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Abstract. We propose a statistical index for measuring the fluctuations of a
stochastic process ξ. This index is based on the generalized Lorenz curves and
(modified) Gini indices of econometric theory.

When ξ is a fractional Brownian motion with Hurst index α ∈ (0, 1), we
develop a complete picture of the asymptotic theory of our index. In particular,
we show that the asymptotic behavior of our proposed index depends critically
on whether α ∈ (0, 3

4
), α = 3

4
, or α ∈ ( 3

4
, 1). Furthermore, in the first two

cases, there is a Gaussian limit law, while the third case has an explicit limit
law that is in the second Wiener chaos.

1. Introduction

Suppose that ξ := {ξ(x); x ≥ 0} is a given stochastic process and, to be concrete,
we assume it starts at the origin; i.e., ξ(0) = 0 almost surely. Suppose, in addition,
that the process ξ has been sampled at the end of n consecutive time-intervals that
we take to be [0, 1), . . . , [n − 1, n). In particular, the resulting sample is nothing
but ξ1, ξ2, . . . , ξn.

Next we let X0 := 0, and

(1.1) Xi := ξ(i)− ξ(i− 1), i = 1, 2, . . . , n.

If we write the corresponding order statistics as 0 =: X0;n ≤ X1:n ≤ · · · ≤ Xn:n,
then the convex rearrangement of the increments {Xi}n

i=1 is the process Cn defined
as follows:

(1.2) Cn(x) =
[x]∑
i=0

Xi:n + (x− [x]) X[x]+1:n, ∀x ∈ [0, n].

A little thought shows that Cn is the piecewise-linear function that connects
the points {(i,∑i

j=1 Xj:n)}n
i=0. This should be compared to the piecewise-linear

interpolation of the points {ξ(i)}n
i=1 which is obtained by connecting the points

{(i,∑i
j=1 Xj)}n

i=0. Figure 1(a) shows an example of a process ξ (shown as a thin
line), and the piecewise-linear interpolation of {ξ(i)}n

i=1 (shown as a thick line).
Figure 1(b) contains the said interpolation of {ξ(i)}n

i=1 (shown as a thin line), and
the convex rearrangement process Cn (shown as a thick line).
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Figure 1. The convex rearrangement of ξ

The following are three of the significant features of the process Cn:

❶ For all i = 1, . . . , n, we have ξ(i) ≥ Cn(i).
❷ ξ and Cn start and end at the same values; i.e., ξ(0) = Cn(0) = 0 and

ξ(n) = Cn(n).
❸ The random function Cn is convex. In particular, Cn(x) ≤ x

nξ(n) =
x
nCn(n) for all x ∈ [0, n].

Of course, Cn is convex because the slopes of the interpolated lines are increasing.
(This explains why Cn is called the convex rearrangement of the data {Xi}n

i=1.)
However, there is a more abstract explanation for the said convexity that will be
useful in our subsequent analysis. Note that

Cn(x) = n

∫ x/n

0

F−1
n (s) ds (x ∈ [0, n]), where

Fn(x) =
1
n

n∑
j=1

1{Xj≤x} (x ∈ R)
(1.3)

denotes the empirical distribution function of the increments {Xi}n
i=1, and F−1

n (s) :=
inf{x : Fn(x) ≥ s} is the corresponding quantile function. Thus, the convexity of
Cn follows from taking two weak derivatives; cf. Remark A.2 below.

In view of the preceding remarks, we can now measure the fluctuations of the
process ξ over the time interval [0, n] by calculating the area A(n) that is covered
between Cn and the line segment x 7→ x

nξ(n) = x
nCn(n) over the time interval [0, n].

In other words,

(1.4) A(n) :=
∫ 1

0

(sCn(n)− Cn(ns)) ds =
∫ 1

0

|Cn(ns)− sCn(n)| ds.

Figure 2 depicts A(n), for the process ξ of Figure 1, as the area of the shaded
region.

Next we describe a generalization of A(n) that can be used to obtain a family of
indices that measure the fluctuations of ξ.
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Figure 2. The index A(n) is the area of the shaded region

Given a finite-mean distribution function F on the line, we first recall the gen-
eralized Lorenz curve GLF , and define the mean-line function µF , by

GLF (t) :=
∫ t

0

F−1(s) ds,

µF (t) := tGLF (1) = t

∫ ∞

−∞
xdF (x),

∀t ∈ [0, 1],(1.5)

where F−1 denotes the quantile function for F . The Lorenz curve, which is sim-
ply defined as GLF (t)/GLF (1), was first introduced by Lorenz [Lor05], and the
present general setting is attributed to Gastwirth [Gas71]. Then, for any fixed fi-
nite measure λ on [0, 1], one can measure the fluctuations of ξ by considering the
index

(1.6) Ap(n) := ‖GLFn − µFn‖p .

As usual, ‖ · · · ‖p denotes the Lp(dλ)-norm; i.e.,

(1.7) ‖f‖p :=
[∫ 1

0

|f(t)|p dλ(t)
]1/p

, ∀f ∈ Lp(dλ), p ∈ [1,∞).

In particular, we note that A(n) = A1(n), where λ denotes the Lebesgue measure
on [0, 1].

Our index Ap(n) is motivated by well-established concepts from econometric
theory. For instance, the well-known Gini index of {Xi}∞i=1, which is the most
commonly-used measure of economic inequality, is none other than 2A1(n)/X̄n,
where X̄n denotes the sample average of X1, . . . , Xn. This is indeed a measure of
economic inequality, since it can be proved that

(1.8)
2A1(n)

X̄n
=

1
X̄n

∫∫
|x− y| dFn(x) dFn(y).

In words, the Gini index is the relative expected distance between two randomly-
selected subsamples. For the proof of a more general fact that contains (1.8) see
Mosler [Mos02, Proposition 7.1, and Remark 1 on p. 193].

The Gini index has played a central role in measuring economic inequality since
the work of C. Gini in the early parts of the twentieth century; see David [Dav68]
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and Giorgi [Gio90, Gio93]. The more general index Ap(n) is related to measures
of economic inequality that involve weighing the underlying income population
according to a finite measure dλ(t) = w(t) dt, and allows for the use of other Lp-
norms. A more detailed discussion can be found in Barrett and Donald [BaD02]
and Zitikis [Zit02, Zit03].

The main aim of this article is to develop some of the asymptotic theory of
Ap(n) in the case where ξ is a Gaussian process with stationary increments and a
nicely-behaved correlation function.1 From here, one can push further and use our
results to construct asymptotic 95%-confidence intervals (say) for variants of the
Gini index of the population from which the Xi’s have been drawn.

Although our methods can be used to study a large class of Gaussian processes,
we restrict most of our attention to the case where ξ is a fractional Brownian
motion with parameter α ∈ (0, 1). For such process, the main result of this paper
implies the surprising fact that the asymptotic theory of our fluctuation indices
goes through a phase transition at α = 3

4 .
Recall that ξ is a fractional Brownian motion of index α ∈ (0, 1) if it is a

continuous centered Gaussian process such that E{|ξ(t)− ξ(s)|2} = |t− s|2α for all
s, t ≥ 0. In this case, our asymptotics will imply that when p ≥ 2 and λ is the
Lebesgue measure on [0, 1],

(1.9) Ap(n)− 1
(p + 1)1/(2p)

√
2π

=




OP

(
n−1/2

)
if α ∈ (0, 3

4

)
,

OP

(
n−1/2

√
lnn

)
, if α = 3

4 ,

OP

(
n−2(1−α)

)
, if α ∈ ( 3

4 , 1
)
.

