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Université Paris 13

November 2, 2010

Abstract

We study a quenched charged-polymer model, introduced by Garel

and Orland in 1988, that reproduces the folding/unfolding transition

of biopolymers. We prove that, below the critical inverse temperature,

the polymer is delocalized in the sense that: (1) The rescaled trajectory

of the polymer converges to the Brownian path; and (2) The partition

function remains bounded.

At the critical inverse temperature, we show that the maximum

time spent at points jumps discontinuously from 0 to a positive fraction

of the number of monomers, in the limit as the number of monomers

tends to infinity.

Finally, when the critical inverse temperature is large, we prove

that the polymer collapses in the sense that a large fraction of its

monomers live on four adjacent positions, and its diameter grows only

logarithmically with the number of the monomers.

Our methods also provide some insight into the annealed phase

transition and at the transition due to a pulling force; both phase

transitions are shown to be discontinuous.
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1 Introduction and main results

1.1 The charged polymer model

We consider a polymer model introduced by Garel and Orland in [9] for mod-

eling the trajectory of biological proteins made of hydrophobic monomers.

Let {qi}∞i=0 be i.i.d. real variables and {Si}∞i=0 an independent simple ran-

dom walk on Zd with S0 = 0. Both stochastic processes exist on a common

probability space (Ω ,F ,P).

Given a realization of q and S, we consider

QxN :=
∑

06i<N

qi1{Si=x}, and (1.1) eq:Q

HN :=
∑
x∈Zd

(QxN )2 . (1.2) eq:HN

We think of the qi’s as charges, QxN as the total charge at position x ∈ Zd,

and HN as the energy of the polymer. In this way, we see that QxN and HN

in fact define functions of the trajectory S of the walk. Therefore, we might

occasionally refer to them respectively as QxN (S) and HN (S), as well.

For all β ∈ R [inverse temperature] and N > 1 [the number of monomers]

consider the quenched probability measure PβN ,

PβN (A) :=
1

ZN (β)
E

[
1A exp

(
β

N
HN

)∣∣∣∣ q0, q1, . . . , qN−1] , (1.3)

where ZN (β) [the partition function] is defined so that PβN is indeed a prob-

ability measure; that is,

ZN (β) := E

[
exp

(
β

N
HN

)∣∣∣∣ q0, q1, . . . , qN−1] . (1.4)
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We can write the energy in the following equivalent form:

HN := 2ĤN +
∑

06i<N

q2i , (1.5)

where

ĤN :=
∑∑
06i<j<N

qiqj1{Si=Sj}. (1.6) eq:Hhat

Therefore, if we define the quenched measure P̂βN as we did PβN but with

ĤN in place of HN , then P̂βN = P
β/2
N . Thus, the analyses of PβN and P̂βN

are the same, but one has to remember to halve/double the parameter β in

order to understand one in terms of the other.

In our model, like charges attract when β > 0 . This accounts for the

hydrophobic properties of monomers immersed in water [9]. And the scaling

HN/N was introduced also in [9] in order to compensate for the absence of

hard-core repulsion. It will also follow from Lemma 2.5 below that this

scaling makes the energy subadditive [or extensive]. The fact that charges

interact only when they are at exactly the same position is said to account

for the screening effect : When a polymer is immersed in water, its charges

are surrounded by oppositely-charged free molecules of the solvent.

Garel and Orland [9, 10] introduced the charged-polymer model in order

to better understand the transition, in biopolymers, from a swollen state to

a folded state. In [10] the authors perform a mean-field analysis of a model

with independent, Gaussian interactions between monomers pairs. And in

[9] they introduce [a generalization of] ĤN in order to model different pos-

sible attractive/repulsive forces between different monomers such as amino

acids in proteins or the base-pairs in the RNA.1

When the reference random walk {Si}∞i=0 is replaced by a walk on a sim-

plex with d points, Garel and Orland [9] find a continuous phase transition

from a folded to an unfolded state as the temperature increases. And, for

a continuous version of the charged-polymer model, they find that a similar

continuous phase transition holds at an explicit temperature. In another

1The energy in [9] corresponds to ours when their M = 1.
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paper [10], however, Garel and Orland mention that the phase transition

in biopolymers is expected to be discontinuous. Among other things, the

results of our paper confirm their prediction in the present charged-polymer

model.

The physics literature contains also the analyses of several seemingly-

similar models that are not equivalent to ours mainly because in those mod-

els like charges repel [7, 8, 12, 15].

In the last few years the mathematics of polymer measures has also

grown considerably [5, 6, 11, 19]. However, it appears that little is known

about our model. We are aware only of Chapter 8 of [6] on the annealed

measure in the repelling regime β 6 0, and that result holds for a different

scaling of the energy [for which the polymer is completely localized.]

We are aware also of some recent works on the energy ĤN itself: In

[3], limit theorems for ĤN are established; it was shown in [4] that the

distribution of ĤN is comparable to the random walk in random scenery as

N tends to infinity, see also [13]; and large deviations for ĤN were established

in [1, 2].

Let us conclude this introduction with a brief outline of the paper: In the

remainder of this section we present our main results on the model. Those

results range from a characterization of the delocalized phase to a description

of the discontinuous phase transition, and finally to large-β asymptotics.

We also emphasize some differences between the quenched and annealed

measures, and describe the effect of a pulling force. Proofs of the various

assertions are relegated to Section 2. Finally, we include some basic facts

about the local times of the simple random walk in the appendix.

1.2 The delocalized phase

Unless it is stated to the contrary, we assume that Eq0 = 0, Var q0 = 1, and

that the charges are subgaussian; that is, κ <∞, where

κ := inf
{
c ∈ (−∞ ,∞] : Eetq0 6 ect

2/2 for all t ∈ R
}
. (1.7) eq:kappa
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We have κ > 1 as long as q0 has a finite moment generating function near

zero and Eq0 = 0. And κ = 1 both when the qi’s have the Rademacher

distribution [P{q0 = ±1} = 1/2] and when they have a standard normal

distribution.

Now we introduce

D :=
{
β ∈ R : ZN (β)

P−→ eβ as N →∞
}
, (1.8)

where “
P−→” denotes convergence in probability. As is customary, we call

LxN :=

N−1∑
i=0

1{Si=x} (1.9) eq:LTx

the local time of {Si}N−1i=0 at x, and define

L?N := max
x∈Zd

LxN (1.10) eq:LTstar

to be maximum local time.

The next theorem tells us that the set D characterizes the region of β

for which the trajectory of the polymer is [asymptotically] indistinguishable

from that of a random walk. In other words, the polymer is delocalized when

β ∈ D and N is large.

thm:D Theorem 1.1. If Eq0 = 0, Var q0 = 1, and κ <∞, then:

1. D is an interval that contains (−∞ , 1/κ).

2. β ∈ D if and only if for all ε > 0,

PβN{L
?
N 6 εN} P−→ 1 as N →∞. (1.11)

3. β ∈ D if and only if:∥∥∥PβN − P [ · |q0 , . . . , qN−1 ]
∥∥∥
TV

P−→ 0 as N →∞, (1.12)

where ‖µ− ν‖TV := supA |µ(A)−ν(A)| is the total variation distance.
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In order to describe a consequence of Theorem 1.1, let N > 1 be an

integer, and consider the stochastic process SN defined by

SN (t) := (Nt− [Nt])

(
S[Nt]+1 − S[Nt]√

N

)
+
S[Nt]√
N

(0 6 t 6 1). (1.13)

SN is defined uniquely as the piecewise-linear function that takes the values

Sk/
√
N at t = k/N for all integers k = 0, . . . , N . Now we can mention the

consequence of Theorem 1.1.

cor:BM Corollary 1.2. If Eq0 = 0, Var q0 = 1, and κ <∞, then for all β ∈ D and

Φ : C([0 , 1])→ R bounded and continuous,

EβN [Φ (SN )]
P−→

N→∞
E [Φ (B)] , (1.14)

where B denotes d-dimensional Brownian motion.

Remark 1.3. Even though β ∈ D if and only if PβN{L?N < εN} → 1 in

probability, one can say more about the rate of this convergence when β in

the interior of D . Indeed, suppose β lies in the interior of D . It follows

from part 1 of Theorem 1.1 that qβ ∈ D for some q > 1. Let p denote the

conjugate to q; that is, p−1 +q−1 = 1. Then Hölder’s inequality implies that

PβN {L
?
N > εN} 6 [P {L?N > εN}]1/p · [ZN (qβ)]1/q

ZN (β)
. (1.15)

The fraction of the ZN ’s goes to one in probability since both β and qβ are

in D . Therefore, it follows from Lemma A.2 below that PβN{L?N < εN} → 1,

in probability, exponentially fast, as long as β lies in the interior of D .

1.3 A first-order phase transition

We show, in Lemma 2.5 below, that the normalized energy HN/N is subad-

ditive. And it will follow from that fact that the free energy z exists when

the second moment of the charge distribution is finite. More precisely, we

have the following.
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prop:F Proposition 1.4. If E(q20) <∞, then for all β ∈ R,

z(β) := lim
N→∞

1

N
lnZN (β) (1.16)

exists a.s. and in L1(P), and z(β) is nonrandom. The function R 3 β →
z(β) is nonnegative, nondecreasing, and convex with z(0) = 0.

Define the critical inverse temperature,

βc := sup D . (1.17) eq:bc

Clearly, z(β) = 0 whenever β 6 βc. We now wish to know whether or not

the converse is true.

