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1. Introduction

It has been known for a long time that the theories of fractals and probability are
related. The principle aim of this paper is to make a case for the assertion that
those theories are in fact inextricably intertwined. And that, frequently, one learns
a good deal by adopting this particular point of view.

I aim to make this case by presenting a series of examples via a self-contained
flow of ideas that starts with a classical problem about the ternary Cantor set,
and progresses to more modern examples from stochastic analysis that are rooted
in statistical mechanics. The approach presented here will have some novelty, even
for the classical examples.

The only strict prerequisites to reading this article are a modest knowledge
of measure-theoretic probability and a little harmonic analysis on compact abelian
groups [for §3.5]. But it might help to know also some stochastic-process theory,
“hard” harmonic analysis, and fractal analysis.

And now we begin at the beginning, and without further ado.

Research supported in part by a grant from the National Science Foundation grant DMS-0706728.
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1.1. The Minkowski dimension

We begin our discussion by reviewing some basic facts from fractals and geometric
measure theory; more detail can be found in the excellent books of Falconer [12]
and Mattila [35].

One of the simplest notions of dimension is the [upper] Minkowski dimension,
or box dimension, of a bounded set G ⊂ Rd.

Recall that a cube U ⊂ Rd is dyadic of side 2−n if it has the form

U :=
(
j1
2n

,
j1 + 1

2n

]
× · · · ×

(
jd
2n

,
jd + 1

2n

]
, (1.1)

for some j := (j1, . . . , jd) ∈ Zd. The collection of such cubes is denoted by Dn,
and D := ∪∞n=−∞Dn denotes the collection of all dyadic cubes in Rd. On a very
few occasions I might refer to b-adic cubes of side b−n, where b ≥ 2 is an integer;
those are defined also as above, but 2n is replaced everywhere by bn.

The Minkowski dimension of a bounded set G ⊂ Rd is defined as

dimMG := lim sup
n→∞

1
n

log2 (# {U ∈ Dn : G ∩ U 6= ∅}) , (1.2)

where “log2” denotes the base-two logarithm.1 It is possible to see that dimM does
not depend on the base. That is, if we use b-adic cubes in place of dyadic ones and
apply logb in place of log2, then we obtain the same numerical value for dimMG.

Minkowski dimension is also known as the upper Minkowski [or box] dimen-
sion. The corresponding lower Minkowski [or box] dimension is defined as

dim
M
G := lim inf

n→∞

1
n

log2 (# {U ∈ Dn : G ∩ U 6= ∅}) . (1.3)

Clearly dim
M
G ≤ dimMG.

Minkowski dimension is easy to use [and frequently easy to compute], but has
the drawback that there are countable sets of positive Minkowski dimension. An
example is G := {1 , 1/2 , 1/3 , . . .} , whose Minkowski dimension is 1/2. Viewed
from this perspective, Hausdorff dimension is a more attractive notion of dimen-
sion. We describe that notion next.

1.2. Net measures and Hausdorff dimension

Given a number q ∈ (0 ,∞) and a set G ⊂ Rd, we can define the quantity Nn
q (G)

as inf
∑∞
k=1(side Ik)q, where the infimum is taken over all dyadic cubes I1, I2, . . .

that have side length ≤ 2−n and cover G in the sense that G ⊆ ∪∞k=1Ik. The
q-dimensional net measure of G is the monotonic limit,

Nq(G) := lim
n→∞

Nn
q (G). (1.4)

1As far as I know, Minkowski himself did not study this notion of dimension, but he did introduce
the closely-related Minkowski content in geometry.
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The restriction of Nq to the Borel sets of Rd—still denoted by Nq—is a bona
fide Borel measure. The Hausdorff dimension dimH G of G ⊂ Rd is then defined
unambiguously as

dimH G := sup {q > 0 : Nq(G) > 0} = inf {q > 0 : Nq(G) <∞} . (1.5)

It can be shown that Hausdorff dimension has the following regularity prop-
erty: For all Borel sets G1, G2, . . . ⊂ Rd,

dimH

( ∞⋃
n=1

Gn

)
= sup
n≥1

dimH Gn. (1.6)

In particular, dimH G = 0 whenever G is countable.
If we use b-adic cubes in place of dyadic ones, then we obtain net measures

that are, to within constant multiples, the same as Nq. Thus, Hausdorff dimension
does not depend on the base b that is used.

It can be verified that

dimH G ≤ dim
M
G ≤ dimMG. (1.7)

Either, or both, of these inequalities can be strict.

1.3. Riesz capacity

Typically one computes dimH G by separately deriving an upper and a lower bound
for it. It is not hard to derive an upper bound in many cases: One strives to
construct a “good dyadic cover” {Unj }∞j=1 of side length ≤ 2−n, and then estimate
Nn
q (G) from the above by

∑∞
k=1(side Unk )q. And then one tries to find a value of

q that ensures that the said sum is bounded uniformly in n; thus, dimH G ≤ q for
such a value of q.

It is more difficult to obtain lower bounds, since we have to consider all possi-
ble covers. As it turns out, there is a potential-theoretic method that is particularly
well-suited to obtaining lower bounds for dimH G in many cases.

If µ is a Borel measure on Rd and q is a positive constant, then the q-
dimensional Riesz energy of µ is defined as

Iq(µ) :=
∫∫

µ(dx)µ(dy)
‖x− y‖q

, (1.8)

where ‖ · · · ‖ denotes the usual euclidean norm. The quantity Iq(µ) might, or might
not, be finite. The following result shows us how we can try to find a lower bound for
dimH G. Here and throughout, P( · · · ) denotes the collection of all Borel probability
measures that have compact support and satisfy µ(G) = 1.

Theorem 1.1 (Frostman [15]). If there exist µ ∈ P(G) and q > 0 such that Iq(µ) <
∞, then dimH G ≥ q. Conversely, if Iq(µ) =∞ for all µ ∈ P(G), then dimH G ≤ q.

Define the q-dimensional capacity of a Borel set G ⊂ Rd as

Capq(G) :=
1

infµ∈P(G) Iq(µ)
, (1.9)
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where inf ∅ :=∞ and 1/∞ := 0. Frostman’s theorem implies that

dimH G = sup
{
q > 0 : Capq(G) > 0

}
= inf

{
q > 0 : Capq(G) = 0

}
. (1.10)

In particular, “capacity dimension = Hausdorff dimension.” I demonstrate the
easier—and more useful—half of Theorem 1.1 next.

Half of the proof. We suppose that Iq(µ) <∞ for some q > 0 and µ ∈ P(G), and
prove that dimH G ≥ q, as a consequence.

For all ε > 0 we can find a dyadic cover {Uj}∞j=1 ofG such that
∑∞
j=1 |side Uj |q

is at most Nq(G) + ε. We fix this cover in mind, and use it as follows:

Iq(µ) ≥
∞∑
j=1

∫∫
Uj×Uj

µ(dx)µ(dy)
‖x− y‖q

≥ const ·
∞∑
j=1

[µ(Uj)]2

|side Uj |q
. (1.11)

Since {Uj}∞j=1 is a cover for G and µ is supported on G, Jensen’s inequality implies
that for all positive numbers a1, a2, . . . ,

∞∑
j=1

1
aj
µ(Uj) ≥

 ∞∑
j=1

aj µ(Uj)

−1

. (1.12)

We can set aj := |side Uj |q/µ(Uj) to find that

Iq(µ) ≥ const∑∞
j=1 |side Uj |q

≥ const
Nq(G) + ε

. (1.13)

We let ε → 0 and then optimize over all µ ∈ P(G) such that Iq(µ) is finite to
find that Nq(G) ≥ const · Capq(G) > 0. Consequently, positive capacity implies
positive net measure, whence the result. �

2. Some instructive examples

2.1. The ternary Cantor set

Every x ∈ [0 , 1] can be written as x =
∑∞
j=1 xj3

−j where the digits xj are 0, 1, or
2. The ternary Cantor set C can be viewed as the collection of all points in [0 , 1]
whose ternary digits are in {0 , 2}. Ours differs from the more popular definition
of C by at most a countable collection of points; consequently the two definitions
lead to the same Hausdorff dimension. Its numerical value is contained within the
following famous result of Hausdorff.

Theorem 2.1 (Hausdorff [19]). dimH C = log3 2.

Proof. The upper bound is derived by a standard covering argument, which I omit.
Next you will find a proof of the lower bound that highlights some of Theorem
2.1’s deep connections to probability theory: Let {Xj}∞j=1 denote a collection of
independent random variables, each taking the values 0 or 2 with probability 1/2.
Then the jth ternary digit of X :=

∑∞
j=1Xj3−j is Xj . Clearly, µ(A) := P{X ∈ A}
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defines a Borel probability measure on C.2 It suffice to prove that Iq(µ) < ∞ for
all q < log3 2.

We might observe that if Y is independent of X and has the same distribution
µ as X, then Iq(µ) = E(|X − Y |−q), where E denotes expectation. Let Yj denote
the jth ternary digit of Y , and consider

J := inf {j ≥ 1 : Xj 6= Yj} . (2.1)

The triangle inequality shows that |X−Y | ≥ 3−J , whence Iq(µ) ≤ E(3qJ). Because
P{J = j} = 2−j for all integers j ≥ 1, E(3qJ) =

∑∞
j=1 3qj2−j is finite if and only

if q < log3 2, and the theorem follows. �

2.2. Non-normal numbers

We follow Borel [5] and say that a number x ∈ (0 , 1] is simply normal in base 2 if

f(x) := lim
n→∞

1
n

n∑
j=1

1{0}(xj) =
1
2
, (2.2)

where xj denotes the jth digit in the binary expansion of x.3

The celebrated normal-number theorem of Borel [5] asserts that Lebesgue-
almost all x ∈ (0 , 1] are simply normal in base 2 [and a little more, in fact].
Next is Borel’s ingenious proof; it is simplified thanks to more than a century of
afterthought.