Moreover, after normalizing with the above rates, the left-hand side converges
weakly to a normal law in the case that α ≤ 3

4 , and to an explicit law in the
second Wiener chaos when α > 3

4 .
We conclude this section with by noting that, in a rather different setting than

ours, Guyon and Leon [GuL89] and Bardet [Bar99] have also noted different as-
ymptotic behaviors with forms that depend on whether α < 3

4 or α > 3
4 .

2. The Main Result and First-Order Asymptotics

Before we describe the main result of this paper, we need to introduce some
notation.

Throughout, we use the standard notation for the normal distribution, viz.,

(2.1) ϕ(x) :=
e−x2/2

√
2π

, and Φ(x) =
∫ x

−∞
ϕ(y) dy, ∀x ∈ R.

Given any stationary Gaussian sequence {Xi}∞i=1, we then write Φn for the cor-
responding empirical distribution function when the Xi’s are standard normal; cf.
(1.3) for the more general definition.

Throughout,NNN andRRRα denote independent random variables with the following
respective distribution functions: NNN is standard normal; and RRRα is a Rosenblatt
random variable [Ros61]. The Fourier–Laplace transform ofRRRα is described by the

1We frequently assume that E{ξ(t)} = 0. This is not a great loss in generality, since many of
the applications will then involve the process ξ(t) + tµ for a mean-constant µ.
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following formula: For all α ∈ ( 3
4 , 1
)
, and z ∈ C with |z| sufficiently small,

E
[
ezRRRα

]
= exp

(
1
2

∞∑
k=2

(2z)k

k

∫
[0,1]k

[Ψk(t)]−2(1−α) dt

)
, where

Ψk(t) = |t2 − t1| × · · · × |tk − tk−1| × |t1 − tk| , ∀t ∈ R
k .

(2.2)

Now we concentrate on the case where ξ is fractional Brownian motion. The
following is the main result of this paper.

Theorem 2.1 (Fractional Brownian Increments). Suppose ξ is a fractional Brow-
nian motion with Hurst parameter α ∈ (0, 1). Then, as n → ∞, the following
hold:

(1) If α ∈ (0, 3
4 ) and p ≥ 1, then there exists a σ := σ(α, p) ∈ (0,∞) such that

(2.3)
√

n
(
Ap(n)− ∥∥ϕ ◦ Φ−1

∥∥
p

)
d−→ σ

∥∥ϕ ◦ Φ−1
∥∥1−p

p
NNN .

(2) If α = 3
4 and p ≥ 2, then

(2.4)
√

n

lnn

(
Ap(n)− ∥∥ϕ ◦ Φ−1

∥∥
p

)
d−→ 9

4
√

2

∥∥ϕ ◦ Φ−1
∥∥

p
NNN .

(3) If α ∈ ( 3
4 , 1
)

and p > 2, then

(2.5) n2(1−α)
(
Ap(n)− ∥∥ϕ ◦ Φ−1

∥∥
p

)
d−→ 1

2

∥∥ϕ ◦ Φ−1
∥∥

p

(NNN 2 + 3RRRα

)
.

(4) If α ∈ [34 , 1
)

and p ∈ [1, 2), then (2.4) and (2.5) both hold as long as there
exists a θ > 2− p such that

(2.6)
∫ 1

0

s−θ(1− s)−θ dλ(s) < +∞.

Remark 2.2. In principle, σ can be computed; cf. (2.17) and (3.3) below.

Remark 2.3. When λ is the Lebesgue measure, then (2.6) holds for all θ ∈ (0, 1),
but not for θ = 1. In particular, the only case left uncovered by parts 2 and 3 of
Theorem 2.1 is p = 1. This leads us to the following:

Conjecture 2.3?. If α ∈ [ 3
4 , 1
)

and λ is the Lebesgue measure,
then (2.4) and (2.5) continue to hold for p = 1.

We now digress slightly by first studying a more general problem. To do so, we
dispense with the process ξ altogether, and consider a stationary sequence {Xi}∞i=1

of integrable random variables whose common distribution is F . We will impose
various conditions on F , and on the dependence structure of the Xi’s, throughout.

Since ‖µF −GLF ‖p is the “population” version of the index Ap(n), it is natural
to expect that, given a nice F and for a nice dependence structure among the Xi’s,
limn→∞ Ap(n) = ‖µF − GLF ‖p. Therefore, we begin by making this statement
precise.

Theorem 2.4. If {Xi}∞i=1 is a strictly stationary and ergodic sequence, then almost
surely, limn→∞ Ap(n) = ‖µF −GLF ‖p.
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Proof. We start with the following inequalities:

|Ap(n)− ‖µF −GLF ‖p| ≤ ‖(µFn −GLFn)− (µF −GLF )‖p

≤ ‖µFn − µF ‖p + ‖GLFn −GLF ‖p

≤ λ([0, 1]) · (∣∣X̄n − µ
∣∣+ ‖GLFn −GLF ‖∞

)
,

(2.7)

where ‖ · ‖∞ denotes the sup-norm here and throughout.
Thanks to the Birkhoff–Khintchine ergodic theorem, limn X̄n→∞ = µ, a.s., and

so it remains to prove that limn→∞ ‖GLFn −GLF ‖∞ = 0, a.s. For this we use the
inequality,

(2.8) ‖GLFn −GLF ‖∞ ≤ d1(Fn, F ) :=
∫ 1

0

∣∣F−1
n (s)− F−1(s)

∣∣ ds.

The quantity d1(Fn, F ) is the Dobrushin distance between Fn and F ; cf. [Dob70].
When the Xi’s are independent, it is well known that limn→∞ d1(Fn, F ) = 0 almost
surely; see Shorack and Wellner [ShW86, Exercise 9, p. 66]. This fact continues
to hold in the more general case of stationary and ergodic sequences; see Davydov
and Zitikis [DaZ01]. �

Now, as a first step toward proving Theorem 2.1, we apply the preceding theorem
to the increments of a fractional Brownian motion.

Corollary 2.5. Choose some p ≥ 1, and consider {Xi}∞i=1 to be the increments of
a fractional Brownian motion ξ with Hurst parameter α ∈ (0, 1). Then the sample
index of the fluctuations of ξ converges to the theoretical one; i.e.,

(2.9) lim
n→∞Ap(n) = ‖ϕ ◦ Φ−1‖p, a.s.

In particular, when λ is the Lebesgue measure on [0, 1],

(2.10) lim
n→∞Ap(n) =

1
(p + 1)1/(2p)

√
2π

, a.s.

Proof. The ergodicity of the Xi’s was first proved in Maruyama [Mar49, Theorem
9(ii), p. 58]. [For a modern and elementary proof, see Rosenblatt [Ros61, p. 432].]
Therefore, the two displays follow readily from Theorem 2.4, and Remarks A.1
and A.3 of the appendix. �

Corollary 2.5 relied heavily on the ergodicity of {Xi}∞i=1 which is equivalent to
the convergence of Cov(X1, Xk) to 0 in the sense of Cesàro. This, in turn, follows
from limk→∞ Cov(X1, Xk) = 0 whose verification is outlined in Remark A.4. Given
these observations, it should not come as a surprise then that the rate of convergence
in Corollary 2.5 depends on the rate of decay of the said correlation function.