Our next theorem shows that a first-order phase transition occurs at βc,

and that the maximal fraction L?N/N of monomers on a single site jumps

discontinuously from 0 to a quantity that is at least 1/(2κβc) > 0. It might

help to recall that convex functions have right derivatives everywhere.

thm:fo Theorem 1.5. If Eq0 = 0, Var q0 = 1, and κ <∞, then z(βc) = 0, whereas

z(β) > 0 for all β > βc. Moreover, there is a first-order phase transition at

βc; i.e.,

lim
β↓βc

z(β)

β − βc
∈ (0 ,∞). (1.18) eq:fo

Furthermore, if β > βc, then for all ε > 0,

PβN

{
L?N
N

>
1− ε
β

max

(
z(β) ,

1

2κ

)}
P−→ 1 as N →∞. (1.19) eq:prop:min

1.4 The folded phase

When the inverse temperature β is large, the polymer measure concentrates

on the configurations with high energy. In dimensions d > 2 we will compute

the [quenched] maximum of HN . It turns out that that maximum is realized

when the walk is concentrated on four points that define a square.
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Recall that a+ := a ∨ 0 and a− := (−a)+ for all a ∈ R. When Z is

a random variable and ε ∈ {− ,+} we always write EZε as shorthand for

E(Zε) [and never for (EZ)ε].

prop:maxH:bc Proposition 1.6. If d > 2, then for all β ∈ R,

lim inf
N→∞

1

N
lnZN (β) >

[
(Eq+0 )2 + (Eq−0 )2

2

]
β − ln(2d) a.s. (1.20)

Consequently, under the assumptions of Theorem 1.1 [that Eq0 = 0, Var q0 =

1, and κ <∞], the critical inverse temperature satisfies

βc 6
2 ln(2d)

(Eq+0 )2 + (Eq−0 )2
. (1.21)

We emphasize that, in the case that E|q0| =∞, the preceding proposition

tells us that z(β) =∞ a.s. for all β > 0. That proposition also tells us that

βc 6 4 ln(2d) when q0 has the Rademacher distribution [i.e., q0 = ±1 with

probability 1/2 each] and βc 6 2π ln(2d) when q0 has a standard normal

distribution.

In order to prepare for our next results we first define the following

quantities:

γ := min
ε∈{−,+}

(Eqε0)2; (1.22) eq:gamma

λ := min
ε,ε′∈{−,+}

E
[
min

(
(Eqε0)qε0 , (Eq

ε′
1 )qε

′
1

)]
; and (1.23) eq:lambda

βα := ln(2d) ·
[

8

(1− α)γ
∨ 4

λ

]
(0 < α < 1). (1.24) eq:betaa

We are interested mainly in βα [βα should not be confused with the critical

inverse temperature βc.]

It is possible to check that when q0 has a symmetric distribution [i.e., q0
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and −q0 have the same law],

γ = (Eq+0 )2 =

(∫ ∞
0

P{q0 > z}dz

)2

,

λ =
√
γ · E(q+0 ∧ q

+
1 ) =

√
γ ·
∫ ∞
0

(P{q0 > z})2 dz,

βα =
4 ln(2d)
√
γ
·
[

2

(1− α)
√
γ
∨ 1

E(q+0 ∧ q
+
1 )

]
.

(1.25)

Thus, for example, γ = 1/4, λ = 1/8, and βα = 32 ln(2d)/(1− α) when

q0 has the Rademacher distribution [q0 = ±1 with probability 1/2 each].

In addition to the preceding constants, we will need some notation: We

say that “U is a unit square” if we can write U = {x1, . . . , x4} as a collection

of four points that satisfy ‖x2−x1‖ = ‖x3−x2‖ = ‖x4−x3‖ = ‖x1−x4‖ = 1.

Also, for 0 < α < 1 we define the event Sα,

Sα :=


There exists a unique unit square U ⊂ Zd such that∑

16i<N :Si 6∈U
|qi| 6

1− α
2

∑
16i<N

|qi|

 . (1.26) eq:S

In other words, the event Sα is realized exactly when there exists a unique

unit square U such that the sum of the absolute charges not on U is at most

(1− α)/2 times the total absolute charge of the polymer.

thm:square Theorem 1.7 (The four points). Assume d > 2. Then for all δ > 0, there

is cδ ∈ (0 ,∞) such that for every N > 1 and β ∈ R,

P

{
PβN (Sα) > 1− exp

(
N ln (2d)

[
1− β

(1 + δ)βα

])}
> 1− exp (−cδN) .

Our result is limited to d > 2, since this is the minimal dimension in

which we can consider a square. But other results are also sometimes pos-

sible. For example, if S is replaced by the lazy random walk, then one can

adapt the present methods to prove the existence of two adjacent points

that bear most of the available charge provided that β is large enough. And

the latter assertion is valid for every d > 1.
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In the usual scaling βHN/N , Theorem 1.7 shows that the polymer is

localized for any β > βα. But the latter theorem yields a pointwise estimate

in β. It is instructive to also consider the scaling in which β = bN for

some b > 0. That is the case in which β is proportional to N instead of

being a constant. In that case, Sα continues to be a typical event when

α = 1 − 8 ln(2d)/((1 + 2δ)bγN). In other words, for every b > 0, all but a

bounded amount of the absolute charges live on four points.

Given a nonempty subset A ⊂ Zd, define

DiamA := sup
x,y∈A

‖x− y‖1 := sup
x,y∈A

d∑
i=1

|xi − yi|; (1.27)

this defines the diameter of A. Our next result describes the behavior of the

polymer for large values of β.

thm:range Theorem 1.8 (Logarithmic diameter). For all β ∈ R and K > 0 there

exist 0 6 c 6 C 6∞ such that

E

[
PβN

{
c 6

Diam{Si : 0 6 i < N}
lnN

6 C

}]
> 1−N−K , (1.28)

for all sufficiently large integers N > 1. Moreover:

1. If d > 1 and E|q0| <∞, then c > 0.

2. If d > 2 and

β > min
α∈(0,1)

[
βα ∨

ln(2d)

α
√
γ E|q0|

]
, (1.29) eq:cpt:cond

then C <∞.

Therefore, the polymer is “compact” for large values of β in the sense

that its diameter grows only logarithmically with the number of monomers.

Remark 1.9. Note, for example, that when the charges have the Rademacher

distribution [i.e., q0 = ±1 with probability 1/2 each], condition (1.29) is

stating that β > 34 ln(2d).
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Remark 1.10. Our proof applies equally well to the case that β scales with N

(see Theorem 2.15). And the endresult is that, in order to have a “bounded

diameter,” it suffices that β = b lnN for some b > 0.

Although the range of the polymer diverges with N (Theorem 1.8), one

can show that the expectation of ‖SN‖ remains bounded for all β sufficiently

large. We describe this phenomenon next.

Given α ∈ (0 , 1) consider the random variable

RNα :=

{
inf{0 6 i < N : Si ∈ U} on Sα,
N on Scα,

(1.30) def:R

where U is the unique random square that concentrates most of the charges,

given Sα. The quantity RNα is therefore the index of the first monomer that

belongs to the unit square U on Sα. And one can use RNα in order to obtain

a bound on the distance from U to the origin. The distributional symmetry

of the polymer shows that the last monomer on U has the same distribution

as N − 1−RNα . Therefore, for any 0 < α < 1,

EEβN |SN | 6
√

2 + 2EEβN
(
RNα
)
. (1.31)

We will prove later on that the distribution of RNα has an exponential tail.

Our final result is:

thm:ER Theorem 1.11 (Compactness). Suppose d > 2, α ∈ (0 , 1), β > βα, and

ρ := 2dE
(

e−βα
√
γ|q0|

)
< 1. (1.32) cond:rho

Then,

lim sup
N→∞

EEβN
(
RNα
)
6

ρ

(1− ρ)2
. (1.33) eq:cpt

Condition (1.32) is frequently easy to check. For example, when q0 has

the Rademacher distribution [i.e., P{q0 = ±1} = 1/2], ρ = 2d exp(−βα/2),

and (1.32) holds if and only if β > 2 ln(2d)/α. Since βα = 32 ln(2d)/(1−α),
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we find that—in the case of Rademacher-distributed charges—we have

β > 34 ln(2d) =⇒ sup
N>1

EEβN (RN1/17) 6
ρ

(1− ρ)2
<∞. (1.34)

1.5 On the annealed measure

Our proofs can be easily adapted to describe the behavior of the annealed

measure, defined by

P̃βN (A) :=
1

EZN (β)
E

[
1A exp

(
β

N
HN

)]
, (1.35)

when EZN (β) <∞. (The latter condition holds, for example, when β < 1/κ

and N is sufficiently large). The annealed free energy is

z̃ (β) := lim
N→∞

1

N
ln EZN (β). (1.36)

We can define the region of delocalization for the annealed measure and the

annealed critical point respectively as follows:

D̃ :=

{
β ∈ R : lim

N→∞
EZN (β) = eβ

}
;

β̃c := sup D̃ .

(1.37)

Our results for the annealed measure are similar in flavor to those for the

quenched measure:

1. The set D̃ is an interval that contains (−∞ , 1/κ); it coincides with

the localized phase in the sense that ‖P̃βN − P‖TV converges to 0 as

N →∞ if and only if β ∈ D̃ .

2. Theorem 1.5 continues to remain valid after we replace βc by β̃c and

z by z̃, and also add the restriction—to the set of β’s—that EZN (β)

is finite for all large N .

3. The proof of Lemma 2.4 shows that D̃ ⊂ D , therefore β̃c 6 βc; but we

believe that this inequality is not sharp in general.
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It is sometimes possible to compute β̃c; the following highlights an ex-

ample.

prop:bca Proposition 1.12. If q0 has a standard normal distribution, then EZN (1) =

∞ for all N > 1. Consequently, β̃c = 1.

