous for each θ ∈ R. We now prove that there is a continuous version of
(x, θ) 7→ lµθ

(x).
Throughout, we define

(8.36) τ(F ) =
dim

H
F − d

2

2 dim
H
F +N(d+ 1) + 1

.

Theorem 8.4. Let F be a compact set in RN
+ that satisfies (6.1), and suppose

µ ∈P(F ) satisfies (8.2). For every even integer n ≥ 2 and every δ < τ(F ),

(8.37) E

 sup
θ,ρ∈R:
θ 6=ρ

∣∣lµθ
(x)− lµρ(x)

∣∣n
‖θ − ρ‖nδ

 <∞.

Consequently, for all 0 < η < min(1, 2
N+1 (dim

H
F − d

2 )) and 0 < δ < τ(F ),
there exists a version of {lµθ

(x)}x∈Rd;θ∈R that is uniformly Hölder-continuous: In
x ∈ Rd with index η, and in θ ∈ R with index δ.

Proof. There exists a function ψ : Rd → R+ that has the following properties:
• There exists a finite constant cψ such that for all x, y ∈ Rd, |ψ(x)−ψ(y)| ≤
cψ‖x− y‖;

• ψ(x) ≥ 0 and
∫
Rd ψ(x) dx = 1;

• ψ(x) > 0 if ‖x‖ ≤ 1
2 , whereas ψ(x) = 0 if ‖x‖ ≥ 1.

For all ε > 0, define

(8.38) ψε(x) = ε−dψ(x/ε), ∀x ∈ Rd.

First of all, note that for all a ∈ Rd, θ ∈ R, and ε > 0, the following holds a.s.:∣∣∣∣∫
F

ψε (B(s)− a) µθ(ds)− lµθ
(a)
∣∣∣∣ =

∣∣∣∣∫
Rd

ψε(x− a) lµθ
(x) dx − lµθ

(a)
∣∣∣∣

≤
∫
Rd

ψε(x − a) |lµθ
(x)− lµθ

(a)| dx
≤ sup
x∈Rd: ‖x−a‖≤ε

|lµθ
(x) − lµθ

(a)|

= Ωθ(ε).

(8.39)

[Justification: The first line follows from (8.5); second from the fact that ψε in-
tegrates to one; and third from the fact that ψε is supported on the centered
ball of radius ε.] Furthermore, ψε is Lipschitz-continuous with Lipschitz-constant
cψε

−(d+1). Therefore, for all θ, ρ ∈ R, all a ∈ Rd, and all ε > 0, with probability
one, ∣∣∣∣∫

F

ψε (B(s) − a) µθ(ds)−
∫
F

ψε (B(s)− a) µρ(ds)
∣∣∣∣

=
∣∣∣∣∫
F

[ψε (B(θs)− a)− ψε (B(ρs)− a)] µ(ds)
∣∣∣∣

≤ cψε
−(d+1) sup

s∈F
|B(θs)−B(ρs)| .

(8.40)

Combine (8.39) and (8.40) to deduce that a.s.:

(8.41)
∣∣lµθ

(a)− lµρ(a)
∣∣ ≤ Ωθ(ε) + Ωρ(ε) + cψε

−(d+1) sup
s∈F

|B(θs)−B(ρs)| .
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One can use this to directly construct a continuous version of these local times.
However, we will outline a more standard approach.

By continuity (Theorem 8.1), (8.41) holds simultaneously for all a ∈ Rd. There-
fore, by Minkowski’s inequality, for all even integers n ≥ 2,(

E
[

sup
a∈Rd

∣∣lµθ
(a)− lµρ(a)

∣∣n])1/n

≤ ‖Ωθ(ε)‖Ln(P) + ‖Ωρ(ε)‖Ln(P)

+ cψε
−(d+1)

(
E
[
sup
s∈F

|B(θs) −B(ρs)|n
])1/n

.