Recall that a (weakly) stationary sequence {Xi}∞i=1 is called short-range depen-
dent if

(2.11)
∞∑

k=1

|Cov(X1, X1+k)| < ∞.

Theorem 2.6. Let p ≥ 1, and let {Xi}∞i=1 be a short-range dependent and station-
ary Gaussian process with distribution F . Then there exists a nontrivial constant
σ := σ(F ; α, p) such that

(2.12)
√

n (Ap(n)− ‖µF −GLF ‖p)
d−→ ‖µF −GLF ‖1−p

p σNNN .
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Moreover, the following is one particular representation for σ := σ(F ; α, p):

(2.13) σ2 := Var(Λ(Z)),

where the linear functional Λ is defined by the formula,

(2.14) Λ(Z) :=
∫ 1

0

|µF (t)−GLF (t)|p−1
Z(t) dλ(t),

Z(t) := Y (t) − tY (1) is the Gaussian bridge corresponding to the process Y (t) :=∫ F−1(t)

−∞ Γ(x) dx, and Γ is a centered Gaussian process with

Cov (Γ(x), Γ(y))

= F (x ∧ y)− F (x)F (y) + 2
∞∑

k=1

Cov
(
1{X1≤x},1{X1+k≤y}

)
.

(2.15)

Thanks to (2.11), the infinite series in (2.15) converges absolutely for any x, y ∈
R; cf. Lemma A.5 below.

Before proving Theorem 2.6, we use it to derive the first, and the simplest, part
of Theorem 2.1.

Proof of Theorem 2.1: Part 1. If {Xi}∞i=1 are the increments of an index-α frac-
tional Brownian motion, then we use the fact that −GLΦ = ϕ◦Φ−1 (Remark A.3),
and apply Theorem 2.6 with F := Φ to deduce that

(2.16)
√

n
(
Ap(n)− ‖ϕ ◦ Φ−1‖p

) d−→ ‖ϕ ◦ Φ−1‖1−p
p σNNN ,

where

(2.17) σ2 := Var
(∫ 1

0

∣∣ϕ ◦ Φ−1(t)
∣∣p−1

Z(t) dλ(t)
)

.

Moreover, Z(t) := Y (t)− tY (1) is the Gaussian bridge corresponding to the process

Y (t) :=
∫ Φ−1(t)

−∞ Γ(x) dx, and Γ is a centered Gaussian process with

Cov (Γ(x), Γ(y))

= Φ(x ∧ y)− Φ(x)Φ(y) + 2
∞∑

k=1

Cov
(
1{X1≤x},1{X1+k≤y}

)
.

(2.18)

This completes the proof of the first portion of Theorem 2.1. �

We are ready to present the following.

Proof of Theorem 2.6. We begin by noting that the condition α ∈ (0, 1
2 ] is equiva-

lent to the short-range dependence of {Xi}∞i=1; cf. Remark A.4.
Define the functional T (F ) := ‖µF − GLF ‖p, and note that Ap(n) = T (Fn).

Therefore, an applications of the Taylor formula reveals that

(2.19)
√

n |Ap(n)− ‖µF −GLF ‖p − Λ(Zn)| = oP(1),

where Λ is the linear functional that was defined in Theorem 2.6, and the stochastic
process Zn is defined by the formula,

(2.20) Zn := (µFn −GLFn)− (µF −GLF ) .

In the case of short-range dependent increments we have the following [DaZ01]:

(2.21)
√

n(GLFn −GLF ) =⇒−Y,
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where the process Y is defined in Theorem 2.6, and ⇒ denotes weak convergence
in C([0, 1]). Thus,

√
nZn =⇒ Z, for the very same process Z that was defined in

Theorem 2.6. Now a standard continuity argument shows that
√

nΛ(Zn) converges
in distribution to Λ(Z), whence (2.12). Thus, our task is completed as soon as we
prove that σ < +∞.

Now uniformly for all t ∈ [0, 1],

(2.22) 0 ≤ µF (t)−GLF (t) ≤ 2
∫ ∞

−∞
|x| dF (x) < +∞.

Thus, a little computation on the side shows that σ < +∞ if we could prove
that Var(Y (t)) is bounded in t. Since Y is centered, and proceeding somewhat
informally, we have

(2.23) Var (Y (t)) =
∫ F−1(t)

−∞

∫ F−1(t)

−∞
Cov (Γ(x), Γ(y)) dxdy.

[To make this completely rigorous, first replace
∫ F−1(t)

−∞ by
∫ F−1(t)

−N
, and then let

N →∞.] Next we recall that α ≤ 1
2 means that the process {Xi}∞i=1 is negatively

correlated; cf. (A.5). Therefore, Slepian’s inequality [Slep62] and (2.18) together
imply that Cov(Γ(x), Γ(y)) ≤ F (x∧ y)[1−F (x∨ y)], which is integrable [dx× dy].
This and (2.23) together show that Var(Y (t)) is bounded in t, and this completes
our proof. �

Next consider the case where {Xi}∞i=1 is long-range dependent ; i.e., the case when
(2.11) fails to hold. To be concrete, we assume that Xi’s are the increments of a
fractional Brownian motion. Thus, by (A.4), α ∈ (1

2 , 1).
In this case, (2.21) has the following analogue [DaZ01]:

(2.24)
√

n

dn
(GLΦn −GLΦ) =⇒ −Y ∗,

where Y ∗(t) := tNNN , and dn is defined by the formula

(2.25) d2
n := 1 + 2

n−1∑
k=1

(
1− k

n

)
Cov(X1, X1+k).

Consequently, by a standard continuity argument,

(2.26)
√

n

dn

(
Ap(n)− ‖ϕ ◦ Φ−1‖p

) d−→ ‖ϕ ◦ Φ−1‖1−p
p Λ(Z∗),

where Z∗(t) := Y ∗(t) − tY ∗(1) = 0. Unfortunately, Λ(Z∗) ≡ 0, which means
that, unlike the short-range dependent case, the long-range dependent case does
not follow from general weak convergence principles. Of course, in the preceding
display, dn = (c + o(1))n2α−1 goes to infinity, so (2.26) is consistent with the
remaining parts of Theorem 2.1.
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3. Proof of Theorem 2.1: Parts 2 and 3

Consider the function,

G(u) :=
∫ 1

0

∣∣ϕ ◦ Φ−1(s)
∣∣p−1

g(u, s) dλ(s), where

g(u, s) :=
∫ Φ−1(t)

−∞

[
1[u,∞)(x)− Φ(x)

]
dx− s

∫ ∞

−∞

[
1[u,∞)(x)− Φ(x)

]
dx.

(3.1)

Part 2 of Theorem 2.1 is contained within our next result.

Theorem 3.1. Let p ≥ 2, and suppose {Xi}∞i=1 are the increments of a fractional
Brownian motion with index α ∈ (1

2 , 3
4 ). Then,

(3.2)
√

n
(
Ap(n)− ‖ϕ ◦ Φ−1‖p

) d−→ ‖ϕ ◦ Φ−1‖1−p
p σNNN ,

where

(3.3) σ2 :=
∞∑

k=1

E[G(X1)G(X1+k)] ∈ (0,∞).