We can adapt many of our localization results to the annealed case pro-

vided that EZN (β) is finite and β is large [consider for instance charges

that are bounded random variables]. In those cases, as β → ∞ the trajec-

tory concentrates on two points, while the charges at a given parity tend to

have a constant sign and an absolute value close to the essential supremum

‖q0‖L∞(P) of the charge distribution.

1.6 The influence of a pulling force
sec:pulling

Our proofs will rely only very little on the assumption that {Si}∞i=0 is a

simple symmetric random walk. To illustrate, let us say a few words about

the case where {Si}∞i=0 has a bias that corresponds to the action of a pulling

force.

For every λ ∈ Rd let us define a probability measure Pλ by the following

prescription of its Radon–Nikodým derivative with respect to P: For every

integer k > 1,
dPλ
dP

:=
exp(λ · Sk)

E exp(λ · Sk)
on Fk, (1.38)

where Fk denotes the sigma-algebra generated by all of the charges {qi}∞i=0

as well as the k initial values {Si}ki=0 of the random walk.

Under the measure Pλ the distribution of the charges q remains the

same as that under P, but S becomes a biased, in particular transient,

random walk with the following transition probabilities: For every basis

vector e ∈ Zd,

Pλ{Sk+1 − Sk = e} =
exp(λ · e)

E(exp(λ · S1))
. (1.39)

As we did before, in the unforced setting, we consider the measures

Pβ,λN (A) :=
1

ZN (β, λ)
Eλ

[
1A exp

(
β

N
HN

) ∣∣∣∣ q0, q1, . . . , qN−1] , (1.40)
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where ZN (β, λ) is the partition function,

ZN (β, λ) := Eλ

[
exp

(
β

N
HN

) ∣∣∣∣ q0, q1, . . . , qN−1] . (1.41)

Then we proceed to define the “λ–analogues” of the quantities of interest.

Namely:

Dλ :=
{
β ∈ R : ZN (β, λ)

P−→ eβ as N →∞
}

;

βc(λ) := sup Dλ; and

zλ(β) := lim
N→∞

1

N
lnZN (β, λ) .

(1.42)

Of course, we can write Pβ,λN (A) as follows as well:

Pβ,λN (A) =

E

[
1A exp

(
β

N
HN + λ · SN−1

) ∣∣∣∣ q0, q1, . . . , qN−1]
ZN (β, λ)E(exp(λ · S1))N−1

. (1.43)

The quantity λ · SN−1 is responsible for the different behavior of Pβ,λN from

PβN , and corresponds to the potential energy of a pulling force λ.

Define

Iλ(ε) := lim
N→∞

1

N
ln Pλ

{
L0
N > εN

}
for all ε ∈ (0 , 1/2). (1.44) eq:Il

The proof of Lemma A.1 below goes through, as no essential changes are

necessary, and ensures that Iλ : (0 , 1/2)→ (0 ,∞) exists and is continuous.

We will see that Theorem 1.1, Proposition 1.4, and Theorem 1.5 continue

to remain valid if we respectively replace D , P, PβN , βc, z, and I by Dλ,

Pλ,Pβ,λN , βc(λ), zλ, and Iλ.

We shall also prove that Theorems 1.7 and 1.8 continue to hold, but

some of the stated constants need to be changed because the probability of

the trajectory with maximal energy HN is no longer (2d)−N .

Our next result shows that the pulling force can sometimes trigger the

folding/unfolding transition as βc(λ) → ∞ when λ → ∞. It also prove
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that the function λ 7→ βc(λ) is locally Lipschitz continuous. In order to

prepare for that result let us observe that the right derivative z′λ of zλ

exists everywhere on (0 ,∞); this holds by convexity.

thm:pulling Theorem 1.13. If Eq0 = 0, Var q0 = 1, and κ <∞, then:

1. For all λ ∈ Rd,

βc(λ) > κ−1/2 ·

[√
ln E exp(λ · S1)

(Eq+0 )2 + (Eq−0 )2
∨ κ−1/2

]
, (1.45)

βc(λ) 6
2 ln(2d)(1 + 1{1}(d)) + 4 ‖λ‖∞

(Eq+0 )2 + (Eq−0 )2
. (1.46)

2. For all λ, µ ∈ Rd,

βc(λ+ µ)− βc(λ) 6
2 ‖µ‖∞

z′λ(βc(λ))
, (1.47)

and z′λ(βc(λ)) satisfies

z′λ(βc(λ)) >
1

βc(λ)
Iλ

(
1

2κβc(λ)

)
. (1.48)

2 Proofs
sec:proofs

2.1 Estimates on the partition function

For every ε > 0, we can consider the truncated partition function

ZεN (β) := E

[
1{L?N6εN} exp

(
β

N
HN

) ∣∣∣∣ q0, q1, . . . , qN−1] . (2.1) eq:Zeps

The following is the main result of this subsection, and is essential to

our characterization of the delocalized phase.

prop:EZ Proposition 2.1. Assume Eq0 = 0 and Var q0 = 1. If ε > 0 and β ∈ R

satisfy either β 6 0 or 2κβε < 1, then limN→∞ EZεN (β) = exp(β).
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Note that the above statement implies the convergence limN→∞ EZN (β) =

exp(β) for any β ∈ R such that κβ < 1, since L?N 6 (N+1)/2, and therefore

ZN (β) = Z
(1/2)+δ
N (β) for all N > (2δ)−1.

The proof rests on two preparatory lemmas.

lem:Z:Jensen Lemma 2.2. Suppose Eq0 = 0 and Var q0 = 1. Let ε ∈ (0, 1] and β ∈ R

such that either β 6 0 or 2κβε < 1. Then, for all δ > 0, sufficiently small,

there exists C ∈ (0 ,∞) such that for every N > 1, sufficiently large,

E exp

(
β

N
(q0 + · · ·+ ql−1)

2

)
6 exp

(
β
l

N
+ δ|β| l

N
+ C

l2

N2

)
, (2.2)

uniformly over l ∈ {1 , . . . , bεNc},

lem:moments Lemma 2.3. Choose and fix θ > 0. Then, as N →∞,

E

exp

 θ

N2

∑
x∈Zd

(LxN )2

 6 1 + δN , (2.3)

where δN = O(lnN/
√
N) if d = 1, δN = O([lnN ]2/N) if d = 2, and

δN = O(lnN/N) if d > 3.

Before we prove the two lemmas, let us use them in order to establish

Proposition 2.1. The lemmas will be proved subsequently.

Proof of Proposition 2.1. Let us first note that for all possible realizations

of S := {Si}∞i=0,

E (HN | S) =
∑
x∈Zd

E
[
(q1 + · · ·+ qLxN )2

∣∣ S] =
∑
x∈Zd

LxN = N. (2.4)

Therefore, Jensen’s inequality implies that E[exp(βHN/N) |S] ≥ eβ for all

realizations of S, whence

EZεN (β) > eβP {L?N 6 εN} → eβ as N →∞; (2.5)

16



see Lemma A.2 below. This proves half of the assertion of the proposition.

Next we establish a corresponding upper bound, thereby complete the proof.

Thanks to Lemma 2.2, for all sufficiently small δ > 0 there exists a

C ∈ (0 ,∞) such that for every N > 1, sufficiently large,

EZεN (β) = E

∏
x∈Zd

E

[
exp

(
β

N
(QxN )2

)∣∣∣∣S]1{L?N6εN}


6 E

exp

β ∑
x∈Zd

LxN
N

+ δ|β|
∑
x∈Zd

LxN
N

+ C
∑
x∈Zd

(LxN )2

N2

 .
(2.6)

Because
∑

x∈Zd L
x
N = N , it follows that

EZεN (β) 6 eβ+δ|β| E exp

C ∑
x∈Zd

(LxN )2

N2

 , (2.7)

and the remainder of the proof follows then from Lemma 2.3.

Next, we set out to derive Lemmas 2.2 and 2.3, as promised earlier.

Proof of Lemma 2.2. Our goal is to derive a uniform estimate for

E := E exp

(
β

N
(q0 + · · ·+ ql−1)

2

)
. (2.8)

[This is temporary notation, used specifically for this proof.]

Depending on the sign of β we introduce the Laplace/Fourier transform

Ψ(t) :=

{
E exp(tq0) if β > 0,

E exp(itq0) otherwise.
(2.9)

The behavior of Ψ at the origin is given by

Ψ(t) = exp

(
sgn(β)

t2

2
+ o(t2)

)
as t→ 0. (2.10) eq:psi:0

17



Furthermore, for all t ∈ R,

|Ψ(t)| 6

{
eκt

2/2 if β > 0,

1 otherwise.
(2.11)

Let ξ be independent of {qi}∞i=0, and have a standard normal distribution.

Then,

E = E exp

(√
2β

N
(q0 + · · ·+ ql−1) ξ

)
= E

Ψ

(√
2|β|
N

ξ

)l
6 E

∣∣∣∣∣Ψ
(√

2|β|
N

ξ

)∣∣∣∣∣
l
 .

(2.12) eq:Eexpl

According to (2.10), there exists some A(δ) > 0 such that

|Ψ(t)| 6 exp

(
(sgn(β) + δ)

t2

2

)
when |t| 6 A(δ). (2.13)

Because E exp(aξ2) = (1− 2a)−1/2 for every a < 1/2, (2.12) implies that E

is bounded above by[
1− 2(β + δ|β|) l

N

]−1/2
+ E

[
exp

(
εκβ+ξ2

)
1{|ξ|>A(δ)√N/(2β)}

]
. (2.14)

A Taylor expansion of the logarithm shows that if α < 1/2 then there

exists C ∈ (0 ,∞) such that −1
2 ln (1− 2αx) 6 αx + Cx2 for all x ∈ [0, 1].