Let X :=
∑∞
j=1Xj2−j , where {Xj}∞j=1 are independent random variables,

each distributed uniformly on {0 , 1}. Then one verifies easily that X is distributed
uniformly on [0 , 1]; that is, P{X ∈ A} is the Lebesgue measure ofA ⊆ [0 , 1]. By the
strong law of large numbers, P{X ∈ N1/2} = 1 where N1/2 denotes the collection
of all x ∈ (0 , 1] that are simply normal in base 2. We have shown that N1/2 has
full measure, and this completes the proof!

It turns out that many interesting nonnormal numbers form fractal collec-
tions. For instance, choose and fix a number p ∈ (0 , 1) and define

Np := {x ∈ (0 , 1] : f(x) = p} . (2.3)

Thus, the elements of Np are numbers whose digits have the prescribed asymptotic
freqencies p and 1−p. The following striking example was conjectured originally by
I. J. Good and resolved ultimately by H. G. Eggleston [11]. This example highlights
some of the connections between fractals, probability theory, and notions from
statistical mechanics.

Theorem 2.2 (Eggleston [11]). dimH Np = H(p), where

H(p) := p log2

(
1
p

)
+ (1− p) log2

(
1

1− p

)
. (2.4)

2In fact, µ(•) is the restriction of the net measure Nlog3(2)(•) to C.
3The xj ’s are clearly defined uniquely for all but a countable collection of x ∈ [0 , 1]; as that

collection has zero Lebesgue measure, we can safely not worry about it.



6 D. Khoshnevisan

Proof. Let X1, X2, . . . be independent random variables, each taking the values
zero and one with respective probabilities p and 1 − p. Then, X :=

∑∞
j=1Xj2−j

is a random number in (0 , 1] that satisfies P{X ∈ Np} = 1, owing to the strong
law of large numbers. Let µ := P ◦X−1 denote the distribution of X; we have just
seen that µ is a probability measure on Np.

We begin with a direct computation: If x ∈ Np is fixed, then

P {X1 = x1 , . . . , Xn = xn} = pnf(x ;n)(1− p)n−f(x ;n)

= 2−n(H(p)+o(1)) as n→∞,
(2.5)

where f(x ;n) :=
∑n
j=1 1{0}(x). Note that the little-o term in (2.5) is allowed to

depend on the point x.
Consider the dyadic cube Un(x) := {y ∈ (0 , 1] : y1 = x1 , . . . , yn = xn}. The

preceding shows that µ(Un(x)) = 2−n{H(p)+o(1)} for all x ∈ Np. Since y ∈ Un(x)
if and only if x ∈ Un(y), it follows fairly easily that µ(Un(x)) = 2−n{H(p)+o(1)} for
all x ∈ (0 , 1]. It is possible to prove that the following hold:

1. Un(x) ⊆ [x− 2−n, x+ 2−n]; and
2. [x− 2−n−1, x+ 2−n−1] ⊂ Un(y)∪Un(z) for some y, z ∈ (0 , 1] that might—or

might not—be distinct.

A monotonicity argument then shows that for our µ ∈ P(Np),

µ([x− r , x+ r]) = rH(p)+o(1) as r ↓ 0, for all x ∈ (0 , 1]. (2.6)

The density theorem of Rogers and Taylor [45] finishes the proof. �

2.3. The range of Brownian motion

Let B := {B(t)}t≥0 denote Brownian motion in Rd. That is, B is a collection of
random variables that satisfy the following: (a) B(0) := 0; (b) B(t+ s)− B(s) is
independent of {B(u)}0≤u≤s for all s, t ≥ 0; and (c) the coordinates of the random
vector B(t+ s)−B(s) are independent mean-zero gaussian random variables with
variance t, regardless of the value of s ≥ 0 and t > 0.

A well-known theorem of Wiener states that one can construct B such that
the resulting random function t 7→ B(t) is almost surely Hölder continuous with
any given index < 1/2. In fact, the following limit exists with probability one:

lim
ε→0

sup
s∈[0,T ]
t∈(s,s+ε]

|B(t)−B(s)|√
2(t− s) ln(t− s)

= 1 for all T > 0. (2.7)

This is due to Lévy [31] but with a lim sup in place of the limit; the present, more
elegant, formulation can be found in Orey and Pruitt [39] and Csörgő and Révész
[7].

Theorem 2.3 (Lévy [31], Taylor [51]). dimH B[0 , b] = min(d , 2) almost surely for
all b > 0.
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Proof. We need to prove only the lower bound; the upper bound follows readily
from the Hölder continuity of W and (1.7).

Let us define a Borel measure µ via

µ(V ) :=
∫ b

0

1{B(s)∈V } ds. (2.8)

I plan to prove that E(Iq(µ)) <∞ for every positive q < min(d , 2).
Note that

E (Iq(µ)) = E

(∫
[0,b]2

dsdt
‖B(s)−B(t)‖q

)
. (2.9)

Elementary properties of gaussian random vectors show that the distribution of
B(t)−B(s) is the same as the distribution of |t− s|1/2 times B(1), and hence

E (Iq(µ)) =
∫

[0,b]2

dsdt
|s− t|q/2

· E
(
‖B(1)‖−q

)
. (2.10)

Since the (ds×dt)-integral is finite iff q < 2, it suffices to prove that E(‖B(1)‖−q)
is finite when q < d. But direct computation reveals that

E
(
‖B(1)‖−q

)
=

1
(2π)d/2

∫
Rd

‖z‖−q e−‖z‖
2/2 dz, (2.11)

and the latter integral is finite iff q < d. The theorem follows. �

2.4. Fractal percolation

Mandelbrot [34] has introduced the following random Cantor set in the context
of turbulence:4 Choose and fix a parameter p ∈ (0 , 1), and let {Z(I)}I∈D be an
independent, identically-distributed collection of random variables, each taking the
values zero and one with respective probabilities 1− p and p. Define

Qn(p) :=
⋃{

I ∈ Dn ∩ (0 , 1]d : Z(I) = 1
}

for all n ≥ 0. (2.12)

And

Λn(p) :=
n⋂
j=0

Qj(p) for all n ≥ 0. (2.13)

In words, in order to construct Λn(p) from Λn−1(p), we consider each dyadic I ⊂
Λn−1(p) of sidelength 2−n and retain it in Λn(p)—independently of the others—
with probability p. Since Λn(p) ⊆ Λn−1(p), the following “fractal-percolation set”
is well defined:

Λp :=
∞⋂
n=0

Λn(p). (2.14)

Let Nn denote the number of all I ∈ Dn ∩ (0 , 1]d that are in Λn(p). Then,
a little thought shows that {Nn}∞n=0 is a Galton–Watson branching process with
mean offspring distribution p2d. Therefore, the theory of branching processes tells

4Mandelbrot refers to this as “random curdling.”
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us the following: If p > 2−d then σ := P{Λp 6= ∅} > 0; else, if p ≤ 2−d then
σ = 0.5 Thus, from now on we concentrate on the nontrivial case that

p > 2−d. (2.15)

Note that Λn(p) is a disjoint union of Nn dyadic cubes of sidelength 2−n

each. Therefore, its Lebesgue measure is Nn2−nd. A standard computation reveals
that E(Nn) = pn; see (2.17) below, for example. Therefore, Λp has zero Lebesgue
measure, almost surely.

Theorem 2.4 (Falconer [13], Mauldin and Williams [36]; see also Grimmett [18]).
If (2.15) holds, then

‖dimH Λp‖L∞(P) =
∥∥dimMΛp

∥∥
L∞(P)

= d− log2(1/p), (2.16)

where “ log2” denotes the logarithm in base 2.

Proof. Choose and fix two integers n > k ≥ 1. The probability that a given dyadic
interval I ∈ Dk ∩ (0 , 1] intersects Λn(p) is pk, since I intersects Λn(p) if and only
if Z(J) = 1 for all k dyadic cubes that include I. Consequently,

P {I ∩ Λp 6= ∅} ≤ pk. (2.17)

Let Nk denote the number of dyadic cubes I ∈ Dk that intersect Λp. We can
sum (2.17) over all I ∈ Dk to find that E(Nk) = (2dp)k. Therefore, Chebyshev’s
inequality implies that for every positive λ < 2dp,

∞∑
k=1

P
{
Nk > λk

}
≤
∞∑
k=1

(2dp)k

λk
<∞. (2.18)

Since λ ∈ (0 , 2dp) is arbitrary, the preceding and the Borel–Cantelli lemma to-
gether show that dimMΛp ≤ log2(2dp) = d− log2(1/p) almost surely.

In order to prove the remainder of the theorem, we apply an elegant “inter-
section argument” of Peres [41]. Let G be a nonrandom Borel set in (0 , 1]d. I will
prove the following:
Claim A. If dimH G < log2(1/p), then Λp ∩G = ∅ almost surely.