Before proving this, we first develop a series of technical lemmas.

Lemma 3.2. For all α ∈ (0, 1) and p > 1, there exists a constant A := A(α, p) ∈
(0,∞) such that for all u ∈ R, |G(u)| ≤ A(1 + |u|).
Proof. Write F̄ := 1− F for any distribution function F , and note that

(3.4)
∫ ∞

−∞

[
1[u,∞)(x)− Φ(x)

]
dx =

∫ ∞

u

Φ̄(x) dx −
∫ u

−∞
Φ(x) dx = −u.

Next suppose that u > Φ−1(s). Then, a similar argument shows that

(3.5)
∫ Φ−1(s)

−∞

[
1[u,∞)(x)− Φ(x)

]
dx = −sΦ−1(s)− ϕ ◦ Φ−1(s).

Finally, if u ≤ Φ−1(s), then∫ Φ−1(s)

−∞

[
1[u,∞)(x)− Φ(x)

]
dx = (1− s)

(
Φ−1(s)− u

)
+ ϕ ◦ Φ−1(u)− us.(3.6)

By combining the preceding three displays we arrive at the neat formula:

(3.7) g(u, s) = s
(
u− Φ−1(s)

)
+
(
Φ−1(s)− u

)+
+ ϕ ◦ Φ−1(s).

Thus, for all u ∈ R and s ∈ [0, 1], |g(u, s)| ≤ |u|+ |Φ−1(s)|+ 1; i.e.,

(3.8) sup
s∈[0,1]

(
ϕ ◦ Φ−1(s)

)p−1 |g(u, s)| ≤ |u|+ sup
x∈R

|x|ϕp−1(x) + 1.

The lemma follows upon integrating this [dλ]. �

Lemma 3.3. The infinite series in (3.3) converges absolutely if and only if α < 3
4 .

In light of Giraitis and Sugrailis [GiS85, Lemma 5], this would follow immedi-
ately, once we prove that G has Hermite rank 2. We dispense with this assertion
next.
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Lemma 3.4. Suppose Hk denotes the Hermite polynomial of rank k, and con-
sider any α ∈ (0, 1). Then, G has Hermite rank 2; i.e., if we define (G, Hk) :=
E{G(X1)Hk(X1)}, then (G, H0) = (G, H1) = 0, whereas (G, H2) 6= 0. In addition,

(3.9) (G, H2) = 3
∥∥ϕ ◦ Φ−1

∥∥p

p
.

Proof. The assertion that (G, H0) is zero follows from the fact that H0(x) ≡ 1.
Because H1(x) = x, (G, H1) is zero if and only if E{G(X1)X1} is. This can be

proved by showing that for all s ∈ (0, 1), E{g(X1, s)X1} = 0. To prove this we
appeal to (3.7) and write:

g(u, s) = ω0(u, s) + ϕ ◦ Φ−1(s), where

ω0(u, s) := s
(
u− Φ−1(s)

)
+
(
Φ−1(s)− u

)+
.

(3.10)

Clearly, E[g(X1, s)X1] = 0 if and only if E[ω0(X1, s)X1] = 0. But this is equivalent
to checking that E[(Φ−1(s)−X1)+X1] = −s which is easy to check directly.

In order to prove that G has Hermite rank 2 we still need to verify that (G, H2) 6=
0. Since H2(x) = x2 − 1, this amounts to proving E[G(X1)X2

1 ] 6= 0. By (3.10),

(3.11) E
[
g(X1, s)X2

1

]
= E

[
ω0(X1, s)X2

1

]
+ ϕ ◦ Φ−1(s).

By (3.10), and a few tedious calculations, E[ω0(X1, s)X2
1 ] = 2ϕ◦Φ−1(s). Therefore,

(3.11) implies that for all s ∈ [0, 1], (g(s, ·), H2) = E[g(X1, s)X2
1 ] = 3ϕ◦Φ−1(s) > 0.

The remainder of the lemma follows immediately from this. �

Remark 3.5. We have actually proved the stronger result that for any s ∈ (0, 1),
the Hermite rank of g(•, s) is 2.

Lemma 3.6. If α < 3
4 , and if σ is defined by (3.3), then σ > 0.

Proof. Since α < 3
4 , Lemma 3.3 guarantees that we can apply the Wiener–Itô [Itô51]

expansion of G(Xj) in terms of the Hermite polynomials {Hi}∞i=1. This yields the
following: For all m ≥ 1,

(3.12) G(Xm) =
∞∑

i=0

1
i!

Hi(Xm)(G, Hi),

where the convergence takes place in L2(P). Because G has Hermite rank 2, ele-
mentary properties of Hermite polynomials show that

(3.13) E {G(X1)G(X1+k)} =
∞∑

i=2

1
i!

[Cov(X1, X1+k)]i (G, Hi)2.

In accord with (A.5), all the summands are nonnegative, and the first term is, in
fact, strictly positive. This completes our proof. �

Lemma 3.7. For all α ∈ (1
2 , 1),

(3.14)
∫ 1

0

∣∣Φ−1
n (s)− Φ−1(s)

∣∣ ds =
∫ ∞

−∞
|Φn(x)− Φ(x)| dx = oP

(
nα−1

√
lnn

)
.

Remark 3.8. At the expense of writing a longer argument, one can, in fact, improve
the rate to OP(nα−1). The same improvement holds for Lemma 3.9 below. Also
note that the above estimates the size of the Dobrushin distance between Φn and
Φ; cf. (2.8).
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Proof. In words, the first equality is stating that the area between Φn and Φ is the
same as the area between their respective inverses. Thus, we need only to derive
the stated little-o estimate. With this aim in mind, define

(3.15) rn(x) := Φn(x)− Φ(x) + ϕ(x)X̄n.

Theorem 3.1 of Dehling and Taqqu [DeT89] and a Borel–Cantelli argument together
prove that

(3.16) ‖rn‖∞ = o
(
nα−1

)
, a.s.

On the other hand, according to Taqqu [Taq75, Corollary 5.1],

(3.17) X̄n = OP

(
nα−1

)
.

This readily yields the following:

(3.18)
∫ 2

√
lnn

−2
√

lnn

|Φn(x)− Φ(x)| dx = oP

(
nα−1

√
lnn

)
.

On the other hand, if we write F̄ := 1− F , then

(3.19) E

{∫
|x|>2

√
ln n

|Φn(x) − Φ(x)| dx

}
≤ 4E

{∫ ∞

2
√

lnn

Φ̄(x) dx

}
.

A direct computation reveals that for any m > 0,
∫∞

m
Φ̄(x) dx ≤ e−m2/2. Since

α ∈ (0, 1), this completes our proof. �

Before stating our next lemma, let us define

(3.20) hn := µΦn − (GLΦn −GLΦ) = µΦn + (ϕ ◦ Φ−1 + GLΦn).

Lemma 3.9. For all α ∈ (1
2 , 1), ‖hn‖∞ = oP(nα−1

√
lnn).