Consequently if δ > 0 is sufficiently small, then ln E is bounded above by

(β + δ|β|) l
N

+ C
l2

N2
(2.15)

+ ln

(
1 +

√
1− 2(β + δ|β|) l

N
E

[
exp

(
εκβ+ξ2

)
1{|ξ|>A(δ)√N/(2β)}

])
,

18



and the logarithm is at most

√
1 + 2|β|E

[
exp

(
εκβ+ξ2

)
1{|ξ|>A(δ)√N/(2β)}

]
. (2.16)

By the Cauchy–Schwarz inequality, the latter expectation vanishes exponen-

tially fast as N → ∞, because εκβ+ < 1/2; in particular, it is uniformly

smaller than l2/N2 for all sufficiently large values of N . The lemma fol-

lows.

Proof of Lemma 2.3. Because
∑

x∈Zd(L
x
N )2 6 NL?N , it remains to bound

E[exp(θL?N/N)]. First of all, we note that for all k > 0 and N > 1,

E
[
(L0

N )k
]

=
∑
· · ·
∑

06i1,...,ik<N

P {Si1 = · · · = Sik = 0}

6 k!
∑
· · ·
∑

06i16...6ik<N

P {Si1 = · · · = Sik = 0}

6 k!
(
EL0

N

)k
.

Consequently,

E

[
exp

(
L0
N

2EL0
N

)]
=
∞∑
k=0

1

k!
E

[(
L0
N

2EL0
N

)k]
6 2. (2.17) eq:exponentialbound

Therefore, Chebyshev’s inequality, (2.17), and (A.8) together imply that for

all N > 1 and y > 0,

P {L?N > yN} 6 2(2N)d exp

(
− yN

2EL0
N

)
. (2.18)

We will use this bound only if the right-hand side is 6 1; i.e., when

y > αN , where αN :=
2EL0

N × ln[2(2N)d]

N
. (2.19)
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Else, we use the trivial bound P{L?N > yN} 6 1. In this way, we find that∫ ∞
0

P {L?N > yN} eθy dy

6 αN +O(Nd)×
∫ ∞
αN

exp

{
θy − yN

2EL0
N

}
dy.

(2.20) eq:int:bd1

Since EL0
N =

∑N
i=1 P{Si = 0}, the local-limit theorem [and excursion theory,

when d > 3] together show that

EL0
N = (1 + o(1))×


√
N/π if d = 1,

(2π)−1 lnN if d = 2,

1/ρ(d) if d > 3,

(2.21)

where ρ(d) := P{infk>1 ‖Sk‖ > 0} ∈ (0 , 1) for d > 3. It follows readily from

this and (2.20) that

αN = (1 + o(1))×


2 lnN/

√
πN if d = 1,

2(lnN)2/(πN) if d = 2,

2d lnN/(ρ(d)N) if d > 3.

(2.22)

Moreover,∫ ∞
0

P {L?N > yN} eθy dy

6 αN +O(Nd)×
∫ ∞
αN

exp

{
θy − yN

2EL0
N

}
dy,

(2.23)

and direct computations show that the preceding is O(lnN/
√
N) if d = 1,

O([lnN ]2/N) if d = 2, and O(lnN/N) if d > 3. Integration by parts then

shows that

E

[
exp

(
θL?N
N

)]
= 1 +

∫ ∞
0

P {L?N > yN} eθy dy. (2.24)

Therefore, the lemma follows from the bound
∑

x∈Zd(L
x
N )2 6 NL?N .
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2.2 The delocalized phase

Before we give the proof of Theorem 1.1, we state and prove an easy conse-

quence of Proposition 2.1:

lem:Z:eps Lemma 2.4. Assume Eq0 = 0, Var q0 = 1 and κ < ∞. Let ε > 0 and

β ∈ R such that either β 6 0 or 2κβε < 1. Then

ZεN (β)
P−→ eβ as N →∞. (2.25)

Proof. First, we prove that, when β 6 0 or 4κβε < 1,

ZεN (β)
L2(P)−→ eβ as N →∞. (2.26) ZL2

Because (ZεN (β))2 6 ZεN (2β) [Jensen’s inequality],

E

(∣∣∣ZεN (β)− eβ
∣∣∣2) 6 EZεN (2β) + e2β − 2eβEZεN (β). (2.27)

The latter quantity goes to 0 as N → ∞, thanks to Proposition 2.1, and

this proves (2.26). Now we conclude the proof of the Lemma and assume

β 6 0 or 2κβε < 1. The variable ZεN (β) − Z
ε/2
N (β) is non-negative and

its expectation goes to 0 as N → ∞, cf. Proposition 2.1. Therefore it

converges to 0 in probability. By (2.26) we know already that Z
ε/2
N (β)→ eβ

in probability as N →∞. The conclusion follows.

Proof of Theorem 1.1. Let us first prove that (−∞ , 1/κ) ⊆ D . We choose

and fix β ∈ (−∞ , 1/κ). There is δ > 0 such that 2κβ(12 + δ) < 1. We have

seen already that ZN (β) = Z
(1/2)+δ
N (β) for all N > (2δ)−1, therefore β ∈ D

is a consequence of Lemma 2.4.

Next we prove that D is an interval. Thanks to the topology of R, it

suffices to show that D ∩ (0,∞) is connected.

Let us choose and fix β1, β2 ∈ D such that 0 < β1 < β2. For all β ∈
(β1 , β2) and γ > 1, (ZN (β))γ 6 ZN (γβ), thanks to the conditional Jensen
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inequality. It follows that ZN (β1)
β/β1 6 ZN (β) 6 ZN (β2)

β2/β. We can pass

to the limit [N → ∞] to deduce that β ∈ D . This implies the connectivity

of D , and completes the proof of part 1.

Assertion 2 of the theorem holds because

PβN {L
?
N 6 εN} =

ZεN (β)

ZN (β)
, (2.28)

and ZεN (β)→ eβ in probability for all sufficiently small ε > 0 [Lemma 2.4].

Finally we demonstrate part 3. Assume first β 6∈ D . For N fixed, the

total variation is at least PβN{L?N 6 εN} − P{L?N 6 εN}, which does not

converge to 0 in probability as N → ∞ according to assertion 2 and to

Lemma A.2.

Now we consider β ∈ D and ε > 0 such that 4κβ+ε < 1, and consider

some event A that might depend on all {Si}∞i=0 and {qi}∞i=0. We have∣∣∣PβN (A)− P (A |q0, . . . , qN−1 )
∣∣∣ 6 d1 + d2 (2.29)

where

d1 :=
∣∣∣PβN (A ∩ {L?N 6 εN})− P (A ∩ {L?N 6 εN}| q0, . . . , qN−1)

∣∣∣ , and

d2 := PβN ({L?N > εN}) + P ({L?N > εN}| q0, . . . , qN−1) .
(2.30)

According to assertion 2 and to Lemma A.2, d2 → 0 in probability as N →
∞. So it suffices to prove that d1 → 0 in probability as N →∞, uniformly

in A. It follows from the definition of PβN that

d1 6 E

[∣∣∣∣exp (βHN/N)

ZN (β)
− 1

∣∣∣∣1A∩{L?N6εN}

∣∣∣∣ q0, q1, . . . , qN−1]

6 E

[∣∣∣∣exp (βHN/N)

ZN (β)
− 1

∣∣∣∣2 1{L?N6εN}

∣∣∣∣∣ q0, q1, . . . , qN−1
]1/2

=

[
ZεN (2β)

ZN (β)2
− 2

ZεN (β)

ZN (β)
+ P ({L?N 6 εN}| q0, . . . , qN−1)

]1/2
.

(2.31)
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And the latter quantity, which does not depend on A, goes to zero in prob-

ability as N →∞; see Lemma 2.4 and Lemma A.2.

Finally we prove the invariance principle of the introduction.

Proof of Corollary 1.2. Theorem 1.1 implies that EβN [Φ (SN )]− E[Φ(SN )]

converges in probability to zero, as N → ∞. And, according to Donsker’s

invariance principle, E[Φ(SN )] → E[Φ(B)]. The corollary follows immedi-

ately from these observations.

2.3 The existence of free energy (proof of Proposition 1.4)

In this section we show that the normalized energy HN/N is subadditive,

and then conclude Proposition 1.4 from that fact.

lem:subadd Lemma 2.5. Let N1, N2 > 1 and q̃ := {qN+i}∞i=0, S̃ := {SN1+i − SN1}∞i=0,

Q̃xN :=
∑N−1

i=0 q̃i1{S̃i=x}, and H̃N :=
∑

x∈Zd(Q̃
x
N )2. Then,

HN1+N2

N1 +N2
6
HN1

N1
+
H̃N2

N2
a.s. [P]. (2.32) eq:subadd

Furthermore, HN1 and HN2 are conditionally independent, given {qi}∞i=0,

and the conditional distribution of H̃N2 is the same as the conditional dis-

tribution of HN2 given the charges q̃.

Proof. Clearly,

QxN1+N2
= QxN1

+ Q̃
x+SN1
N2

for every x ∈ Zd. (2.33)

Therefore, the convexity of h(x) := x2 implies that

1

N1 +N2

(
QxN1+N2

)2
6

1

N1

(
QxN1

)2
+

1

N2

(
Q̃
x+SN1
N2

)2
. (2.34)

We can sum the preceding over all x ∈ Zd to deduce (2.32). In addition, the

conditional distribution of H̃N2 , given the charges q̃, depends only on the

distribution of S̃, which is the law of a simple random walk.
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Proof of Proposition 1.4. Let

zq
N (β) :=

1

N
lnZN (β) :=

1

N
ln E

[
exp

(
β
HN

N

) ∣∣∣∣ q0, q1, . . . , qN−1] (2.35) eq:FN

denote the free energy corresponding to a finite and fixed N > 1 and to a

given realization of the charges q := {qi}∞i=0.