We first use this to prove Theorem 2.4, and then establish Claim A.
Consider an independent fractal percolation Λ′β . Because Λp ∩ Λ′β has the

same distribution as Λpβ , we see that if pβ2d > 1 then Λp ∩Λ′β 6= ∅ with positive
probability. We condition on Λp to deduce from Claim A that dimH Λp ≥ log2(1/β)
with positive probability. Since any positive 1/β < p2d leads to this bound, it
follows that ‖ dimH Λp‖L∞(P) ≥ log2(2dp) = d − log2(1/p), as needed. Now let us
prove Claim A.

5In fact, if we define N := #{I ∈ D1 : Z(I) = 1}—that is, N denotes the number of retained

level-1 dyadic cubes—then σ = E(σN ) by independence. Since N has a binomial distribution
with parameters 2d and p, the assertion follows from direct computation.
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We fix an arbitrary ε > 0, and find dyadic cubes U1, U2, . . . such that: (i)
{Uj}∞j=1 is a cover for G; and (ii)

∑∞
j=1 |side Uj |log2(1/p) < ε. In accord with (2.17),

P {Λp ∩G 6= ∅} ≤
∞∑
j=1

P {Λp ∩ Uj 6= ∅} =
∞∑
j=1

plog2(1/side Uj) < ε. (2.19)

This completes our proof, since ε > 0 is arbitrary. �

Remark 2.5 (Theorem 2.4, revisited). Because Λp has a great deal of self-similarity,
Theorem 2.4 can be improved to the following [13, 36], which we prove next:

P
{

dimH Λp = dimMΛp = d− log2(1/p)
∣∣∣ Λp 6= ∅

}
= 1. (2.20)

Let us recall (2.15), let N denote the number of I ∈ D1 such that Z(I) = 1, and
choose λ ∈ (0 , d− log2(1/p)). We can consider the probabilities

α(I) := P{dimH(Λp ∩ I) ≤ λ , Λp ∩ I 6= ∅}, (2.21)

defined for all dyadic cubes I ⊂ (0 , 1]d. We can condition on {Z(I)}I∈D1 to find
that α((0 , 1]d) ≤ E(

∏
α(I) ; N ≥ 1), where the product is over all I ∈ D1∩(0 , 1]d

such that Z(I) = 1. But α(I) = α((0 , 1]d) for every dyadic cube I ⊆ (0 , 1]d.
Therefore,

α
(
(0 , 1]d

)
≤ E

([
α
(
0 , 1]d

)]N
; N ≥ 1

)
≤ α

(
(0 , 1]d

)
· P{N 6= 0}.

(2.22)

Theorem 2.4 implies that α((0 , 1]d) < 1. Since P{N 6= 0} < 1, the preceding
proves that α((0 , 1]d) = 0, which implies (2.20) readily. �

3. Lévy processes

Lévy processes are a natural family of random processes that “cannot help but
produce fractals.” I present a very brief introduction to the general theory. The
books by Bertoin [3], Jacob [23], and Sato [48] are excellent, and thorough, accounts
of Lévy processes.

A Lévy process X := {X(t)}t≥0 on Rd is a stochastic process [that is, a
collection of random variables] which satisfies the following properties:

1. X(0) = 0 almost surely;
2. X(t+ s)−X(s) is independent of {X(u)}0≤u≤s for all s, t ≥ 0;
3. The distribution of X(t + s) − X(s) does not depend on s, for all s, t ≥ 0;

and
4. t 7→ X(t) is continuous in probability; i.e., lims→t P{|X(s)−X(t)| > ε} = 0

for all t ≥ 0 and ε > 0.
It turns out that one can always arrange things such that t 7→ X(t) is right-
continuous and has left limits at all points [3, p. 13]; in particular, X can have
only discontinuities of the first kind, if it is at all discontinuous.
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According to the Lévy–Khintchine formula (Bertoin [3, Theorem 1, p. 13]),
a stochastic process X is a Lévy process if and only if

E
(

eiξ·X(t)
)

= e−tΨ(ξ) for all ξ ∈ Rd and t > 0, (3.1)

where Ψ is a negative-definite function—in the sense of Schoenberg [49]—such
that Ψ(0) = 0; see also the monographs by Jacob [23] and Sato [48]. An equivalent
statement is this: If µt(A) := P{X(t) ∈ A} defines the distribution of X(t), then
{µt}t≥0 is a weakly-continuous convolution-semigroup of probability measures with
µ0 := δ0 [3, Chapter 1]. Of course, in this case we have

∫
Rd exp(iξ · x)µt(dx) =

exp(−tΨ(ξ)). In general, we might refer to the function Ψ as the characteristic
exponent, or Lévy exponent, of the process X.

Example. It might be good to keep some examples of Lévy processes in mind:
1. If Ψ(ξ) = c‖ξ‖α for some c > 0, all ξ ∈ Rd, and α ∈ (0 , 2], then X is an

isotropic stable process on Rd with index α. When α = 2 and c = 1/2, X is
a Brownian motion.

2. The Poisson process is a well-known Lévy process on Z+ := {0 , 1 , . . .}; its
characteristic exponent is Ψ(ξ) = λ(1− eiξ) for ξ ∈ R and λ > 0 is its rate.

3. A compensated Poisson process is a Lévy process on R, and its characteristic
exponent is Ψ(ξ) = λ(1+iξ−eiξ). If Y is a rate-λ Poisson process on Z+, then
X(t) := Y (t)− λt defines a compensated Poisson process with rate λ. �

Perhaps one of the most common features of many interesting fractals is that
they have zero Lebesgue measure. The next result is a characterization of all Lévy
processes whose range has zero Lebesgue measure; those are Lévy processes that
tend to “generate” random fractals. With this in mind, let us define

κ(ξ) := Re
(

1
1 + Ψ(ξ)

)
for all ξ ∈ Rd. (3.2)

Theorem 3.1 (Kesten [26]; see also Orey [38]). Choose and fix b > 0. Then the
Lebesgue measure of X[0 , b] is positive with positive probability if and only if κ ∈
L1(Rd).

Remark 3.2. It is well known that Brownian motion is “extremal” among all
Lévy processes in the sense that |Ψ(ξ)| ≤ const · (1 + ‖ξ‖2). Therefore, κ(ξ) ≥
const/(1 + ‖ξ‖2); see Bochner [4, eq. (3.4.14), p. 67], for instance. As a result, we
can deduce the following theorem of Lévy [31, Théorèm 53, p. 256]: If d ≥ 2 then
X[0 , b] has zero Lebesgue measure almost surely. �

Remark 3.3. The passing reference to fractals should not, and can not, be taken
too seriously. For example, if X is a Poisson process on the line with rate λ > 0,
then Ψ(ξ) = λ(1− eiξ), and κ 6∈ L1(R). Thus, Theorem 3.1 verifies the elementary
fact that the range of X has zero Lebesgue measure. That range is Z+, which is
clearly not an interesting fractal. �
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It is more difficult to compute the Hausdorff dimension of X[0 , b] than to
decide when X[0 , b] has positive Lebesgue measure. In order to describe the Haus-
dorff dimension of X[0 , b] we consider the “Cauchy transform” W of κ,

W (r) :=
∫
Rd

κ(ξ/r)∏d
j=1(1 + ξ2

j )
dξ for all r > 0. (3.3)

Theorem 3.4 (Khoshnevisan and Xiao [28]). For all b > 0, the following holds with
probability one:

dimH X[0 , b] = dim
M
X[0 , b] = lim inf

r→0

logW (r)
log r

. (3.4)

Remark 3.5. One can also prove that almost surely,

dimP X[0 , b] = dimMX[0 , b] = lim sup
r→0

logW (r)
log r

, (3.5)

where dimP denotes the packing dimension [28]. �

Example. It is possible to check directly that if X is Brownian motion on Rd, then
dimH X[0 , b] = min(d , 2) almost surely. This agrees with Theorem 2.3. �

3.1. Subordinators: An example

A real-valued Lévy process X is a subordinator if t 7→ X(t) is almost surely increas-
ing and everywhere nonnegative. We have seen already that one can characterize
a subordinator X by its characteristic exponent Ψ. But it is sometimes simpler to
consider its Laplace exponent Φ : R+ → R+ [2]; the defining feature of Φ is that
it solves E exp(−ξX(t)) = exp(−tΦ(ξ)) for all t, ξ ≥ 0. There are various rela-
tionships between the Laplace exponent Φ and the characteristic exponent Ψ. We
mention one next: Let S := {S(t)}t≥0 denote an independent symmetric Cauchy
process [that is, S is a Lévy process with characteristic exponent Ψ(ξ) := |ξ|, so
that S(t)/t has the standard Cauchy distribution on the line for all t > 0] and note
that the following from a few applications of Fubini’s theorem: For all t, ξ ≥ 0,

e−tΦ(ξ) = E
[
e−ξX(t)

]
= E

[
eiX(t)S(ξ)

]
=

1
π

∫ ∞
−∞

e−tΨ(ξz)

1 + z2
dz. (3.6)

We integrate both side [e−t dt] to find that
1

1 + Φ(ξ)
=

1
π
W (1/ξ) for all ξ ≥ 0. (3.7)

Theorem 3.6 implies the following theorem of Horowitz [22]: With probability one,

dimH X[0 , b] = lim sup
ξ→∞

log Φ(ξ)
log ξ

. (3.8)

For an example, let us consider a one-dimensional Brownian motion B; the theory
of Brownian local times tells us that the zero set of B is the closure of the range
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of a subordinator X with Φ(ξ) = const · ξ1/2 for all positive ξ; see Maisonneuve
[33], and also Bertoin [2, Chapter 9] for a pedagogic account. Because the closure
of the range of X and the range itself differ in at most the jump points of X—and
there are only countably-many of those—we can conclude the following well-known
theorem of Lévy [31]: The Hausdorff dimension of the zero-set of Brownian motion
is almost surely equal to lim supξ→∞ log Φ(ξ)/ log ξ = 1/2. Lévy’s theorem [for
Brownian motion] has simpler proofs than the one outlined here. But the present
method can be used to compute the Hausdorff dimension of the level sets of quite
general Markov processes, when simpler arguments no longer exist.