Proof. Clearly, ‖hn‖∞ ≤ |X̄n|+‖GLΦn −GLΦ‖∞. Since ‖GLΦn −GLΦ‖∞ does not
exceed

∫∞
−∞ |Φn(x)−Φ(x)| dx, Lemma 3.7 and (3.17) together finish the proof. �

Consider the processes βU and γ defined below.

βU
n (s) := Φn ◦ Φ−1(s)− s,

γn(s) := Φ−1
n (s)− Φ−1(s).

(3.21)

According to [DaZ01, Lemma 6.3], for any ρ > 0, we have the statement
sups∈(0,1) sρ(1 − s)ρ|γn(s)| = oP(1). A little computation on the side shows that
this is equivalent to the statement that for all ρ > 0,

(3.22)
∥∥∥(ϕ ◦Φ−1

)ρ
γn

∥∥∥
∞

= oP(1).

Next, we estimate the supremum norm of βU . Moreover, we use (3.22) to improve
itself in the case that ρ > 1.

Proposition 3.10. If α ∈ (1
2 , 1), then ‖βU

n ‖∞ = OP(nα−1). In addition, for all
ρ > 1, ‖(ϕ ◦ Φ−1)ργn‖∞ = OP(nα−1).

Proof. Recall rn from (3.15) and note that βU
n (s) = rn ◦ Φ−1(s) − ϕ ◦ Φ−1(s)X̄n.

Therefore, by (3.16) and (3.17), ‖βU
n ‖∞ = OP(nα−1), as claimed. Next we derive

the asserted estimate on γn.
By (3.15), (3.16), for any x, y ∈ R, with probability one,

(3.23) [Φn(x)− Φn(y)]− [Φ(x) − Φ(y)] + X̄n [ϕ(x) − ϕ(y)] = o
(
nα−1

)
.
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Here, the little-o term does not depend on the choice of x and y. Since sups∈(0,1) |Φn◦
Φ−1

n (s) − s| ≤ 1
n , we apply the preceding with x := Φ−1(s) and y := Φ−1

n (s), and

obtain that uniformly in s ∈ (0, 1), βU
n (s) +

∫ Φ−1
n (s)

Φ−1(s)
ϕ(x) dx = OP(nα−1). Since

‖βU
n ‖∞ = OP(nα−1), this leads to

(3.24) sup
s∈(0,1)

∣∣∣∣∣(ϕ ◦ Φ−1(s)
)ρ ∫ Φ−1

n (s)

Φ−1(s)

ϕ(x) dx

∣∣∣∣∣ = OP(nα−1).

By the Fubini–Tonelli theorem, for every s ∈ (0, 1),∣∣∣∣∣
∫ Φ−1

n (s)

Φ−1(s)

ϕ(x) dx − ϕ ◦ Φ−1(s)γn(s)

∣∣∣∣∣ =

∣∣∣∣∣
∫ Φ−1

n (s)

Φ−1(s)

∫ x

Φ−1(s)

ϕ′(y) dy dx

∣∣∣∣∣
≤ 1

2
‖ϕ′‖∞ |γn(s)|2 .

(3.25)

As a result,

(3.26)
(
ϕ ◦ Φ−1(s)

)ρ |γn(s)| ≤ 1
2
‖ϕ′‖∞

(
ϕ ◦ Φ−1(s)

)ρ−1 |γn(s)|2 + OP(nα−1).

According to (3.22), if ε ∈ (0, ρ−1), then, |γn(s)|2 = oP((ϕ◦Φ−1(s))−ε), uniformly
for all s ∈ (0, 1). Therefore, given any fixed sequence χn ↓ 0,

(3.27) sup
s∈[χn,1−χn]

∣∣∣(ϕ ◦ Φ−1(s)
)ρ

γn(s)
∣∣∣ = oP

((
ϕ ◦ Φ−1(χn)

)ρ−1−ε
)

+ OP(nα−1).

On the other hand, according to (3.22), for any ε ∈ (0, ρ− 1),

(3.28) sup
s∈(0,1)\[χn,1−χn]

(
ϕ ◦ Φ−1(s)

)ρ |γn(s)| = oP

((
ϕ ◦ Φ−1 (χn)

)ρ−ε
)

.

Combining the preceding displays leads to the following: For all ε ∈ (0, ρ− 1),

(3.29) sup
s∈(0,1)

∣∣∣(ϕ ◦ Φ−1(s)
)ρ

γn(s)
∣∣∣ = oP

((
ϕ ◦ Φ−1(χn)

)ρ−1−ε
)

+ OP

(
nα−1

)
.

The proposition follows upon letting χn tend to 0 sufficiently rapidly. �

Next, we recall the Vervaat process :

(3.30) Vn(s) :=
∫ s

0

[
Φ−1

n (u)− Φ−1(u)
]

du +
∫ Φ−1(s)

−∞
[Φn(x)− Φ(x)] dx.

Lemma 3.11. For all α ∈ (1
2 , 1) and ρ > 1, ‖(ϕ ◦ Φ−1)ρVn‖∞ = OP(n2α−2).

Proof. It is well known that 0 ≤ Vn(s) ≤ |βU
n (s)γn(s)|, where γn and βU

n are
defined in (3.21). This is a geometric inequality that is explained, for example, in
Zitikis [Zit98, eq.’s 1.9 and 1.12]. The lemma follows from the said inequality and
Proposition 3.10. �

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Let

(3.31) ζ(τ) := ‖ −GLΦ + τhn‖p = ‖ϕ ◦ Φ−1 + τhn‖p.

By the Taylor formula,

(3.32) Ap(n)− ‖ϕ ◦ Φ−1‖p = ζ′(0) +
∫ 1

0

[ζ′(τ) − ζ′(0)] dτ.
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One can compute directly to see that the preceding terms are described as follows:

(3.33) ζ′(τ) = [ζ(τ)]1−p
∫ 1

0

[
ϕ ◦ Φ−1(s) + τhn(s)

]p−1
hn(s) dλ(s).

In particular, the main term ζ′(0) of (3.32) is

(3.34) ζ′(0) = ‖ϕ ◦ Φ−1‖1−p
p

∫ 1

0

[
ϕ ◦ Φ−1(s)

]p−1
hn(s) dλ(s).

Recall hn and Vn, respectively from (3.20) and (3.30), and note that hn is the
difference between the following two functions:

µΦn(s) = − s

n

n∑
i=1

∫ ∞

−∞

[
1{Xi≤x} − Φ(x)

]
dx,

GLΦn(s)−GLΦ(s) = − 1
n

n∑
i=1

∫ Φ−1(s)

−∞

[
1{Xi≤x} − Φ(x)

]
dx + Vn(s).

(3.35)

By (3.1) and (3.35),

ζ′(0) = ‖ϕ ◦ Φ−1‖1−p
p

(
1
n

n∑
i=1

G(Xi)−
∫ 1

0

[
ϕ ◦ Φ−1(s)

]p−1
Vn(s) dλ(s)

)

=
‖ϕ ◦ Φ−1‖1−p

p

n

n∑
i=1

G(Xi) + OP

(
n2α−2

)
.

(3.36)

The function G is defined in (3.1), and the second equality follows from Lemma 3.11
[applied with ρ := p − 1]. On the other hand, according to Giraitis and Sur-
gailis [GiS85, Theorem 5], and owing to Lemma 3.4,

(3.37) n−1/2
n∑

i=1

G(Xi)
d−→ σNNN .