By the conditional Jensen’s inequality,

lim inf
N→∞

E
[
zq
N (β)

]
> β lim

N
E

(
HN

N2

)
= 0, (2.36) King1

since as N →∞,

EHN = N Var(q0) + (Eq0)
2E
∑
x∈Zd

(LxN )2 = o(N2); (2.37)

see Lemma 2.3. This proves that if z(β) exists [as the proposition asserts]

and is nonrandom, then certainly z(β) > 0.

Now we prove convergence.

According to Lemma 2.5, for every fixed N1, N2 > 1, we can bound

zq
N1+N2

(β) from above by

1

N1 +N2
ln E

[
exp

(
β
HN1

N1

)
× exp

(
β
H̃N2

N2

)∣∣∣∣∣ q0, q1, . . . , qN1+N2−1

]
=

1

N1 +N2

(
N1zq

N1
(β) +N2zq̃

N2
(β)
)
. (2.38)

Because zq
1(β) = q20 has a finite expectation and because of the minoration

(2.36), Kingman’s subadditive ergodic theorem [17, 18] tells us that zq
N (β)

converges a.s. and in L1(P). In particular,

z(β) = lim
N→∞

1

N
E lnZN (β) . (2.39) eq:Fking

The monotonicity and the convexity of β 7→ N−1 lnZN (β), and hence of z,
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follow respectively from the following relations:

d

dβ

(
zq
N (β)

)
=

Z ′N (β)

NZN (β)
= EβN

(
HN

N2

)
;

d2

dβ2
(
zq
N (β)

)
=
Z ′′N (β)ZN (β)− [Z ′N (β)]2

N [ZN (β)]2
= Var

PβN

(
HN

N3/2

)
;

(2.40) eq:F’F’’

together with the fact that both of these quantities are nonnegative.

2.4 The first-order phase transition (proof of Theorem 1.5)

Our proof of Theorem 1.5 requires three preliminary Lemmas.

lem:jump Lemma 2.6. For all β > 0 and ε, η > 0,

PβN

{
ε <

L?N
N

6
1− η
2κβ

}
P−→ 0 as N →∞. (2.41)

Proof. We assume of course that ε < (1− η)/(2κβ). Because ZN (β) > 1,

E

[
PβN

{
ε <

L?N
N

6
1− η
2κβ

}]
= E

[
Z

(1−η)/(2κβ)
N (β)− ZεN (β)

ZN (β)

]
6 E

[
Z

(1−η)/(2κβ)
N (β)− ZεN (β)

]
.

(2.42)

This proves the lemma because according to Proposition 2.1 the preceding

converges to zero as N →∞.

lem:densF Lemma 2.7. If E(q20) = 1, then for all ε, β > 0,

PβN

{
L?N
N

>
z(β)

β
− ε
}

P−→ 1 as N →∞. (2.43)
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Proof. Whenever we have HN/N
2 6 −ε+ [z(β)/β], then we certainly have

exp(βHN/N) ≤ exp(Nz(β)− βεN). Therefore,

PβN

{
HN

N2
6

z(β)

β
− ε
}

6
eNz(β)−βεN

ZN (β)
. (2.44)

It follows from Proposition 1.4 that for every ε > 0,

PβN

{
HN

N2
>

z(β)

β
− ε
}

P−→ 1 as N →∞. (2.45) eq:densF

Next we prove that the preceding implies the result.

In accord with the Cauchy–Schwarz inequality,

(QxN )2 6

(
N∑
i=1

q2i 1{Si=x}

)
× LxN for all x ∈ Zd

6

(
N∑
i=1

q2i 1{Si=x}

)
× L?N .

(2.46)

We sum this inequality over x ∈ Zd to find that

HN 6 L?N ·
N∑
i=1

q2i . (2.47) eq:H:Lstar

The lemma follows from (2.45) and the law of large numbers.

lem:LH Lemma 2.8. For every ε, β > 0 and 0 < δ < I(ε)/β,

PβN
{
HN 6 δN2, L?N > εN

} P−→ 0 as N →∞. (2.48)

Proof. According to Lemma A.2,

lim sup
N→∞

1

N
ln E

[
eβHN/N1{HN6δN2, L?N>εN}

∣∣∣ q0 , . . . , qN−1]
6 βδ − I(ε) < 0,

(2.49)
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almost surely. Because ZN (β) > 1, PβN{HN 6 δN2, L?N > εN} is a.s.

bounded above by the conditional expectation in the preceding display.

Proof of Theorem 1.5. For all β ∈ R we define

γ(β) := lim
ε↓0

lim sup
N→∞

E

[
PβN

{
L?N
N

> ε

}]
. (2.50)

Theorem 1.1 shows that γ(β) > 0 if and only if β 6∈ D . We will prove that,

for all β > 0,

lim
δ↓0

z(β + δ)−z(β)

δ
>
γ(β)

β
I

(
1

2κβ

)
. (2.51) eq:lwbFp

Before we address the proof of (2.51), we explain how it implies (1.18). For

any β > βc, we have γ(β) > 0 [Theorem 1.1] and therefore a consequence

of (2.51) is that z(β) > 0, for all β > βc. Then, from Lemma 2.7 it follows

that z(β) > 0⇒ γ(β) = 1, therefore γ(β) = 1 for all β > βc, and reporting

in (2.51) yields the positive slope of z at the critical point, that is (1.18).

Eq. (1.19) follows from the fact that z(β) > 0 for all β > βc, together with

Lemmas 2.7 and 2.6.

Now we turn to the proof of (2.51). We fix β > 0 and ε > 0. According

to Lemma 2.6 we have as well

lim sup
N→∞

E

[
PβN

{
L?N
N

>
1− ε
2κβ

}]
= γ(β). (2.52)

Since ZN (β) and ZεN (β) are nondecreasing functions of β,

inf
η∈[0,δ]

Pβ+ηN

{
L?N
N

>
1− ε
2κβ

}
> 1−

Z
(1−ε)/(2κβ)
N (β + δ)

ZN (β)

> PβN

{
L?N
N

>
1− ε
2κβ

}
− ε,

(2.53)
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almost surely on T δN where

T δN :=

{
Z

(1−ε)/(2κβ)
N (β + δ)− Z(1−ε)/(2κβ)

N (β)

ZN (β)
6 ε

}
. (2.54)

According to Lemma 2.4, for all δ > 0 small enough, Z
(1−ε)/(2κβ)
N (β) → eβ

while Z
(1−ε)/(2κβ)
N (β + δ) → eβ+δ in probability, as N → ∞. Consequently

P(T δN )→ 1 and

lim sup
N→∞

inf
η∈[0,δ]

E

[
Pβ+ηN

{
L?N
N

>
1− ε
2κβ

}]
> γ(β)− ε (2.55)

for all δ > 0 sufficiently small. In view of Lemma 2.8, this yields also

lim sup
N→∞

inf
η∈[0,δ]

E

[
Pβ+ηN

{
HN

N2
>

1

β
I

(
1− ε
2κβ

)}]
> γ(β)− ε. (2.56)

Consequently, we can integrate (2.40) over all η ∈ (β , β + δ) to see that

lim sup
N→∞

[E [zN (β + δ)]− E [zN (β)]] > δ
γ(β)− ε

β
I

(
1− ε
2κβ

)
(2.57)

and letting ε→ 0 we conclude the proof of (2.51).

2.5 Energy and the distance to optimality: The four points

(Proofs of Proposition 1.6 and Theorem 1.7)

The aim of this subsection is to prove Proposition 1.6 and Theorem 1.7. We

consider henceforth the following related problem: What is the maximum

value ofHN given q0, . . . , qN−1, where the maximum is taken over all possible

random walk paths.

Let us introduce some notation. We say that x ∈ Zd is odd (resp.

even) when the sum of its coordinates is odd (resp. even). Given N > 1,
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ε ∈ {− ,+}, and p ∈ {odd , even} we define

Qpε :=
∑

06i<N :
i≡p

qεi , (2.58) eq:Qep

where “i ≡ p” means that “i has parity p.” The quantity Qpε is the total

value of charges of sign ε available at positions of parity p.

Given a realization of (q , S) we define xpε as any one of the points of Zd

with parity p such that εQxN is maximal (since positions with no charge exist

we always have εQx
p
ε
N > 0). It is not hard to see that we can ensure that xpε

is always a random variable [measurable with respect to the sigma-algebra

generated by (q , S)].

Let us also observe that if there exists a point x of parity p such that

εQxN > Qpε/2, then there is a unique choice for xpε, namely xpε = x.

We may think of

DN :=
∑∑
ε∈{−,+}

p∈{odd,even}

Qpε

(
Qpε − εQ

xpε
N

)
(2.59) eq:DN

as the charge distance to optimality . Clearly, DN > 0.

lem:HD Lemma 2.9. The following are valid for all N > 1:

1. For every d > 1,

HN 6
∑∑
ε∈{−,+}

p∈{odd,even}

(Qpε)
2 −DN . (2.60) eq:HDN

2. For every d > 2,

max
S

HN (S) =
∑∑
ε∈{−,+}

p∈{odd,even}

(Qpε)
2, (2.61) eq:Hmax:srw

where “maxS” refers to the maximum over all possible random walk

paths.
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Proof. In order to prove part 1 we first decompose, and then estimate, the

energy as follows:

HN =
∑∑
ε∈{−,+}

p∈{odd,even}

∑
x∈Zd:x≡p,
εQxN>0

(QxN )2 (2.62)

6
∑∑
ε∈{−,+}

p∈{odd,even}

max
x∈Zd:x≡p,
εQxN>0

(εQxN )×
∑

x∈Zd:x≡p,
εQxN>0

εQxN (2.63)

6
∑∑
ε∈{−,+}

p∈{odd,even}

εQx
p
ε
N ×Q

p
ε. (2.64)

We express the latter in terms of DN to complete the proof of part 1.