3.2. Proof of Theorem 3.1, and the odds of hitting a ball

Define, for each b ≥ 0, the incomplete renewal measure Ub as follows:

Ub(A) :=
∫ b

0

P{X(s) ∈ A} ds. (3.9)

Each Ub is a finite Borel measure on Rd of total mass b.

Define the ball
B(x , r) :=

{
y ∈ Rd : |x− y| ≤ r

}
, (3.10)

where
|z| := max

1≤j≤d
|zj | for all z ∈ Rd. (3.11)

Then we have the following “quantitative hitting-time” estimate. The particular
formulation that follows appeared in [27], but this is an old folklore result which
arises in various forms in many parts of the literature.

Theorem 3.6. The following holds for all x ∈ Rd and b, r > 0:

Ub(B(x , r))
Ub(B(0 , 2r))

≤ P {X[0 , b] ∩B(x , r) 6= ∅} ≤ U2b(B(x , 2r))
Ub(B(0 , r))

. (3.12)

Proof. Let T denote the smallest time s ∈ [0 , b] at which |X(s) − x| ≤ r; if such
an s does not exist, then set T := b+ 1. We can write

Ub(B(x , r)) = E

(∫ b

T

1{|X(s)−x|≤r} ds ; 0 ≤ T ≤ b

)

= E

(∫ b−T

0

1{|X(s+T )−X(T )+X(T )−x|≤r} ds ; 0 ≤ T ≤ b

)

≤ E

(∫ b

0

1{|X(s+T )−X(T )+X(T )−x|≤r} ds ; 0 ≤ T ≤ b

)
.

(3.13)
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According to the strong markov property [3, Proposition 6, p. 20], the process
{X(s + T ) − X(T )}s≥0 is a copy of X, and is independent of {X(u)}u∈[0,T ]. It
follows from this that

Ub(B(x , r)) ≤ E [Ub(B(X(T )− x ; r)) ; 0 ≤ T ≤ b]
≤ Ub(B(0 , 2r)) · P{0 ≤ T ≤ b},

(3.14)

because if T ∈ [0 , b] then |X(T ) − x| ≤ r, whence B(X(T ) − x , r) ⊆ B(0 , 2r).
This proves the first inequality of the theorem. The second inequality is proved
similarly, but instead of the preceding with start with the following: For the same
T as before,

U2b(B(x , 2r)) ≥ E

(∫ 2b

T

1{|X(s)−x|≤2r} ds ; 0 ≤ T ≤ b

)

= E

(∫ 2b−T

0

1{X(T+s)−X(T )+X(T )−x|≤2r} ds ; 0 ≤ T ≤ b

)

≥ E

(∫ b

0

1{X(T+s)−X(T )+X(T )−x|≤2r} ds ; 0 ≤ T ≤ b

)
= E (Ub(B(X(T )− x , 2r)) ; 0 ≤ T ≤ b) . (3.15)

The theorem follows from this and an application of the triangle inequality; namely,
that B(X(T )− x , 2r) ⊇ B(0 , r) almost surely on {0 ≤ T ≤ b}. �

Recall that the distribution ofX(s) is µs. Thus, we define the renewal measure
U of the process X via

U(A) :=
∫ ∞

0

P{X(s) ∈ A} e−s ds =
∫ ∞

0

µs(A)e−s ds. (3.16)

Note that U is a Borel probability measure on Rd. Next we show that the complete
renewal measure is estimated well by the incomplete ones.

Lemma 3.7. For all b, r > 0,

e−bUb(B(0 , r)) ≤ U(B(0 , r)) ≤ 16d

1− e−b
· Ub(B(0 , r)). (3.17)

Proof. The first inequality is an elementary consequence of the definitions of U
and Ub; we derive the second one only.



14 D. Khoshnevisan

We can write

U(B(0 , r)) ≤
∞∑
k=0

e−kb
∫ (k+1)b

kb

P{|X(s)| ≤ r} ds

=
∞∑
k=0

e−kb
∫ b

0

P{|X(s+ kb)−X(kb) +X(kb)| ≤ r} ds

=
∞∑
k=0

e−kbE [Ub (B(X(kb) , r))] ,

(3.18)

since {X(s + kb) − X(kb)}s≥0 has the same distribution as the Lévy process X,
and is also independent of X(kb).

Since probabilities are ≤ 1, the first inequality in Theorem 3.6 tells us that

sup
x∈Rd

Ub(B(x , r)) ≤ Ub(B(0 , 2r)) for all r > 0. (3.19)

Because we can cover B(0 , 2r) by at most 16d disjoint balls of radius (r/2), the
preceding shows that

Ub(B(0 , 2r)) ≤ 16dU(B(0 , r)). (3.20)

One more application of (3.19) shows that

sup
x∈Rd

Ub(B(x , r)) ≤ 16dUb(B(0 , r)) for all r > 0. (3.21)

This and (3.18) together imply the second inequality of the lemma. �

Proof of Theorem 3.1. Let R(r) denote the r-enlargement of −X[0 , b] for every
r > 0. That is, R(r) := ∪B(−X(s) , r), where the union is taken over all s ∈ [0 , b].
We might note that P{X[0 , b] ∩B(x , r) 6= ∅} = E[1R(r)(x)], and hence∫

Rd

P {X[0 , b] ∩B(x , r) 6= ∅} dx = E [leb(R(r))] , (3.22)

where “leb” denotes the Lebesgue measure on Rd. We can integrate the inequalities
of Theorem 3.6 with respect to dx to find that

E [leb(R(r))] � rd

Ub(B(0 , r))
, (3.23)

where f � g means that (f/g)(r) is bounded away from zero and infinity by
constants, uniformly over all r > 0. [The preceding requires the Tonnelli theorem
and the fact that the total mass of Ub is finite and positive.]

Clearly, leb(R(r)) converges downward to the Lebesgue measure of X[0 , b]
as r ↓ 0. Therefore, it suffices to prove that κ is integrable iff Ub(B(0 , r)) = O(rd)
as r ↓ 0. Thanks to (3.20), it remains to prove the following:

κ ∈ L1(Rd) iff U(B(0 , r)) = O(rd) as r ↓ 0. (3.24)

We use Fourier analysis to establish this, and hence the theorem.
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Owing to (3.16), Û(ξ) = {1 + Ψ(ξ)}−1 defines the Fourier transform of U in
the sense of distributions; in particular, |Û(ξ)| ≤ 1. Consequently, for all rapidly-
decreasing test functions φ : Rd → R,∫

φdU =
1

(2π)d

∫
Rd

Re

(
φ̂(ξ)

1 + Ψ(ξ)

)
dξ. (3.25)

Next we prove that the preceding holds for all uniformly continuous φ such that φ̂
is real and nonnegative. Indeed, let γn denote the density function of the centered
gaussian distribution on Rd whose covariance matrix is 1/n times the identity, and
then apply (3.25) to φ ∗ γn in place of φ to find that∫

(φ ∗ γn) dU =
1

(2π)d

∫
Rd

Re

(
φ̂(ξ)

1 + Ψ(ξ)

)
e−‖ξ‖

2/(2n) dξ, (3.26)

for all n ≥ 1. Because φ is uniformly continuous, φ ∗ γn → φ uniformly as n→∞;
and the left-hand side of (3.26) converges to

∫
φ dU as n → ∞. Because φ̂ ≥ 0,

(3.25) follows from applying the monotone convergence theorem to the right-hand
side of (3.26).

Let fr(x) := (2r)−d1B(0,r)(x) and φ := φr := fr ∗ fr. Since φr is uniformly
continuous and φ̂r = |f̂r|2 ≥ 0, it follows that∫

φr dU =
1

(2π)d

∫
Rd

φ̂r(ξ)κ(ξ) dξ. (3.27)

Because 2−d(2r)−d1B(0,r/2) ≤ φr ≤ (2r)−d1B(0,2r),

U(B(0 , r/2))
2d · (2r)d

≤
∫
φr dU ≤ U(B(0 , 2r)

(2r)d
. (3.28)

Therefore, (3.24) is equivalent to the statement that κ ∈ L1(Rd) iff
∫
φr dU =

O(1). Suppose, first, that κ is integrable. Since |φ̂r| ≤ 1, (3.27) implies that
lim supr↓0

∫
φr dU ≤ (2π)−d‖κ‖L1(Rd) < ∞. For the converse, we merely observe

that (2π)−d‖κ‖L1(Rd) ≤ lim infr↓0
∫
φr dU , thanks to Fatou’s lemma and the fact

that limr↓0 φ̂r(ξ) = 1 for all ξ. �

3.3. A theorem of Pruitt, and proof of Theorem 3.4
Theorem 3.8 (Pruitt [44]). For all b > 0, the following holds almost surely:

dimH X[0 , b] = dim
M
X[0 , b] = lim inf

r↓0

logU (B(0 , r))
log r

(3.29)

Proof. Let Nn(b) denote the total number of dyadic cubes I ∈ Dn that intersect
X[0 , b]. According to Theorem 3.6,

E(Nn(b)) ≤ 1
Ub(B(0 , 2−n−1))

·
∑

x: B(x,2−n−1)∈Dn

U2b

(
B(x , 2−n)

)
. (3.30)
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Because of (3.19) and (3.20),

sup
n≥1

∑
x: B(x,2−n−1)∈Dn

U2b

(
B(x , 2−n)

)
<∞. (3.31)

Consequently,

E(Nn(b)) ≤ const
U(B(0 , 2−n))

, (3.32)

thanks to Lemma 3.7 and (3.18). Let us select q > 0 such that U(B(0 , 2−n)) ≥
2−nq for infinitely-many n tending to∞. Then, (3.32) and Fatou’s lemma together
imply that lim infn→∞ 2−nqNn(b) < ∞ almost surely. Therefore, dimH X[0 , b] ≤
dim

M
X[0 , b] ≤ q almost surely; this proves half of the theorem.
We prove the other half by appealing to Frostman’s theorem (Theorem 1.1).