Because α ∈ (1
2 , 3

4 ), (3.37), (3.36), and (3.32) together complete our proof, provided
that we prove the following: For all α ∈ (1

2 , 1),

(3.38) ‖ζ′′‖∞ = OP

(
n2α−2

)
.

On the other hand, a direct computation reveals that

ζ′′(τ) = (1− p) [ζ(τ)]1−2p

(∫ 1

0

(
ϕ ◦ Φ−1(s) + τhn(s)

)p−1
hn(s) dλ(s)

)2

+ (p− 1) [ζ(τ)]1−p
∫ 1

0

(
ϕ ◦ Φ−1(s) + τhn(s)

)p−2
h2

n(s) dλ(s).

(3.39)

Since ζ and ϕ ◦ Φ−1 are uniformly bounded, Lemma 3.9 proves (3.38), and hence
Theorem 3.1. �

Proof of Theorem 2.1: Part 3. We follow closely the proof of the second portion
of Theorem 2.6, all the time noting that (3.36) and (3.38) continue to hold in the
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present setting. On the other hand, when α = 3
4 , (3.37) is replaced by the following:

(
nσ2

n

)−1/2
n∑

i=1

G(Xi)
d−→NNN , where

σ2
n :=

n∑
k=1

E [G(X1)G(X1+k)] .

(3.40)

See [GiS85, Theorem 6]. Thus, in order to conclude, it suffices to estimate σn.
Recall that G has Hermite rank 2. Thus, according to Itô [Itô51],

(3.41) E [G(X1)G(X1+k)] =
∞∑

j=2

1
j!

[Cov (X1, X1+k)]j (E [G(X1)Hj(X1)])
2
.

Thanks to (A.3), Cov(X1, X1+k) = (3
4 +o(1))k−1/2 (k →∞). Therefore, as k →∞,

E [G(X1)G(X1+k)] =
∞∑

j=2

1
kj/2j!

(
3
4

+ o(1)
)j

(E [G(X1)Hj(X1)])
2

=
(

9
32

+ o(1)
)

k−1 × (E [G(X1)H2(X1)])
2

=
(

81
32

+ o(1)
)

k−1 × ∥∥ϕ ◦ Φ−1
∥∥2p

p
.

(3.42)

The second equality in (3.42) follows from E[G(X1)2] < ∞ and E[Hj(X1)2] = j!;
see (3.9) for the third equality. We have therefore proved that

(3.43) σ2
n =

81 + o(1)
32

∥∥ϕ ◦ Φ−1
∥∥2p

p
ln(n), (n →∞).

Part 3 of Theorem 2.1 follows from this and (3.40). �

4. Proof of Theorem 2.1: Parts 3 and 4

To a degree, our proof of the remaining portions of Theorem 2.1 follows the ideas
developed in the proofs of its earlier parts. However, parts 3 and 4 are the more
challenging portions of Theorem 2.1, since additional difficulties crop up. This is
why the limit law is nonnormal, in fact.

Unless explicitly stated otherwise, we continue to use our earlier notation, but
now we are assuming that α ∈ (3

4 , 1).

Theorem 4.1. Under the assumptions of part 4 of Theorem 2.1,

n2(1−α)
(
Ap(n)− ∥∥ϕ ◦Φ−1

∥∥
p

)

=
1
2

∥∥ϕ ◦ Φ−1
∥∥p

p



(

1
nα

n∑
i=1

Xi

)2

+
3

n2α−1

n∑
i=1

(X2
i − 1)


+ oP(1).

(4.1)

Proof. We follow the proof of Theorem 3.1 until we reach (3.36). Since α ∈ (3
4 , 1),

it follows that the two terms n−1
∑n

i=1 G(Xi) and
∫ 1

0 |ϕ ◦ Φ−1(s)|p−1Vn(s) dλ(s)
are now asymptotically equivalent. [This contrasts with the proof when α < 3

4 . In
that case, we showed that n−1

∑n
i=1 G(Xi) is uniquely the dominant term.]

Our goal then is to estimate n−1
∑n

i=1 G(Xi) and
∫ 1

0
(ϕ ◦Φ−1(s))p−1Vn(s) dλ(s)

with objects that are a good deal simpler. We start with the term n−1
∑n

i=1 G(Xi).
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Recall that G has Hermite rank 2 (Lemma 3.4), as well as finite absolute moments
of all orders (Lemma 3.2). Because, in addition, α ∈ (3

4 , 1), the Strong Reduction
Theorem of Taqqu [Taq77] implies that with probability one,

1
n

n∑
i=1

G(Xi) =
(G, H2)

2n

n∑
i=1

(X2
i − 1) + o

(
n2α−2

)
(n →∞)

=
3
∥∥ϕ ◦ Φ−1

∥∥p

p

2n

n∑
i=1

(X2
i − 1) + o

(
n2α−2

)
.

(4.2)

See (3.9) for the last equality. Next we start to identify the main contributions to
the term

∫ 1

0 [ϕ ◦ Φ−1(s)]p−1Vn(s) dλ(s) of the first line of (3.36). To do so, we first
need to take a closer look at the Vervaat process Vn.

In accord with Csörgő and Zitikis [CsZ02, eq. 4.20],

(4.3) Vn(s) = −1
2
βU

n (s)γn(s) + ρn(s).

Here, βU
n and γn are defined in (3.21), and

ρn(s) := An(s)− 1
2
Bn(s) +

1
2
Cn(s), where

An(s) :=
∫ s

Φ◦Φ−1
n (s)

[
βU

n (u)− βU
n (s)

]
dΦ−1(u),

Bn(s) :=
[
βU

n (s) + γU
n (s)

]
γn(s),

γU
n (s) := Φ ◦ Φ−1

n (s)− s,

Cn(s) :=
∫ s

Φ◦Φ−1
n (s)

[
Φ−1

n (s)− 2Φ−1(u) + Φ−1(s)
]

du.

(4.4)

As it turns out, the main contribution comes from βU
n γn, which we rewrite as

follows:

(4.5) βU
n (s)γn(s) = −

[
βU

n (s)
]2

ϕ ◦ Φ−1(s)
+ Dn(s).

Here,

(4.6) Dn(s) := βU
n (s)

(
γn(s) +

βU
n (s)

ϕ ◦ Φ−1(s)

)
.

We can then plug (4.5) into (4.3), and deduce the following:

(4.7) Vn(s) =

[
βU

n (s)
]2

2ϕ ◦Φ−1(s)
+
(

ρn(s)− 1
2
Dn(s)

)
.

Once again, it turns out that the first term of this expansion contains the main
contribution to Vn. We further simplify it as follows:

(4.8) Vn(s) =
ϕ ◦ Φ−1(s)

2
X̄2

n +
(

ρn(s)− 1
2
Dn(s) +

1
2
En(s)

)
.

The new remainder term En(s) is defined by the formula,

(4.9) En(s) :=
1

ϕ ◦ Φ−1(s)

([
βU

n (s)
]2 − [ϕ ◦ Φ−1(s)

]2
X̄2

n

)
.
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At this point, we can appeal to (4.8), and note that the term in (3.36) that involves
the Vervaat process is nothing other than

(4.10)
∫ 1

0

(
ϕ ◦ Φ−1(s)

)p−1
Vn(s) dλ(s) =

1
2

∥∥ϕ ◦ Φ−1
∥∥p

p
X̄2

n + Rn,

where

(4.11) Rn :=
∫ 1

0

(
ϕ ◦ Φ−1(s)

)p−1
(

ρn(s)− 1
2
Dn(s) +

1
2
En(s)

)
dλ(s).