Next we demonstrate part 2.

Thanks to part 1 of the lemma,

max
S

HN 6
∑∑
ε∈{−,+}

p∈{odd,even}

(Qpε)
2 for all d > 1. (2.65)

Now we assume d > 2 and describe an “optimal trajectory” in order to

establish the second part of the lemma.

In order to be concrete, we will consider the case that q0 > 0; the case

that q0 < 0 can be considered similarly. Define

σeven+ :=(0, 0, 0, . . .), σeven− :=(1, 1, 0, . . .), (2.66)

σodd+ := (0, 1, 0, . . .), σodd− :=(1, 0, 0, . . .). (2.67)

[When q0 < 0, we exchange the roles of σeven+ and σeven− in the following ar-

gument.] Now let us consider the following possible random walk trajectory:

Si = σ
parity(i)
sgn(qi)

for i > 0 (2.68)

A direct inspection shows that: (i) S is a realization of the simple random

walk; and (ii) this realization of the random walk path achieves the max-

imum energy maxS HN . [In particular, for this realization of the random
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walk we have xpε = σpε .]

Our next Proposition is a ready consequence.

prop:M Proposition 2.10. If d > 2, then a.s. [P],

lim
N→∞

max
S

HN

N2
=

(Eq+0 )2 + (Eq−0 )2

2
∈ [0 ,∞]. (2.69)

This result immediately implies Proposition 1.6 because the random walk

piece {Si}N−1i=0 is equal to the argmax of S 7→ HN with probability (2d)−N .

And therefore

ZN (β) > (2d)−N exp

(
βmax

S

HN

N

)
. (2.70) eq:Z:maxH

Proof of Proposition 2.10. Owing to Lemma 2.9, we can decompose the

maximum energy as

max
S

HN = (Qodd
+ )2 + (Qodd

− )2 + (Qeven
+ )2 + (Qeven

− )2. (2.71)

And one can check readily that the strong law of large numbers for i.i.d.

nonnegative random variables implies that a.s. [P],

lim
N→∞

Qpε
N/2

= Eqε0 for all ε ∈ {− ,+} and p ∈ {odd , even}. (2.72)

This completes the proof.

Next we present a lower bound for DN in terms of four nonadjacent

points. This bound will play an important role in the proof of Theorem 1.7.

It also will lead to an upper bound on the maximum energy maxS HN in

the case that d = 1.

lem-Dxd1 Lemma 2.11. If d > 1 and ε, ε′ ∈ {− ,+} satisfy ‖xoddε − xevenε′ ‖ 6= 1, then

DN >
∑

16i<N : i odd

min
(
Qodd
ε qεi , Q

even
ε′ qε

′
i−1

)
. (2.73)
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Proof. First of all, let us observe from the definition of D that

DN > Qodd
ε

(
Qodd
ε − εQx

odd
ε
N

)
+Qeven

ε′

(
Qeven
ε′ − ε′Qx

even
ε′
N

)
. (2.74)

Next we note that

Qodd
ε − εQx

odd
ε
N >

∑
i odd:Si 6=xoddε

qεi , and

Qeven
ε′ − ε′Qx

even
ε′
N >

∑
i even:Si 6=xevenε′

qε
′
i .

(2.75)

If i ∈ {1, . . . , N − 1} is odd, then we necessarily have either Si−1 6= xevenε′ or

Si 6= xoddε . Therefore, the lemma follows.

The following lemma will also be useful in our forthcoming analysis.

lem:lwbH Lemma 2.12. For all d > 1, β > 0, ε > 0, N > 1, and q0, . . . , qN−1 ∈ R:

PβN

{
max
S

HN −HN > εN2

}
6 eN [ln(2d)−βε]. (2.76)

Proof. Because

PβN

{
max
S

HN −HN > εN2

}
6

exp
(
β
N

(
maxS HN − εN2

))
ZN (β)

, (2.77)

the lemma follows from (2.70).

Now we conclude the proof of Theorem 1.7. We introduce

Γ := min
ε∈{−,+}

p∈{even,odd}

(Qpε)
2,

Λ := min
ε,ε′∈{−,+}

∑
06i<N : i odd

min
(
Qodd
ε qεi , Q

even
ε′ qε

′
i−1

)
.

(2.78) eq:Gamma
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Recall from (1.22) and (1.23) the quantities γ and λ. Then a direct

inspection reveals that

lim
N→∞

Γ

(N/2)2
= γ, lim

N→∞

Λ

(N/2)2
= λ. (2.79)

For every fixed δ > 0, let us consider the events

EδN :=

{
(1 + δ)

Γ

N2
>
γ

4
and (1 + δ)

Λ

N2
>
λ

4

}
, (2.80) def:EN

Cα :=

 εQx
p
ε
N >

1 + α

2
Qpε for all ε = ± and p = odd/even

‖xoddε − xevenε′ ‖ = 1 for all ε, ε′ = ±1

 , (2.81) eq:Calpha

so that Cα is the event that the points x
odd / even
± are adjacent and possess each

a proportion at least (1 + α)/2 of the available charge. Note, in particular,

that

Cα ⊆ Sα, (2.82) eq:CinS

where the event Sα was defined in (2.82).

Proof of Theorem 1.7. In accord with Cramér’s theorem there exists cδ > 0

such that

P(EδN ) > 1− exp (−cδN) for all N > 1. (2.83) eq:pEN

Next we observe that if εQx
p
ε
N 6 (1 + α)Qpε/2 for some p ∈ {odd , even} and

ε ∈ {− ,+}, then

DN >

(
1− α

2

)
(Qpε)

2 >

(
1− α

2

)
Γ, (2.84)

in accord with the definition (2.59) of DN . If, on the other hand, ‖xoddε −
xevenε′ ‖ 6= 1 for some ε, ε′ ∈ {− ,+} then DN > Λ [Lemma 2.11]. There-

fore, we may apply Lemmas 2.9 and 2.12 in conjunction to deduce that the

33



following holds almost surely on EδN :

PβN (Ccα) 6 PβN

{
DN > min

(
1− α

2
· Γ ,Λ

)}
6 PβN

{
(1 + δ)

DN

N2
> min

(
1− α

2
· γ

4
,
λ

4

)}
6 exp

(
N

[
ln(2d)− β

1 + δ
min

(
1− α

2
· γ

4
,
λ

4

)])
.

(2.85) eq:PC

This and (2.82) together imply the result.

Our next result estimates the maximum allowable energy maxS HN/N
2

in the case that d = 1. It might help to recall that λ was defined in (1.23).

lem:maxH:d1 Lemma 2.13. If d = 1, then

lim sup
N→∞

1

N2
max
S

HN 6
(Eq+0 )2 + (Eq−0 )2

2
− λ

4
a.s. [P]. (2.86)

And, for all ε ∈ {− ,+},

lim inf
N→∞

1

N2
max
S

HN (2.87)

>
(Eq+0 )2 + (Eq−0 )2

4
+
a4
4

(Eqε0)2 +

(
Eq0
2
− εa2Eq

ε
0

2

)2

, (2.88)

almost sure [P], where

ak := [P{q0 > 0}]k + [P{q0 < 0}]k for k = 2, 4. (2.89)

Remark 2.14. In the case that q0 has the Rademacher distribution [i.e.,

P{q0 = ±1} = 1/2], the preceding tells us that

19

128
6 lim inf

N→∞

1

N2
max
S

HN 6 lim sup
N→∞

1

N2
max
S

HN 6
7

32
. (2.90)

[Note that 19/128 ≈ 0.1484375 and 7/32 ≈ 0.21875.]
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Proof of Lemma 2.13. We use the same notation as in the former proof.

Since we have d = 1 it is not possible that xodd± are adjacent to xeven± . In

view of Lemma 2.11 this implies that

(1 + δ)
DN

N2
>
λ

4
for all q ∈ EδN , (2.91)

and hence maxS HN/N
2 is bounded above by

(Qodd
+ )2 + (Qodd

− )2 + (Qeven
+ )2 + (Qeven

− )2

N2
− λ

4(1 + δ)
, (2.92)

for every q ∈ EδN . This yields the first assertion of the lemma.

We propose the following strategy in order to establish the asserted

[asymptotic] lower bound on N−2 maxS HN : Choose and fix a sign ε ∈ {±},
and place odd monomers at positions Si = 1 if qi > 0, Si = −1 otherwise,

and even monomers—whenever possible [that is, Si−1 = Si+1]—at position

Si = ±2 if sign(qi) = ε and Si = 0 otherwise. A computation, involving the

strong law of large numbers, then shows that almost surely [P],

lim
N→∞

Q±1N
N

= ±Eq±0
2
,

lim
N→∞

Q+2
N

N
= ε

Eqε0
2

(P{q0 > 0})2 ,

lim
N→∞

Q−2N
N

= ε
Eqε0
2

(P{q0 < 0})2 , and

lim
N→∞

Q0
N

N
=

Eq0
2
− εa2

Eqε0
2
.

(2.93)

This yields the lower bound.