Consider the following [random] Borel measure µ [compare with (2.8)]:

µ(V ) :=
∫ b

0

1V (X(s)) ds. (3.33)

Then, Iq(µ) =
∫

[0,b]2
|X(s)−X(t)|−q dsdt for all q > 0. We compute expectations.

E (Iq(µ)) = 2
∫∫

0≤s<t<b

E
(
|X(t− s)|−q

)
dsdt ≤ 2b

∫ b

0

E
(
|X(s)|−q

)
ds; (3.34)

then we integrate by parts to find that

E
(
|X(s)|−q

)
= q

∫ ∞
0

λ−q−1P {|X(s)| ≤ λ} dλ. (3.35)

It follows from the preceding and Lemma 3.7 that

E (Iq(µ)) ≤ 2bq
∫ ∞

0

λ−q−1Ub (B(0 , λ)) dλ

≤ 2bqeb ·
∫ ∞

0

λ−q−1U (B(0 , λ)) dλ.
(3.36)

If q > 0 and ε > 0 are selected so that U(B(0 , r)) = O(rq+ε) as r → 0, then
Iq(µ) is almost surely finite, since it will have a finite expectation. This proves the
theorem. �

Proof of Theorem 3.4. If u ∈ L1
loc(Rd), or u is a locally finite Borel measure on

Rd, then û denotes its Fourier transform in the sense of Schwartz. We normalize
the Fourier transform so that û(ξ) =

∫
Rd u(x) exp(iξ ·x) dx whenever u ∈ L1(Rd).

Consider the function

ϕr(x) :=
d∏
j=1

(
1− cos(2rxj)

2πrx2
j

)
for x ∈ Rd, (3.37)
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where r > 0 is a parameter. Then ϕr is a nonnegative integrable function on Rd,
and its Fourier transform is the Pólya kernel,

ϕ̂r(ξ) =
d∏
j=1

(
1− |ξj |

2r

)+

. (3.38)

Note that ϕ̂r(ξ) ≥ 2−d whenever |ξ| ≤ r. That is,

1B(0,r)(ξ) ≤ 2dϕ̂r(ξ) for all r > 0 and ξ ∈ Rd. (3.39)

Therefore, by Fubini’s theorem,

P{X(s) ∈ B(0 , r)} ≤ 2dE (ϕ̂r(X(s))) = 2d
∫
Rd

ϕ̂r(x)µs(dx), (3.40)

where, we recall, µs := P◦X(s)−1 denotes the distribution of X(s). Consequently,

P{X(s) ∈ B(0 , r)} ≤ 2d
∫
Rd

ϕr(ξ)µ̂s(ξ) dξ = 2d
∫
Rd

ϕr(ξ)e−sΨ(ξ) dξ. (3.41)

We integrate [e−sds] to find that

U(B(0 , r)) ≤ 2d
∫
Rd

ϕr(ξ)κ(ξ) dξ; (3.42)

only the real part [part of the definition of κ] enters because U(B(0 , r)) and φr(ξ)
are real valued. Since (1 − cos z)/z2 ≤ const/(1 + z2) for all real numbers z, this
proves that U(B(0 , r)) ≤ const ·W (r), whence half of the theorem.

For the other inequality we choose and fix δ ∈ (0 , 1), and note that for every
r > 0 and z ∈ Rd,

1B(0,r)(z) ≥ exp

− 1
r1−δ

d∑
j=1

|zj |

− exp
(
−r−1+δ

)
. (3.43)

Plug in z := X(s), take expectations, and then integrate [e−s ds] to find that

U (B(0 , r)) ≥ E

∫ ∞
0

exp

− 1
r1−δ

d∑
j=1

|Xj(s)|

 e−s ds

− exp
(
−r−1+δ

)
. (3.44)

But with probability one,

exp

− 1
r1−δ

d∑
j=1

|Xj(s)|

 = E
[

exp
(
i
S ·X(s)
r1−δ

) ∣∣∣∣ X(s)
]
, (3.45)

where S := (S1, . . . , Sd) is a vector of d independent standard-Cauchy random
variables; the probability density function of S is p(ξ) := π−d

∏d
j=1(1 + ξ2

j )−1 at
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ξ ∈ Rd. By Fubini’s theorem, and after a calculation, we find that

U (B(0 , r)) ≥ E
[∫ ∞

0

exp
(
i
S ·X(s)
r1−δ

)
e−s ds

]
− exp

(
−r−1+δ

)
=
∫ ∞

0

e−sds
∫
Rd

p(ξ) dξ E
[
exp

(
i
ξ ·X(s)
r1−δ

)]
− exp

(
−r−1+δ

)
=

1
πd
W (r1−δ)− exp

(
−r−1+δ

)
. (3.46)

And this is sufficient to prove the remaining direction of the theorem. �

3.4. Occupation measures, local times, and Hawkes’s theorem

Let X denote a Lévy process on Rd, and define

Q(G) :=
∫ ∞

0

1G(X(s))e−s ds, (3.47)

for all Borel sets G ⊆ Rd. Evidently, Q is a [random] Borel probability measure on
Rd. We follow Geman and Horowitz [17], and say that X has square-integrable local
times if Q is absolutely continuous with respect to leb, and its Radon–Nikodým
density ` satisfies ` := dQ/dx ∈ L2(Rd). The random process {`(x)}x∈Rd is then
called the local times of X. Note that if X has square-integrable local times, then
the following holds: For all nonrandom Borel-measurable functions f : Rd → R+,∫ ∞

0

f(X(s))e−s ds =
∫
Rd

f(x)`(x) dx almost surely. (3.48)

In words, local times exist iff Q is differentiable. In this way, local times are the
most natural “Frostman-like” measures that can be constructed on the range of
a given Lévy process. These local times will make a surprising appearance in the
following section on stochastic PDEs, as well.

Theorem 3.9 (Hawkes [20]). A Lévy process X has square-integrable local times if
and only if the Lebesgue measure of X(R+) is positive with positive probability.
Another equivalent condition is that κ ∈ L1(Rd).

Proof. Theorem 3.1 shows the equivalence of the assertion “κ ∈ L1(Rd)” and the
statement “leb(X(R+)) > 0 with positive probability.”

If ` exists and is almost surely in L2(Rd), then we can apply (3.48) to deduce
that ` is a random probability density on the closure of the range of X. In partic-
ular, the closure of X—and hence X itself—must have positive Lebesgue measure
almost surely.

Conversely, suppose the Lebesgue measure of X(R+) is positive with positive
probability. Equivalently, that κ ∈ L1(Rd). I will follow Kahane [24], and use
Fourier analysis to show that ` exists and is in L2(Rd) almost surely.
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Because Q̂(ξ) =
∫∞

0
exp{−s + iξ · X(s)} ds for all ξ ∈ Rd, we can write

E(|Q̂(ξ)|2) as T1 + T2, where

T1 :=
∫∫

0<s<t<∞

e−s−t E
(

eiξ·[X(s)−X(t)]
)

dsdt,

T2 :=
∫∫

0<t<s<∞

e−s−t E
(

eiξ·[X(s)−X(t)]
)

dsdt.
(3.49)

If s < t, then the distribution of X(s) − X(t) is the same as that of −X(t − s),
and hence

T1 =
∫∫

0<s<t<∞

e−s−tE
(

e−iξ·X(t−s)
)

dsdt

=
∫∫

0<s<t<∞

e−s−t e−(t−s)Ψ(ξ) dsdt =
1

2 + 2Ψ(ξ)
.

(3.50)

Similarly, T2 = {2 + 2Ψ(ξ)}−1, and hence,

E
(
|Q̂(ξ)|2

)
= Re

(
1

1 + Ψ(ξ)

)
= κ(ξ). (3.51)

Because we have assumed that κ is integrable on Rd, this proves that Q̂ ∈ L2(Rd)
almost surely. Plancherel’s theorem ensures us that Q is almost surely absolutely
continuous with respect to the Lebesgue measure, and has an almost-surely square-
integrable density `. �

3.5. The sum of the range of a Lévy process and a set

Let G denote a fixed Borel-measurable subset of Rd, and X a Lévy process on Rd.
We wish to know when X(R+)⊕G has positive d-dimensional Lebesgue measure
[with positive probability], where A ⊕ B := {a + b : a ∈ A, b ∈ B}. There are
good reasons for asking such a question. For instance, if we consider G := {0},
then this is asking for when the range of X has positive measure; and the answer
is given by Theorem 3.1 in this case. Or if X is a “nice” Lévy process—such as
the Brownian motion—then our question turns out to be equivalent to asking
when P{0 ∈ X(R+) ⊕ G} > 0. If we can answer this for all Borel sets G, then
by conditioning we can decide when P{X(R+) ∩ Y (R+) 6= ∅} > 0 where Y
is an independent “nice” Lévy process on Rd. That is, we can decide when the
trajectories of two independent Lévy processes can intersect. There are many other
applications of these ideas as well.