The bulk of our proof of Theorem 4.1 involves proving the following claim:

(4.12) Rn = oP

(
n2α−2

)
.

For the time being, we take this for granted and complete our proof of (4.1).
By (3.36), (4.2), and (4.10), when p ∈ (2,∞),

n2(1−α)ζ′(0)

=
1
2

∥∥ϕ ◦ Φ−1
∥∥

p



(

1
nα

n∑
i=1

Xi

)2

+
3

n2α−1

n∑
i=1

(X2
i − 1)


+ oP(1).

(4.13)

Thus, Theorem 4.1 would follow from the following:

(4.14)
∫ 1

0

(ζ′(τ) − ζ′(0)) dτ = oP

(
n2α−2

)
.

But this is a consequence of (3.38). To conclude, it remains to verify (4.12). A little
side-calculation shows that the following five assertions suffice: Given any ρ > 1,

(4.15)
∥∥∥(ϕ ◦ Φ−1

)ρ
Ξn

∥∥∥
∞

= oP

(
n2α−2

)
, for Ξ = A, B, C, D, E.

Henceforth, we assume that p ∈ (2,∞). An inspection of the following arguments
reveals that when (2.6) holds for appropriate values of θ we can absorb an extra
power of ϕ ◦Φ−1 into λ. Once more, this reduces the problem to proving (4.12) for
p > 2. This is precisely our next task.

Proof of (4.15) for Ξ := A. Thanks to (3.15) and (3.21), we can write βU
n (t) =

rn ◦ Φ−1(t)− ϕ ◦Φ−1(t)X̄n. Thus,

(4.16)
∣∣βU

n (u)− βU
n (s)

∣∣ ≤ ‖ϕ′‖∞
∣∣X̄n

∣∣ ∣∣Φ−1(u)− Φ−1(s)
∣∣+ 2 ‖γn‖∞ .

Thanks to the monotonicity of Φ−1,

(4.17) |An(s)| ≤ ‖ϕ′‖∞
∣∣X̄n

∣∣ |γn(s)|2 + 2 ‖rn‖∞ |γn(s)| ;
cf. (3.21) for the definition of γn. Thus, when Ξ = A, we obtain (4.15) from (3.16),
(3.17), and Proposition 3.10.

Proof of (4.15) for Ξ := B. By (3.23), with probability one,

(4.18) sup
s∈(0,1)

∣∣βU
n (s) + γU

n (s) + X̄n

[
ϕ ◦ Φ−1(s)− ϕ ◦ Φ−1

n (s)
]∣∣ = o

(
nα−1

)
.

Since ‖ϕ′‖∞ < +∞, Taylor’s expansion and (3.17) together imply that∣∣βU
n (s) + γU

n (s)
∣∣ = OP

(
nα−1

)× ∣∣ϕ ◦ Φ−1(s)− ϕ ◦ Φ−1
n (s)

∣∣
= OP

(
nα−1

)× |γn(s)| ,(4.19)
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where the big-O terms do not depend on s ∈ (0, 1). Thus, when Ξ = B, we obtain
(4.15) from the preceding display, used in conjunction with Proposition 3.10.

Proof of (4.15) for Ξ := C. We begin by computing directly, viz.,

(4.20) Cn(s) = −γn(s)γU
n (s) + 2

∫ Φ−1(s)

Φ−1
n (s)

[
Φ−1(s)− x

]
ϕ(x) dx.

Now it is natural to replace the ϕ(x) by ϕ ◦ Φ−1(s) at a small cost. Namely,

(4.21) Cn(s) = −γn(s)γU
n (s) + ϕ ◦ Φ−1(s) [γn(s)]2 + Qn(s).

Here, Qn(s) :=
∫ Φ−1(s)

Φ−1
n (s)

[Φ−1(s) − x][ϕ(x) − ϕ ◦ Φ−1(s)] dx, and thanks to Taylor’s
expansion,

(4.22) |Qn(s)| ≤ 1
3
‖ϕ′‖∞ |γn(s)|3 .

On the other hand, another round of Taylor’s expansion yields,∣∣γU
n (s)− ϕ ◦ Φ−1(s)γn(s)

∣∣ ≤ 1
2
‖ϕ′‖∞ [γn(s)]2 .(4.23)

Together, the above three displays show that |Cn(s)| ≤ 5
6‖ϕ′‖∞[γn(s)]3. Conse-

quently, we obtain (4.15) with Ξ := C from this and Proposition 3.10.

Proof of (4.15) for Ξ := D. We can write γU
n (s) =

∫ Φ−1
n (s)

Φ−1(s) ϕ(x) dx; whence,

(4.24)
∣∣γU

n (s)− ϕ ◦ Φ−1(s)γn(s)
∣∣ ≤ ‖ϕ′‖∞ [γn(s)]2 .

This and (4.19) together yield the following:

(4.25)
∣∣βU

n (s) + ϕ ◦ Φ−1(s)γn(s)
∣∣ ≤ ‖ϕ′‖∞ [γn(s)]2 + OP

(
nα−1

)× |γn(s)| ,
where the big-O term does not depend on s ∈ (0, 1). By (3.22) and Proposition 3.10,

(4.26) sup
s∈(0,1)

[(
ϕ ◦ Φ−1(s)

)p−1
∣∣∣∣ βU

n (s)
ϕ ◦ Φ−1(s)

+ γn(s)
∣∣∣∣
]

= oP

(
nα−1

)
.

This and Proposition 3.10, used in conjunction, imply (4.15) for Ξ := D.

Proof of (4.15) for Ξ := E. Thanks to (3.15),

(4.27) En(s) =
(

βU
n (s)

ϕ ◦ Φ−1(s)
− X̄n

)
rn ◦ Φ−1(s).

Thus, when Ξ = E, we obtain (4.15) from (3.16), (3.17), and (3.21). �

Because of Theorem 4.1, we immediately obtain the remaining portions of The-
orem 2.1 from the following:

Theorem 4.2. If NNN and RRRα are independent, then for any fixed β ∈ R,

(4.28) β2


 1

nα

n∑
j=1

Xj




2

+
1

n2α−1

n∑
j=1

(
X2

j − 1
) d−→ β2NNN 2 +RRRα.

Before proving this, we need a technical lemma that may be of independent
interest.
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Lemma 4.3. Let G denote an n-dimensional centered Gaussian vector with co-
variance matrix C = (C(i, j))1≤i,j≤n. Then for any sufficiently small |z|,

(4.29) E
[
ez
∑n

j=1 G2
i

]
= exp

(
1
2

∞∑
k=1

(2z)k

k
Trace(Ck)

)
.