2.6 Logarithmic range and bounded expectation of |SN | (Proofs

of Theorems 1.8 and 1.11)

In this Section we prove Theorem 2.15 below and derive Theorem 1.8 from

it. We also present here a proof of Theorem 1.11.
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Given N > 1 and L > 1, define

q̄L := min
`>L

06i<N−`

(
1

`

i+`−1∑
k=i

|qk|

)
. (2.94) eq:qL

thm:log Theorem 2.15 (Logarithmic diameter). 1. If d > 1 and E|q0| < ∞,

then for every β ∈ R and ε > 0 there exists c > 0 such that for

all sufficiently large integers N > 1,

E

[
PβN

{
Diam{Si : 0 6 i < N}

lnN
> c

}]
> 1− exp

(
−cN1−ε) . (2.95) eq:Diamslog

2. If d > 2, then for every α ∈ (0, 1), N > 1, 0 6 L 6 N , and β ∈ R,

PβN

({
Diam{Si : 0 6 i < N} > L+ 1

}
∩ Cα

)
6 N2 exp

(
L

[
ln(2d)− 2βα

√
Γ

N
q̄L

])
.

(2.96) eq:Diamilog

First we present a quick proof of Theorem 1.8 that uses Theorem 2.15.

Then we establish the latter result.

Proof of Theorem 1.8. We apply (2.95) and (2.96) with L := C lnN to ob-

tain all but part 2 immediately. And part 2 follows from Theorem 1.7 and

from Cramér’s theorem, since

P {q̄L 6 E|q0| − ε} 6 N2 sup
l>L

P

{
|q1|+ · · ·+ |ql|

l
6 E|q0| − ε

}
(2.97)

decays more quickly than N−K , provided that C is large enough.

Our proof of Theorem 2.15 hinges on an analysis of the trajectory of a

certain portion of the polymer, conditional on the charges and the remaining

portions of the polymer. We begin with a Lemma that is useful for bounding

the range of the polymer from above.
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Choose and fix an integer N > 1, and let I be a contiguous subset of

{0 , . . . , N − 1} with |I| < N . Given a realization of the polymer S that

satisfies Cα for some 0 < α < 1, we say that monomer i ∈ {0, . . . , N − 1}
is optimal when Si = x

parity(i)
sgn(qi)

(when qi = 0, monomer i is optimal when

Si ∈ {xparity(i)+ , x
parity(i)
− }). By extension, we say that S is nonoptimal on I

when none of the monomers i ∈ I are optimal. Define

N (I) := {S is nonoptimal on I} , and

C(I) := Cα ∩ {S is optimal at the position(s) next to I} ,
(2.98)

where α ∈ (0 , 1), and Cα is the event defined in (2.81).

lem:HSt Lemma 2.16. Let N , α, and I be fixed as above. Given a realization of q

and S ∈ N (I) ∩ C(I), define S̃ as follows:

S̃i =


Si if i 6∈ I,
x
parity(i)
+ if i ∈ I & qi > 0,

x
parity(i)
− if i ∈ I & qi < 0.

(2.99)

Then the trajectory (S̃i− S̃0)N−1i=0 is a possible realization of a simple random

walk and

HN (S̃)−HN (S) > 2α
∑∑
ε∈{−,+}

p∈{odd,even}

Qpε × ∑
i∈I: i≡p

qεi

 . (2.100)

Proof. Because S is optimal off I, S̃ is a simple random walk [but it might

not start at the origin].

Next we decompose HN (S̃)−HN (S) as

∑
x∈{xodd even

± }∪{Si; i∈I}

[(
QxN (S̃)

)2
− (QxN (S))2

]

=
∑

x∈{xodd / even
± }∪{Si; i∈I}

(
QxN (S̃) +QxN (S)

)(
QxN (S̃)−QxN (S)

)
.

(2.101)

37



Now we observe that: (i) If x = xpε, then

QxN (S̃) = QxN (S) +
∑

i∈I:i≡p , εqi>0

qi; (2.102)

and (ii) If x = Si for some i ∈ I, then

QxN (S̃) = QxN (S)−
∑

i∈I:Si=x
qi. (2.103)

Consequently, we can write

HN (S̃)−HN (S) := T1 − T2, (2.104) HStT1T2

where

T1 :=
∑∑
ε∈{−,+}

p∈{odd,even}

2Qx
p
ε
N (S) +

∑
i∈I:i≡p,εqi>0

qi

 ∑
i∈I:i≡p,εqi>0

qi, (2.105)

and

T2 :=
∑

x∈{Si; i∈I}

(
QxN (S̃) +QxN (S)

) ∑
i∈I:Si=x

qi. (2.106) eq:HSt1

Since εQx
p
ε
N (S) > (1 + α)/2Qpε(S),

T1 > (1 + α)
∑∑
ε∈{−,+}

p∈{odd,even}

Qpε ×
∑

i∈I: i≡p
qεi . (2.107) eq:HSt2

Let us write, temporarily,

X odd := {Si; i ∈ I odd} . (2.108)

38



Then clearly∑
x∈X odd

(
QxN (S̃) +QxN (S)

) ∑
i∈I:Si=x

qi

6
∑

ε∈{−,+}

∑
x∈X odd

(
QxN (S̃) +QxN (S)

)ε  ∑
i∈I:Si=x

qi

ε

6
∑

ε∈{−,+}

max
x odd:x 6=xodd±

(
QxN (S̃) +QxN (S)

)ε
×

∑
i∈I: i odd

qεi

6 (1− α)
∑

ε∈{−,+}

Qodd
ε

∑
i∈I: i odd

qεi ;

(2.109)

the last line is valid because, whenever x 6= xodd± is odd, the quantities QxN (S̃)

and QxN (S) both lie in the interval [−1
2(1−α)Qodd

− , 12(1−α)Qodd
+ ]. It follows

that

T2 6 (1− α)
∑∑
ε∈{−,+}

p∈{odd,even}

Qpε
∑

i∈I: i≡p
qεi . (2.110) eq:HSt3

The claims follows from (2.104), (2.107), and (2.110).

Proof of Theorem 2.15. We begin by deriving (2.95).

With probability exponentially close to one [as N →∞], the total charge

of the polymer satisfies
N−1∑
i=0

|qi| 6 2NE|q0|. (2.111) eq:good:q

Therefore, by conditioning, we may [and will] assume that the charges satisfy

the former inequality.

Because the q’s satisfy (2.111), it follows that if we modify a single

position Si of the polymer, then we change HN (S) by at most 8NE|q0|×|qi|.
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Consequently,

PβN

(
Diam{Si : N1 6 i < N2}
> (N2 −N1 − 1)/2

∣∣∣∣∣S0, . . . SN1−1, SN2 , . . . , SN−1

)

>
1

(2d)N2−N1
exp

−8|β|E|q0|
∑

N16i<N2

|qi|

 ,

(2.112) eq:Diam1

almost surely for every N1 < N2 in {0, . . . , N}. Given L ∈ {1 , . . . , N − 1},
define

KL :=

k ∈ {1, . . . , [N/L]} :
∑

(k−1)L6i<kL

|qi| 6 2LE|q0|

 . (2.113)

Then, (2.112) leads to the bound

PβN

{
max
k∈KL

Diam{Si : (k − 1)L < i 6 kL} < L− 1

2

}
6
(
1− aL

)|KL|
,

(2.114)

where a := exp
(
−16|β|(E|q0|)2

)
/(2d). Now we choose L judiciously; namely,

we let L := LN := [−ε ln(N)/ ln(a)]—so that aL/N−ε → 1 as N → ∞—in

order to deduce the following:

E

[
PβN

{
Diam{Si : i < N} < L− 1

2

}]
6 P

{
N∑
i=1

|qi| > 2NE|q0|

}
+ P

{
|KL| 6

N

2L

}
+
(
1−N−ε

)N/(2L)
.

(2.115)

This yields (2.95).

We prove (2.96) next.

If Cα holds and S has L consecutive nonoptimal monomers, then we

can find a contiguous I ⊂ {0 , . . . , N − 1} such that L 6 |I| < N and

S ∈ N (I) ∩ C(I). There are not more than N2 corresponding choices for
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such an I. Therefore,

PβN

({
S has L consecutive

nonoptimal monomers

}
∩ Cα

)
6 N2 × sup

I contiguous:|I|>L
PβN (N (I) ∩ C(I)) .

(2.116) eq:claimL

Consider such a contiguous set I. Every S ∈ N (I) ∩ C(I) gets mapped to

S̄ := S̃ − S̃0 ∈ C(I), and no more than (2d)|I| choices of S yield the same S̄.

In addition, Lemma 2.16 and the definition (2.78) of Γ together tell us that

HN (S̃)−HN (S) > 2α
∑∑
ε∈{−,+}

p∈{odd,even}

√Γ×
∑

i∈I: i≡p
qεi


= 2α

√
Γ
∑
i∈I
|qi|.

(2.117) eq:DH

Therefore,

PβN (N (I) ∩ C(I))

6 exp

(
−2βα

√
Γ

N

∑
i∈I
|qi|

)
1

ZβN

∑
S∈N (I)∩C(I)

exp
(
−βHN (S̃)/N

)

6 exp

(
−2βα

√
Γ

N

∑
i∈I
|qi|

)
(2d)|I|PβN (C(I)) (2.118) eq:PNI1

6 exp

(
|I| ×

[
ln(2d)− 2βα

√
Γ

N
q̄L

])
, (2.119) eq:PNI

owing to the definition of q̄L. The claim follows from this and (2.116).

Proof of Theorem 1.11. The proof is similar to the proof of Theorem 2.15.