Theorem 3.10 (Hawkes [21]). Let X denote a Lévy process on Rd and G ⊂ Rd

a nonrandom Borel-measurable set. Then the Lebesgue measure of X(R+)⊕G is
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positive with positive probability iff there exists a compactly supported probability
measure ν on G such that ∫

Rd

κ(ξ)|ν̂(ξ)|2 dξ <∞, (3.52)

where κ was defined in (3.2).

The method of proof implies the following quantitative improvement:

sup
b>0

e−bE [leb (X[0 , b]⊕G)] ≤
[

1
(2π)d

inf
ν∈P(G)

∫
Rd

κ(ξ)|ν̂(ξ)|2 dξ
]−1

≤ E [leb (X(R+)⊕G)] ,
(3.53)

where inf ∅ :=∞, and 1/∞ := 0. Clearly, Theorem 3.10 is a consequence of (3.52).

Example. Condition (3.52) is frequently a fractal and/or capacity condition on
G. For instance, consider the case that X is an isotropic stable process with index
α ∈ (0 , 2]. That is, Ψ(ξ) := const·‖ξ‖α; when α = 2 this means that X is Brownian
motion. One can easily check that (3.52) holds if and only if

∫
Rd ‖ξ‖−α|ν̂(ξ)|2 dξ <

∞. Thus, a little Fourier analysis [50, Theorem 5, p. 73] shows that, in the present
setting, (3.52) is equivalent to the condition that Id−α(ν) <∞ for some ν ∈ P(G),
where Iq(ν) is the same Riesz energy that was defined earlier in (1.8). In particular,
Frostman’s theorem (Theorem 1.1) implies that, in this example, X(R+)⊕G can
have positive Lebesgue measure if dimH G > d − α, but not if dimH G < d − α.
This finding is essentially due to McKean [37]. �

The most natural proof of Theorem 3.10 requires developing too much ana-
lytic/probabilistic machinery. Instead I will prove a close variant which has fewer
requirements [though it does assume a good knowledge of abstract harmonic anal-
ysis at the level of Loomis [32], Pontryagin [42], or Rudin [47].]

Let Γ denote a separable compact metric abelian group, metrizable by a
distance d which is compatible with the group structure of Γ. As is customary for
abelian groups, we denote the identity of Γ by “0,” the inverse of g ∈ Γ by −g,
and group multiplication by “+.” We denote the Haar measure on Γ by m, using
the standard normalization, m(Γ) = 1 [32, 42, 47].

Let Y := {Y (t)}t≥0 be a Lévy process with values on Γ. That is:

1. Y (0) = 0 almost surely;
2. Y (t+ s)− Y (s) is independent of {Y (u)}0≤u≤s for all s, t ≥ 0;
3. The distribution of Y (t+s)−Y (s) does not depend on s, for all s, t ≥ 0; and
4. t 7→ Y (t) is continuous in probability; i.e., lims→t P{d(X(s) , X(t)) > ε} = 0

for all t ≥ 0 and ε > 0.

Define Γ∗ to be the dual group to Γ; every character ξ ∈ Γ∗ can be identi-
fied with a one-to-one continuous mapping from Γ onto the unit disc in C such
that ξ(x + y) = ξ(x)ξ(y). It is well known that because Γ is compact, Γ∗ is dis-
crete/countable. The distribution of the entire process Y is determined uniquely
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by a function ψ : Γ∗ → C that satisfies the following:

E [ξ(Y (t))] = exp(−tψ(ξ)) for all t ≥ 0 and ξ ∈ Γ∗. (3.54)

We call ψ the characteristic exponent of Y.
For all intents and purposes, you might wish to consider only the case that

Γ is the torus (0 , 2π]d, in which case Γ∗ := Zd and ξ(x) = exp(iξ · x) for all x ∈ Γ
and ξ ∈ Γ∗. Then we have the following variant of Theorem 3.10:

Theorem 3.11. Let G ⊂ Γ be a nonrandom Borel-measurable set. Then the Haar
measure of Y (R+)⊕G is positive with positive probability if and only if there exists
a compactly-supported probability measure ν on G such that∑

ξ∈Γ∗

K(ξ)|ν̂(ξ)|2 <∞, (3.55)

where

K(ξ) := Re
(

1
1 + ψ(ξ)

)
for all ξ ∈ Γ∗. (3.56)

In fact, I will establish the following analogue of (3.52):

sup
b>0

e−bE [m(Y [0 , b]⊕G)] ≤

 inf
P(G)

∑
ξ∈Γ∗

K(ξ)|ν̂(ξ)|2
−1

≤ E [m(Y (R+)⊕G)] ;

(3.57)

which appears to be a new result with novel ideas of proof. I will not prove Theorem
3.10 here. But suffice it to say that one can deduce Theorem 3.10 from Theorem
3.11—which I will prove—upon first letting Γ be the large torus [0 , 2πn)d, and
then “letting n ↑ ∞.” There are other ways of proceeding, as well.

As first step, let us recall a classical inequality.

Lemma 3.12 (Paley–Zygmund [40]). If X ∈ L2(P) is nonzero with positive proba-
bility, then for all λ ∈ [0 , 1],

P {X ≥ λEX} ≥ (1− λ)2(EX)2

E(X2)
. (3.58)

Proof. If A := {X ≥ λEX}, then

EX = E(X1A) + E(X1Ac) ≤
√

E(X2) · P(A) + λEX, (3.59)

by the Cauchy–Schwarz inequality. Solve for P(A) to finish. �

Now we can proceed with the bulk of the argument.
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Proof of Theorem 3.11. It suffices to prove this theorem in the case that G is
closed. We assume this condition on G henceforth.

Let Pa denote the distribution of the process a + X for all a ∈ Γ, and
let Ea denote the corresponding expectation operator. We will be working with
the probability measure Pm :=

∫
Γ
m(da) Pa and its expectation operator Em :=∫

Γ
m(da) Ea.

Suppose h is a probability density on Γ, and consider

J(h) :=
∫ ∞

0

h(−X(s))e−s ds. (3.60)

Since Ea[J(h)] =
∫∞

0
E[h(a−X(s))]e−s ds, we integrate [m(da)] to find that

Em[J(h)] =
∫
h(x)m(dx) ·

∫ ∞
0

e−s ds = 1. (3.61)

Similarly, we can compute directly to find that

Em
(
|J(h)|2

)
= 2

∫∫
0<s<t<∞

e−s−t dsdt
∫

Γ

m(db) h(b)E [h(b−X(t− s))] . (3.62)

Since the distribution of X(t − s) is µt−s, it follows that E[h(b − X(t − s))] =
(µt−s ∗h)(b), where “∗” denotes convolution on the group algebra. After an appeal
or two to the Tonnelli theorem we find that

Em
(
|J(h)|2

)
=
∫

Γ

h(b)(U ∗ h)(b)m(db), (3.63)

where U is the renewal measure from (3.16). If, in addition, h ∈ L2(Γ), then
U ∗ h ∈ L2(Γ) also, and hence by Plancherel’s theorem,

Em
(
|J(h)|2

)
=
∑
ξ∈Γ∗

Re Û(ξ) |ĥ(ξ)|2. (3.64)

Because µ̂t(ξ) = exp(−tψ(ξ)), it follows that Re Û(ξ) = K(ξ), whence

Em
(
|J(h)|2

)
=
∑
ξ∈Γ∗

K(ξ) |ĥ(ξ)|2. (3.65)

This, (3.61) and Lemma 3.12 together imply that

Pm{J(h) > 0} ≥ 1∑
ξ∈Γ∗ K(ξ)|ĥ(ξ)|2

. (3.66)

Now consider a function h of the form h(x) := (ν∗φε)(x), where: (i) ν ∈ P(G); and
(ii) {φε}ε>0 is a continuous [compactly-supported] approximation to the identity.
If J(ν ∗ φε) > 0, then certainly −X(s) ∈ Gε for some s > 0, where Gε denotes
the ε-enlargement of G. Since |ĥ(ξ)| ≤ |ν̂(ξ)|, we obtain the following after we let
ε ↓ 0:

Pm
{
−Y (R+) ∩G 6= ∅

}
≥

 inf
ν∈P(G)

∑
ξ∈Γ∗

K(ξ)|ν̂(ξ)|2
−1

. (3.67)
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This proves the first inequality in (3.53), since we can let ε ↓ 0 in the following:

Pm {−Y (R+) ∩Gε 6= ∅} =
∫

Γ

P {a− Y (s) ∈ Gε for some s > 0} m(da)

= E [m (Y (R+)⊕Gε)] .
(3.68)

Now we strive to establish the second inequality in (3.53). Without loss of
generality, we may assume that E[m(Y [0 , b]⊕G)] > 0; for there is nothing left to
prove otherwise.