(8.42)

Fix some positive η < min(1, 2
N+1 (dim

H
F − d

2 )) to see that the first two terms
are each bounded above by A8.6ε

η; see (8.6). Because F is compact, standard
Kolmogorov-continuity estimates show that the third term is at most a universal
constant [depending only on (d,N, a, b)] times ε−(d+1)‖θ − ρ‖1/2; for example, see
Exercise 7 of Khoshnevisan (2002, p. 176). Optimize the resulting inequality over
all ε to obtain (8.37). The remainder of the proof follows from a multiparameter
version of the Kolmogorov continuity theorem. ˜

8.5. The Remainder of the Proof of Theorem 1.4. We are ready to assemble
the pieces that complete the proof of Theorem 1.4. Throughout, we may, and will,
assume that {lµθ

(x)}x∈Rd;θ∈R is continuous (Theorem 8.4).
According to (8.5), we have

(8.43)
∫
Rd

lµθ
(x) dx = 1, ∀θ ∈ R.

This uses the continuity of local times and B, as well as the compactness of F .
Note that we have stopped writing “a.s.” because from now on, there is only one
null-set left, and so it can be ignored.

Continuity insures that for every θ ∈ R there exists an open ball Jθ ⊂ Rd such
that for all x ∈ Jθ, lµθ

(x) > 0. This is enough to prove that for all θ ∈ R, B(θF )
has interior-points: Any x ∈ Jθ is an interior-point of B(θF ).

In order to prove the stronger assertion of the theorem, we need to refine the
Jθ’s slightly.

Due to continuity, for every θ ∈ R we can find an open ballKθ ⊆ Jθ ⊂ Rd and an
open ball Vθ ⊂ R such that for all ρ ∈ Vθ and all x ∈ Kθ, lµρ(x) > 0. Now {Vθ}θ∈R
is an open cover of R, where the latter is viewed as a closed subset of HN—the
rotation group acting on RN . Because HN is compact (Pontryagin, 1966, Section
65, p. 489), so is R. It follows that there is a finite subcover {Vθ(j)}mj=1 of R; it has
the property that for every ρ ∈ Vθ(j) and all x ∈ Kθ(j), lµρ(x) > 0. Let ζj denote
the midpoint of the interval Kθ(j) to deduce the theorem.

9. An Arithmetic Property of Brownian Motion

We conclude this paper by proving an arithmetic result about Brownian motion.
Henceforth, {X(t)}t≥0 denotes d-dimensional Brownian motion, and F a fixed com-
pact subset of R+.

Choose and fix an integer N ≥ 1, and N nonzero real numbers r1, . . . , rN ,
once and for all. Define the [inhomogeneous] N -fold Brownian self-intersection
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field (Wolpert, 1978):

(9.1) S(t) =
N∑
j=1

rjX(tj), ∀t ∈ RN
+ .

Next is a refinement to Theorem 1 of Mountford (1988); see also Kaufman (1979).

Theorem 9.1. Suppose G1, . . . , GN are compact subsets of R+, and let G =
G1 × · · · × GN . If dim

H
G > d

2 , then S(G) a.s. has interior-points. Moreover,
Capd/2(G) = 0 if and only if S(G) a.s. has zero Lebesgue measure.

Before we prove this, we make some observations.

Remark 9.2. Note the elementary bounds,

(9.2)
N∑
j=1

dim
H

(Gj) ≤ dim
H

(G1 × · · · ×GN ) ≤
N∑
j=1

dim
P

(Gj).

where dim
P

denotes the packing dimension. Therefore, Theorem 9.1 implies that:
• If dim

H
(F ) > d

2N , then X(F )⊕ · · · ⊕X(F ) contains interior-points a.s.
• If dim

P
(F ) < d

2N , then X(F )⊕ · · · ⊕X(F ) is Lebesgue-null a.s.
The first item is a minor generalization of Theorems 2–4 of Mountford (1988);
the second item slightly improves upon Comment (2) of Mountford (1988, p. 459)
who derives this assertion with upper Minkowski dimension in place of packing
dimension.