Recall that RNα was defined in (1.30), and define I := {0 , . . . , r − 1} for

some fixed 1 6 r < N . Then, we may use (2.118) and the obvious fact that
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PβN (C(I)) 6 1 in order to deduce that

PβN
({
RNα = r

}
∩ Cα

)
= PβN (N (I) ∩ C(I))

6 exp

(
−2βα

√
Γ

N

r−1∑
i=0

|qi|

)
(2d)r.

(2.120)

Next, we choose and fix an arbitrary δ > 0., and recall from (2.80) the event

EδN . Then almost surely on EδN ,

PβN
({
RNα = r

}
∩ Cα

)
6 (2d)r exp

(
−2βα

√
γ

1 + δ

r−1∑
i=0

|qi|

)
. (2.121)

Because RNα 6 N , it follows that

E
[
EβN

(
RNα
)]

6 N
[
1− P(EδN )

]
+NE

[
1− PβN (Cα)

]
+
N−1∑
r=0

rE
[
1EδN

PβN
({
RNα = r

}
∩ Cα

)]
(2.122)

6 o(1) +
N−1∑
r=1

r(2d)rE

[
exp

(
−2βα

√
γ

1 + δ

r−1∑
i=0

|qi|

)]
,

as N →∞; see (2.83) and (2.85). Define

ρδ := 2dE

[
exp

(
−βα

√
γ

1 + δ
|q0|
)]

. (2.123)

Since limδ↓0 ρδ = ρ, it follows that ρδ < 1 for all δ > 0 sufficiently small.

And hence, for all δ > 0 sufficiently small,

lim sup
N→∞

E
[
EβN

(
RNα
)]

6
∞∑
r=1

rρrδ =
ρδ

(1− ρδ)2
. (2.124)

Let δ → 0 to finish.

2.7 On the annealed measure
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Our analysis of the quenched measure can be adapted with no difficulty,

and with some simplifications, to study also the annealed measure. Here we

prove only Proposition 1.12.

Proof of Proposition 1.12. We know already from the analog of Theorem

1.1 that β̃c > 1. Therefore, it suffices to prove that EZN (1) =∞. Let

ν := ν(N) := dN/2e. (2.125)

Because P{L?N = ν} > (2d)−N for all N sufficiently large, it follows imme-

diately from properties of the normal distribution that

EZN (1) > (2d)−NE

[
exp

{
(q1 + · · ·+ qν)2

N

}]
= (2d)−NEeνq

2
0/N .

(2.126)

And the latter quantity is infinite because ν/N > 1/2.

2.8 The influence of a pulling force
sec:pulling:proof

First we justify our claim that the results of Theorem 1.1, Proposition 1.4,

and Theorem 1.5 continue to hold [up to a modification of the notation].

Basically, this is so because Lemma 2.3 is the only place where we explicitly

used the fact that S is the simple symetric random walk. Now the new

measure Pλ has the following property:

Pλ{Sk = 0} =
P{Sk = 0}

(E exp(λ · S1))k
, (2.127) eq:lreturn

with E exp(λ · S1) > 1 whenever λ 6= 0. Therefore, the local time at the

origin satisfies EλL
0
N 6 EL0

N . This is enough for concluding that even the

statement of Lemma 2.3 continues to hold when we replace E with Eλ for

λ ∈ Rd. Next we prove Theorem 1.13.

Proof of Theorem 1.13. We begin with the proof of (1.45): We know already

that βc(λ) > 1/κ. [Theorem 1.1]. Let us choose and fix some ε > 0. Then
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we can write

ZN (β , λ)

= Z
(1−ε)/(2κβ)
N (β , λ) + Eλ

[
eβHN/N1A(N)

∣∣∣ q0, q1, . . . , qN−1] , (2.128) eq:2terms

where ZεN (β, λ) is defined by adapting (2.1)—in the obvious way—to the

new reference measure Pλ, and A(N) denotes the following event:

A(N) :=

{
L?N
N

>
1− ε
2κβ

}
. (2.129)

We know from Theorem 1.1 that Z
(1−ε)/(2κβ)
N (β, λ) → eβ in probability as

N →∞. Next we consider the second term in (2.128).

Because

Eλ

[
exp

(
β

N
HN

)
1A(N)

∣∣∣∣ q0, q1, . . . , qN−1]
6 exp

(
βN max

S

HN

N2

)
Pλ

{
L?N
N

>
1− ε
2κβ

}
,

(2.130)

it follows that

zλ(β) 6 max

(
β

(Eq+0 )2 + (Eq−0 )2

2
− Iλ

(
1− ε
2κβ

)
, 0

)
, (2.131)

where Iλ was defined in (1.44).

We conclude the proof by establishing a lower bound for Iλ.

According to (2.127),

EλL
0
∞ 6

1

1− 1/E(exp(λ · S1))
. (2.132)

By the strong Markov property, L0
∞ has a geometric distribution with pa-

rameter

p := Pλ {Si 6= 0 for all i > 1} , (2.133)
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and therefore p > 1− 1/E(exp(λ · S1)). It follows that

Pλ
{
L0
N > αN

}
6 Pλ

{
L0
∞ > αN

}
= (1− p)dαNe−1, (2.134)

and consequently

Iλ(α) > α ln E(exp(λ · S1)). (2.135)

The conclusion (1.45) is immediate. Now we address the opposite bound

(1.46).

If e ∈ Zd has norm 1, then

Pλ {Sk+1 − Sk = e} >
exp (−2 ‖λ‖∞)

2d
, (2.136)

whence

ZN (β , λ) > exp

(
βN max

S

HN

N2

)
×
(

exp (−2 ‖λ‖∞)

2d

)N
. (2.137)

Consequently, (1.46) follows from Proposition 2.10 when d > 2; and (1.46)

follows from Lemma 2.13 when d = 1.

Finally, we prove that βc is locally Lipschitz.

The density

dPλ+µ
dPλ

∣∣∣∣
σ(q,S0,...,Sk)

:=
exp(µ · Sk)

(Eλ exp(µ · S1))k
(2.138)

is bounded from above and below respectively by exp(±2k‖µ‖1). Therefore,

for all β ∈ R,

ZN (β , λ+ µ) > ZN (β , λ) exp (−2N ‖µ‖∞) ,

zλ+µ(β) > zλ(β)− 2 ‖µ‖∞ .
(2.139)

This proves the claim when one chooses

β > βc(λ) + 2
‖µ‖∞

z′λ(βc(λ))
, (2.140)
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for which zλ+µ(β) > 0 [thanks to the convexity of zλ+µ]. The lower bound

on z′λ(βc(λ)) comes from the generalization of (1.19) in Theorem 1.5.

A The local times of the random walk

In this appendix we collect some facts about the local times of the simple

random walk {Si}∞i=0 on Zd. Recall that the local time at x of the walk is

denoted by the process {LxN}∞N=1, and is defined by LxN :=
∑

06i<N 1{Si=x}.

lem:LT0 Lemma A.1. There exists a continuous nondecreasing function I : (0 , 1/2)→
(0 ,∞) such that

lim
N→∞

1

N
ln P

{
L0
N > εN

}
= −I(ε) for all ε ∈ (0 , 1/2). (A.1)

In fact, the limit exists for all ε > 0. But the additional gain in generality

is uninteresting because P{L0
N > εN} = 0—whence I(ε) = ∞—when ε >

1/2, since the simple walk on Zd has period 2.

Proof. Let τ0 := 0 and for k > 1 define τk to be the kth return time to the

origin by the random walk; that is, τk := min{j > τk−1 : Sj = 0}. It is easy

to see that L0
N > εN if and only if τ[εN ] < N . According to a result of Jain

and Pruitt [14, Theorem 2.1],

lim
N→∞

1

N
P
{
τ[εN ] < N

}
= −R

(
g−1(1/ε)

)
for all ε ∈ (0 , 1/2), (A.2)

where R is continuous, g is continuous and strictly decreasing, and both are

defined as follows:

g(u) := −ϕ
′(u)

ϕ(u)
and R(u) := − lnϕ(u)− ug(u), (A.3)

where ϕ(u) = E exp(−uτ1). This implies our lemma with

I(ε) := (R ◦ g−1)(1/ε) for all ε ∈ (0 , 1/2). (A.4)
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Let us also mention that ϕ can be computed, in a standard way, by appealing

to excursion theory [16, Lemma 2.1]. The end-result is that

ϕ(u) =
1

(2π)d

∫
(−π,π)d

dξ

1−G(ξ)e−u
, (A.5)

where G(ξ) := d−1
∑d

j=1 cos(ξ · ej) for the d standard basis vectors {ej}dj=1

of Rd. We omit the details of this standard computation.

Recall that L?N := supx∈Zd L
x
N denotes the maximum local time.

lem:LTstar Lemma A.2. For every fixed x ∈ Zd, LxN is stochastically smaller than L0
N .

Therefore, for the same function I as in Lemma A.1,

lim
N→∞

1

N
P {L?N > εN} = −I(ε) for all ε ∈ (0 , 1/2). (A.6)

Proof. Recall that the assertion about stochastic monotonicity is simply that

P{LxN > a} 6 P{L0
N > a} for all a ∈ Zd. This is a ready consequence of

the strong Markov property [applied at the first hitting time of the origin].

Because

P
{
L0
N > a

}
6 P {L?N > a} 6

∑
x∈Zd:
‖x‖16n

P {LxN > a} , (A.7)

stochastic monotonicity implies that for all N > 1,

P
{
L0
N > a

}
6 P {L?N > a} 6 (2N)dP

{
L0
N > a

}
. (A.8) eq:SM

Therefore, Lemma A.1 finishes the proof.
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