In order to obtain the converse we need some jargon from stochastic analysis.
Let F := {Ft}t≥0 denote the filtration generated by the process Y; we can and
will assume, without any loss in generality, that F satisfies the “usual conditions”
[10], so that in particular Doob’s optional stopping theorem applies.

Let T be the first hitting time of −G. That is,

T := inf {s > 0 : −Y (s) ∈ G} , (3.69)

where inf ∅ :=∞, as before. Then T is a stopping time with respect to F . For all
density functions h : Γ→ R+,

Em
(
J(h)

∣∣FT ) ≥ Em

(∫ ∞
T

h(Y (s))e−s ds
∣∣∣∣ FT) · 1{T<∞}

= e−TEm

(∫ ∞
0

h(Y (s+ T ))e−s ds
∣∣∣∣ FT) · 1{T<b} (3.70)

We apply the strong markov property at time T to find that

Em
[
h(Y (s+ T ))

∣∣FT ] = (µs ∗ h)(Y (T )) almost surely on {T <∞}, (3.71)

where µs denotes the distribution of Y (s) now. Consequently,

Em
(
J(h)

∣∣FT ) ≥ e−b(U ∗ h)(Y (T )) · 1{T<b}, (3.72)

where U is the renewal measure, defined by (3.16). Since Em(J(h)) = 1, an appeal
to Doob’s optional stopping theorem yields the following:

1 ≥ e−bE
[
(U ∗ h)(Y (T ))

∣∣T < b
]
· Pm{T < b}. (3.73)

Let ρ(•) := Pm{Y (T ) ∈ • |T < b}. Thus, we have

E [m(Y [0 , b]⊕G)] = Pm{T < b} ≤ eb∫
(U ∗ h) dρ

. (3.74)

[The identity follows as in (3.68).] Since U is a probability measure on Γ, if
h ∈ L2(Γ), then we can apply Plancherel’s theorem to find that

∫
Γ
(U ∗ h) dρ =∑

ξ∈Γ∗ Û(ξ)ĥ(ξ)ρ̂(ξ), and hence

E [m(Y [0 , b]⊕G)] ≤ eb

Re
∑
ξ∈Γ∗ Û(ξ)ĥ(ξ)ρ̂(ξ)

. (3.75)

Since Γ is compact, the preceding holds for all continuous functions h, for example.
Now consider h := ρ̆∗φε ∗ φ̆ε, where: (i) f̆(x) := f(−x) for all functions f : Γ→ R
and x ∈ Γ; (ii) ρ̆(A) := ρ(−A) for all Borel sets A ⊂ Γ; and (iii) {φε}ε>0 is
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an approximation to the identity comprised of all continuous functions. Thus, we
obtain

E [m(Y [0 , b]⊕G)] ≤ eb∑
ξ∈Γ∗ Re Û(ξ) · |φ̂ε(ξ)|2 · |ρ̂(ξ)|2

=
eb∑

ξ∈Γ∗ K(ξ) · |φ̂ε(ξ)|2 · |ρ̂(ξ)|2
.

(3.76)

The second inequality in (3.53) follows from the preceding, and Fatou’s lemma,
upon letting ε ↓ 0. �

4. Linear Stochastic PDEs

Let that µs denotes the distribution of a Lévy process X on Rd. We have noted
already that µs+t = µs ∗ µt, and therefore we can view {µt}t≥0 as a convolution
semigroup of linear operators acting on L2(Rd).

Define

Dom[L] :=
{
f ∈ L1

loc(Rd) :
∫
Rd

|f̂(ξ)|2
(
1 + |Ψ(ξ)|2

)
dξ <∞

}
. (4.1)

If f ∈ Dom[L], then the dominated convergence theorem shows that for all g ∈
L2(Rd) the following limit exists, and the ensuing computation is valid:∫

Rd

g(x)(Lf)(x) dx := lim
s↓0

∫
Rd

g(x)
[

(µs ∗ f)(x)− f(x)
s

]
dx

= lim
s↓0

1
(2π)d

∫
Rd

ĝ(ξ) f̂(ξ)
[

e−sΨ(ξ) − 1
s

]
dξ

= −
∫
Rd

ĝ(ξ) f̂(ξ) Ψ(ξ) dξ.

(4.2)

Owing to duality, this defines a linear operator L, mapping Dom[L] in to L2(Rd),
such that: (1) L is the Hille–Yosida generator of {µs}s≥0 in the L2-sense; and (2)
the Fourier multiplier of L is −Ψ.

Example. I mention a few examples:
1. If Ψ(ξ) = c‖ξ‖α for some c > 0 and α ∈ (0 , 2], then X is an isotropic stable

process on Rd with index α—Brownian motion if α = 2—and L = c∆α/2 is
c times the fractional Laplacian of order α/2.

2. When d = 1 and X is a Poisson process on Z+ := {0 , 1 , 2 , . . .} with rate λ >
0, then we have Ψ(ξ) = λ(1− eiξ), and (Lf)(x) = λ{f(x)− f(x− 1)}1Z+(x)
is λ times the discrete gradient on Z+.

3. When d = 1 and X is a compensated Poisson process on R with rate λ,
Ψ(ξ) = λ(1 + iξ − eiξ), and (Lf)(x) = λ{f(x) − f(x − 1) − f ′(x)} for all
x ∈ R.

For more information see Fukushima et al [16] and Jacob [23]. �
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The object of interest here is the so-called stochastic heat equation,
∂u(t , x)
∂t

= (Lu)(t , x) + Ẇ (t , x), (4.3)

where L is the L2-generator of a Lévy process X on Rd, and Ẇ denotes white
noise. That is,

Ẇ (t , x) :=
∂d+1W (t , x)
∂t∂x1 · · · ∂xd

, (4.4)

in the sense of generalized random fields, where W := {W (t , x)}(t,x)∈Rd+1 is Brow-
nian sheet with d + 1 parameters. That is, W is a continuous centered Gaussian
random field with the following covariance: For all (t , x), (s , y) ∈ Rd+1,

Cov (W (t , x) , W (s , y)) = min(s , t) ·
d∏
j=1

min(xj , yj). (4.5)

There are many ways to make rigorous sense of the stochastic heat equation
(4.3). Here is a quick, though perhaps not the most informative, way: Let φ : Rd →
R be a smooth compactly-supported function from Rd to R. We can multiply
both sides of (4.3), purely formally, by φ(x) and integrate [dx] to arrive at the
“equation,”

∂u(t , φ)
∂t

= (Lu)(t , φ) + Ẇ (t , φ), (4.6)

where g(t , φ) :=
∫
Rd g(t , x)φ(x) dx, whenever this makes sense, and Ẇ (t , φ) dt =

dXt—as generalized Gaussian random fields—where X is a Brownian motion with
covariance function

E (XsXt) = ‖φ‖2L2(Rd) ·min(s , t). (4.7)

It is now possible to convince oneself that (4.6) ought to be interpreted as an
infinite family of correlated stochastic differential equations, one for each nice φ.
If the ensuing solution u(t , φ) can indeed be written as

∫
Rd u(t , x)φ(x) dx, then

{u(t , x)}t≥0,x∈Rd is a “random-field solution.” References [6, 8, 25, 29, 30, 43, 46,
52] contain ways of interpreting (4.3) and many other stochastic PDEs.

We will interpret (4.3) Fourier-analytically, and prove the following:

Theorem 4.1 (Dalang [9], Khoshnevisan, Foondun, and Nualart [14]). Let X′ de-
note an independent copy of X, and consider the Lévy process Y := {Y (t)}t≥0

where Y (t) := X(t)−X ′(t) for all t ≥ 0. Then, (4.3) has a random-field solution
{u(t , x)}t≥0,x∈Rd iff the range of Y has square-integrable local times {`(x)}x∈Rd .

In particular, (4.3) never has random-field solutions when d ≥ 2 (Remark
3.2).

We prove Theorem 4.1 after we discuss the meaning of (4.3) in detail; we
shall see that the proof is based on simple ideas. Let us also mention the following
deeper result whose proof is too difficult to be included here.

Theorem 4.2 (Khoshnevisan, Foondun, and Nualart [14]). Suppose d = 1 and (4.3)
has a random-field solution {u(t , x)}t≥0,x∈R. Then the following are equivalent:
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• x 7→ u(t , x) is continuous with positive probability for some t > 0;
• x 7→ u(t , x) is continuous almost surely for some t > 0;
• x 7→ u(t , x) is continuous almost surely for all t > 0;
• x 7→ `(x) is almost surely continuous.

The preceding continues to hold if “continuous” is replaced by “Hölder continuous”
everywhere, and the critical index of Hölder continuity of x 7→ u(t , x) is the same
as that of x 7→ `(x).