To prove Theorem 9.1 we may—and will—assume without loss of generality that
Gi ⊂ [ai, bi] and

(9.3) 0 < a1 < b1 < a2 < b2 < · · · < aN < bN .

Similar reductions have been made earlier by Mountford (1988) and Kaufman
(1979). To simplify the formulation of Proposition 9.3, we assume further that
for all relevant integers i and j, (bi − ai) ≤ (aj+1 − bj).

Thanks to Lemma 4.3, we can deduce

Proposition 9.3. Suppose {Gi}Ni=1 are compact subsets of R+ that satisfy the
preceding conditions. Then the process S is sectorially LND on G = G1×· · ·×GN .
In fact, for all u, t1, . . . , tn ∈ RN

+ ,

(9.4) Var
(
S1(u)

∣∣S1(t1), . . . , S1(tn)
) ≥ min1≤k≤N r2k

2N

N∑
k=1

min
1≤j≤n

∣∣∣uk − tjk

∣∣∣ .
Proof. Let u = (u1, . . . , uN). It follows from Lemma 4.3 that for each 1 ≤ k ≤ N

Var
(
S1(u)

∣∣S1(t1), . . . , S1(tn)
) ≥ Var

(
X(uk)

∣∣∣X(tj`), ∀j, `;X(ui), i 6= k
)

≥ r2k
2

min
1≤j≤n

∣∣∣uk − tjk

∣∣∣ .(9.5)

Summing over k yields (9.4). ˜
Proof of Theorem 9.1. We go through the proof of Theorem 8.1, but use Propo-
sition 9.3 in place of Proposition 4.2 everywhere. This readily proves that when
dim

H
G > d

2 S has a continuous local time on G. Therefore, S(G) has interior-
points almost surely.
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For the capacity condition, we simply compare S to an additive Brownian motion.
This is achieved by combining the proof of Theorem 6.1 of Khoshnevisan and Xiao
(2003) with Theorem 4.2 in the same paper. ˜

10. A Final Remark

Consider an arbitrary centered Gaussian random field {G(t)}t∈RN
+

, a compact
set F in RN

+ that satisfies (6.1) and µ ∈ P(F ) satisfies (8.2) with γ ∈ (0, 1). An
inspection of our proof of Theorem 8.1 shows that everything up to and including
(8.19) is valid as long as G has i.i.d. coordinate-processes. The rest of proof depends
crucially on whether one can derive an appropriate upper bound for (8.19).

If we apply the inequality Λ(u) ≤ 2|u|γ to (8.15) for all j = 1, . . . , n, then for
all x, y ∈ Rd and all even integers n ≥ 2 we can find a finite constant A10.1 =
A10.1(d, a, b, γ, n) such that

E [(lµ(x)− lµ(x+ y))n]

≤ A10.1 ‖y‖nγ
∫
Fn

∏n
j=1

[
Var

(
G1(tj)

∣∣∣ {G1(ti)
}
i6=j
)]−γ

[detCov (G1(t1), . . . , G1(tn))]
d/2

µn(dt).
(10.1)

Hence we have derived the following convenient result.

Theorem 10.1. Let {G(t)}t∈RN
+

be an N -parameter centered Gaussian process in
Rd that has i.i.d. continuous coordinate-processes. Choose and fix a compact set
F ⊂ RN

+ such that supt∈F Var(G1(t)) < ∞. Assume that there exists µ ∈ P(F ),
an even integer n > N , and some γ ∈ (Nn , 1) such that

(10.2)
∫
Fn

∏n
j=1

[
Var

(
G1(tj)

∣∣∣ {G1(ti)
}
i6=j

)]−γ
[detCov (G1(t1), . . . , G1(tn))]

d/2
µn(dt) <∞.

Then {lµ(x)}x∈Rd has a modification which is Hölder continuous of any order < γ.
Consequently, G(F ) has interior-points almost surely.
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