There is a large literature that describes the continuity of local times of Lévy
processes. This literature culminates in the work of Barlow [1]. In order to describe
that work let us consider the following function:

δ(x , y) :=
∫ ∞
−∞

1− cos((x− y)ξ)
1 + 2Re Ψ(ξ)

dξ. (4.8)

We can compare Theorem 4.1 with Theorem 3.9 to see that (4.3) has random-field
solutions if and only if δ(x , x) < ∞ for all x. It follows easily from this that δ
is a [pseudo-] metric on R. Define Nδ(ε) to be the smallest number of δ-balls of
radius ε > 0 that are needed to cover [0 , 1]; Nδ is the so-called Kolmogorov metric
entropy of [0 , 1].6 Then we have

Theorem 4.3 (Barlow [1]). Suppose the symmetrized Lévy process Y has square-
integrable local times {`(x)}x∈R. Then x 7→ `(x) is continuous almost surely if and
only if it is continuous with positive probability. And the following is a necessary
and sufficient condition for that continuity:∫

0+
(logNδ(ε))

1/2 dε <∞. (4.9)

Barlow’s theorem provides an analytic condition for the continuity of x 7→
`(x). According to Theorem 4.2, the same condition is necessary and sufficient for
the continuity of the solution to (4.3) in its space variable x. In light of footnote
6, eq. (4.9) is a non-euclidean fractal-like condition, on the psuedo-metric space
([0 , 1] , δ), that is necessary and sufficient for the continuity of solutions to the
stochastic heat equation. [In fact, we shall see that there is basically only one
good solution to (4.3) if there are any.] We close this article by making sense of
(4.3) and subsequently proving Theorem 4.1.

4.1. White noise and Wiener integrals

Let Td := [0 ,∞) ×Rd denote “space-time.” We write a typical element of Td as
(t , x) where t ≥ 0 and x ∈ Rd.

Consider the standard [complex] Hilbert space H := L2(Td), endowed with
the usual inner product 〈g , h〉H :=

∫∞
0

dt
∫
Rd dx g(t , x)h(t , x) and norm ‖h‖H :=

6We can replace ([0 , 1] , d) by a general compact metric space (K,d). And Nd is defined in the

same way. If we apply it with a compact set K ⊂ Rd where d := the usual euclidean metric
instead of the preceding one, then lim supε↓0 logNδ(ε)/ log(1/ε) = dimMK.
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〈h , h〉1/2H for all g, h ∈ H. The isonormal process W := {W (h)}h∈H is a [complex-
valued] mean-zero gaussian process whose covariance function is described by

Cov(W (h) ,W (g)) := 〈h , g〉H . (4.10)

It is not difficult to prove that for all a, b ∈ C and h, g ∈ H the following holds
almost surely: W (ah+ bg) = aW (h) + bW (g). But the null set depends on a, b, h,
and g. In particular, if Imf ≡ 0 then W (f) is real-valued, and the restriction of
W to such functions is a real-valued isonormal process.

For all nonrandom Borel sets A ⊂ Td with finite Lebesgue measure define

Ẇ (A) := W (1A). (4.11)

The resulting set-indexed stochastic process Ẇ is called white noise on Td. Thus,
we can think of h 7→W (h) as an integral against white noise, and write

W (h) =
∫ ∞

0

∫
Rd

h(t , x) Ẇ (dtdx) for all h ∈ H. (4.12)

This is called the Wiener integral of h. We will stop writing the dot in Ẇ from
here on, as there is no ambiguity in omitting that dot. Thus, from now on, we
write

W (h) :=
∫ ∞

0

∫
Rd

h(t , x)W (dtdx) for all h ∈ H. (4.13)

4.2. The Fourier transform of white noise

If h ∈ H, then so is ĥ, where ĥ(t , ξ) :=
∫
Rd eiξ·xh(t , x) dx for all ξ ∈ Rd; ĥ is well

defined for almost all t ≥ 0. And we can define the Fourier transform Ŵ of white
noise as

Ŵ (h) := W (ĥ). (4.14)

Thus, {Ŵ (h)}h∈H is a mean-zero [complex-valued] gaussian random field whose
covariance function is defined by

Cov
(
Ŵ (f) , Ŵ (g)

)
= 〈f̂ , ĝ〉H = (2π)d〈f, g〉H ; (4.15)

the last assertion follows from Plancherel’s theorem when f(t , x) is of the form
T (t)X(x), and in general by density.

4.3. A return to the linear stochastic heat equation

Before we make rigorous sense of (4.3), let us recall a few facts about the linear
heat equation of classical PDEs.

Suppose w(t , x) defines a “nice” function, and consider the heat equation

∂u(t , x)
∂t

= (Lu)(t , x) + w(t , x). (4.16)
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We can make sense of (4.16) by taking the Fourier transform [in x] throughout.
This yields ∂û(t , ξ)/∂t = −Ψ(ξ)û(t , ξ) + ŵ(t , ξ). Thus, a reasonable solution u to
(4.16) ought to satisfy

û(t , ξ) =
∫ t

0

e−(t−s)Ψ(ξ) ŵ(s , ξ) ds. (4.17)

In particular, we might expect that if φ : Rd → R is also “nice,” then∫
Rd

û(t , ξ) φ̂(ξ) dξ =
∫ t

0

ds
∫
Rd

dξ φ̂(ξ) e−(t−s)Ψ(ξ) ŵ(s , ξ). (4.18)

An informal appeal to the Plancherel theorem might then suggest that

u(t , φ) =
1

(2π)d

∫ t

0

ds
∫
Rd

dξ φ̂(ξ) e−(t−s)Ψ(ξ) ŵ(s , ξ), (4.19)

where u(t , φ) :=
∫
Rd u(t , x)φ(x) dx. A remarkable feature of this heuristic compu-

tation is that it produces the usual notion of weak solutions of (4.16) rigorously,
for instance when φ is in the Wiener algebra L1(Rd) ∩ F−1(L1(Rd)), where F
denotes the Fourier transform.

Let D(Ψ) denote the class of Schwartz distributions φ on Rd whose Fourier
transform φ̂ is a function and∫ t

0

ds
∫
Rd

dξ
∣∣∣φ̂(ξ)e−sΨ(ξ)

∣∣∣2 <∞; (4.20)

see Dalang [9]. Then we say that D(Ψ) is the class of natural testing distributions
for (4.3), and the weak solution {u(t , φ)}φ∈D(Ψ) to (4.3) is the random field [i.e.,
stochastic process] defined by the resulting Wiener integrals

u(t , φ) :=
1

(2π)d

∫ t

0

∫
Rd

φ̂(ξ) e−(t−s)Ψ(ξ) Ŵ (dsdξ). (4.21)

This is a well-defined random field, indexed by t ≥ 0 and φ ∈ D(Ψ), because

E
(
|u(t , φ)|2

)
=

1
(2π)d

∫ t

0

ds
∫
Rd

dξ
∣∣∣φ̂(ξ) e−(t−s)Ψ(ξ)

∣∣∣2 <∞. (4.22)

Moreover, one can show that our “weak solution” u(t , φ) agrees almost surely with
the much-better known “weak solution” of Walsh [52] for all φ ∈ L2(Rd). [We will
not dwell on this connection here.]

Definition 4.4. We say that (4.3) has a random-field solution {u(t , x)}t≥0,x∈Rd if
and only if δx ∈ D(Ψ) for one, and hence, all x ∈ Rd. In that case, we identify
u(t , x) with u(t , δx) for each t ≥ 0 and x ∈ Rd.

This is consistent with its analogue in PDEs. In fact, if u(t , x) exists and is
sufficiently regular, then

∫
Rd u(t , x)φ(x) dx defines a version of u(t , φ).

Define

E(φ , ψ) :=
1

(2π)d

∫
Rd

ψ̂(ξ) φ̂(ξ)
1 + 2Re Ψ(ξ)

dξ, (4.23)
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for all Schwartz distributions φ and ψ whose Fourier transform is a function and
E(φ , φ) + E(ψ ,ψ) < ∞. Because the real part of Ψ is nonnegative, E(φ , φ) < ∞
for all φ ∈ L2(Rd).

Lemma 4.5. For all t ≥ 0 and φ ∈ L2(Rd),(
1− e−t

)
E(φ , φ) ≤ E

(
|u(t , φ)|2

)
≤ et E(φ , φ). (4.24)

In particular, L2(Rd) ⊆ D(Ψ).

Proof. Note that | exp{−sΨ(ξ)}|2 = exp{−2sRe Ψ(ξ)} and ReΨ(ξ) ≥ 0. Thus, for
all t > 0 and φ ∈ D(Ψ),

E
(
|u(t , φ)|2

)
=

1
(2π)d

∫ t

0

ds
∫
Rd

dξ
∣∣∣φ̂(ξ)

∣∣∣2 e−2sRe Ψ(ξ). (4.25)

For all φ ∈ L2(Rd),

E
(
|u(t , φ)|2

)
≤ et

(2π)d

∫ ∞
0

ds
∫
Rd

dξ
∣∣∣φ̂(ξ)

∣∣∣2 e−s−2sRe Ψ(ξ) = et E(φ , φ). (4.26)

In order to derive the complementary bound we note that

1
1 + 2Re Ψ(ξ)

=
∞∑
n=0

∫ (n+1)t

nt

e−s−2sRe Ψ(ξ) ds

≤
∞∑
n=0

e−nt
∫ (n+1)t

nt

e−2sRe Ψ(ξ) ds

≤ 1
1− e−t

·
∫ t

0

e−2rRe Ψ(ξ) dr [r := s− nt].

(4.27)

The lemma follows from this and an application of (4.25). �

Let us conclude the paper by proving Theorem 4.1.

Proof of Theorem 4.1. Lemma 4.5 identifies D(Ψ) with the closure of L2(Rd) in
the “energy norm,” φ 7→ E(φ , φ)1/2. In particular, we have a random-field solution
if and only if E(δx , δx) < ∞. An equivalent condition is the integrability of the
function {1 + 2Re Ψ}−1 on Rd. Since 2Re Ψ is the characteristic exponent of the
symmetrized Lévy process Y, Hawkes’s theorem (Theorem 3.9) completes the
proof. �
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