Proof. Assume for the time being that det(C) > 0, and let µ1 ≥ · · · ≥ µn > 0 de-
note the ordered eigenvalues of C. We then have the following easy-to-check spectral
representation:

∑n
i=1 G2

i =
∑n

i=1 µiW
2
i . Here, the random variables W1, . . . , Wn

are independent and standard Gaussian. Consequently, for all z ∈ C with a suffi-
ciently small modulus,

E
[
ez‖G‖22

]
=

n∏
j=1

1√
1− 2zµj

= exp


−1

2

n∑
j=1

log(1− 2zµj)




= exp


1

2

n∑
j=1

∞∑
k=1

(2zµj)k

k


 .

(4.30)

Here, ‖ · · · ‖2 denotes the usual Euclidean norm in Rn , and log denotes the branch
of logarithm that is real for z > 0. The sum of the eigenvalues of a matrix equals
its trace, whence the statement of Lemma 4.3 under the assumption det(C) > 0.

If det(C) = 0, then, for any fixed δ > 0, we first consider the random variables
Gi,δ := Gi + δZi, (i = 1, . . . , n) where Zi’s are independent standard Gaussian
random variables that are also independent of the Gi’s. Then, going over the
lines of the previous paragraph, we prove the desired result for the Gi,δ’s whose
covariance matrix C + δ2I has a strictly positive determinant. Finally, we let δ ↓ 0
and obtain the desired result. �

Proof of Theorem 4.2. Let G(+) := (G0, G1, . . . , Gn), where

(4.31) G0 :=
β

nα

n∑
j=1

Xj and Gk :=
Xk

nα− 1
2

when k = 1, . . . , n.

In this notation, statement (4.28) is rewritten as follows:

(4.32)
∥∥G(+)

∥∥2

2
− n2(1−α) d−→ β2NNN 2 +RRRα.

It is natural to aim at proving (4.32) either by using moment generating func-
tions or characteristic functions. We shall unify both approaches by letting z be a
complex variable, and considering the limit, as n →∞, of

(4.33) Υn(z) := E
[
exp

{
z
(∥∥G(+)

∥∥2

2
− n2(1−α)

)}]
.

To this end, we first use Lemma 4.3 to express Υn(z) in terms of the covariance
matrix C(+) of G(+). We obtain the formula:

(4.34) Υn(z) = exp

(
1
2

∞∑
k=1

(2z)k

k
Trace(Ck

(+))− zn2(1−α)

)
.
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Let G := (G1, . . . , Gn), and let C be the covariance matrix of G. Note that the two
matrices C(+) and C are related by the formula

(4.35) C(+) =
(

υ η′

η C

)

with υ := E[G2
0] and η := (η1, . . . , ηn)′, where ηk := E[G0Gk] for all k = 1, . . . , n.

Consequently, Trace(C(+)) = υ + Trace(C) = υ + n2(1−α). Thus, we can express
the expectation in (4.33) in the following way:

(4.36) Υn(z) = exp

(
1
2

∞∑
k=2

(2z)k

k
Trace(Ck

(+)) + υz

)
.

We shall now express Trace(Ck
(+)) in terms of Trace(Ck).

Let C(+)(i, j) denote the elements of C(+) (1 ≤ i, j ≤ n + 1). Then, for any
k ≥ 2, we have:

Trace
(
Ck

(+)

)
=

n+1∑
j1=1

· · ·
n+1∑
jk=1

k−1∏
`=1

C(+) (j`, j`+1) · C(+) (j1, jk)

= υk + Trace
(
Ck
)

+ δn(k),

(4.37)

where

(4.38) δn(k) :=
∑ k−1∏

`=1

C(+) (j`, j`+1) · C(+) (j1, jk) ,

and where the sum in the definition of δn(k) is computed over all j ∈ {1, . . . , n+1}k

such that at least one and at most (k − 1) of the coordinates of j are equal to 1.
Then we have the first of the following two equalities:

Υn(z)

= e
1
2

∑∞
k=2 k−1(2z)kTrace(Ck)+ 1

2

∑∞
k=1 k−1(2zv)k+ 1

2

∑∞
k=2 k−1(2z)kδn(k)

= E
[
exp

(
z
(
‖G‖22 − n2(1−α)

))]
· e 1

2
∑∞

k=1 k−1(2zv)k+ 1
2
∑∞

k=2 k−1(2z)kδn(k)

= E
[
exp

(
z
(
‖G‖22 − n2(1−α)

))]
E
[
ezG2

0

]
e

1
2

∑∞
k=2 k−1(2z)kδn(k),

(4.39)

thanks to Lemma 4.3 and the fact that v = E[G2
0]. We mention also that the second

equality is a consequence of Lemma 4.3 and the fact that Trace(C) = n2(1−α).
Now, as n →∞, the following holds boundedly:

(4.40) v = E[G2
0] =

β2

n2α
E




 n∑

j=1

Xj




2

 −→ β2;

cf. (A.4). Thus, if |z| is sufficiently small, then as n tends to infinity,

Υn(z)× (1 + o(1))

= E
[
exp

(
z
(
‖G‖22 − n2(1−α)

))]
· E
[
ezβ2NNN 2

]
· e 1

2
∑∞

k=2 k−1(2z)kδn(k).
(4.41)

Regarding the first term on the right-hand side, Rosenblatt [Ros61, pp. 434–435]
has shown that as long as |z| is sufficiently small, then as n → ∞, it converges to
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E[exp(zRRRα)]. Consequently, we obtain Theorem 4.2 if we can prove that for all
sufficiently small |z|,

(4.42) lim
n→∞

∞∑
k=2

|2z|k
k

|δn(k)| = 0.

To verify this, we first rewrite δn(k), for all k ≥ 2, in the following form:

(4.43) δn(k) =
k−1∑
m=1

∑
(m)

k−1∏
`=1

C(+) (j`, j`+1) · C(+) (j1, jk) ,

where
∑

(m) denotes the sum over all j ∈ {1, . . . , n+1}k such that exactly m of the
coordinates of j are equal to 1. By symmetry, and after a relabeling of the indices,
we see that these indices might as well be j1, . . . , jm. Since there are

(
k
m

)
ways to

perform the relabeling, we have

(4.44) δn(k) =
k−1∑
m=1

(
k

m

) (m)∑ k−1∏
`=1

C(+) (j`, j`+1) · C(+) (j1, jk) ,

where
∑(m) denotes the sum over all j ∈ {1, . . . , n+1}k such that j1 = · · · = jm = 1

and for all ` > m, j` ∈ {2, . . . , n+1}. Now we estimate the right-hand side of (4.44)
in earnest.

If we write %(k) := Cov(X1, X1+k), then by (A.4), for any ν ∈ {2, . . . , n + 1},
∣∣C(+)(1, ν)

∣∣ = |Cov(G0, Gν−1)| =
∣∣∣∣∣∣

β

n2α− 1
2

n∑
j=1

%(j − ν + 1)

∣∣∣∣∣∣
=

|β|
n2α− 1

2

∣∣∣∣∣∣1 +
∑

j<ν−1

%(j − ν + 1) +
∑

n≥j>ν−1

%(j − ν + 1)

∣∣∣∣∣∣
≤ L1

n2α− 1
2


1 +

∑
j<ν−1

j−2(1−α) +
∑

j>ν−1

j−2(1−α)




≤ L2n
− 1

2 ,

(4.45)

where L1 and L2 depend only on β and α ∈ (3
4 , 1). Consequently, by (A.4),∣∣∣∣∣∣

(m)∑ k∏
`=1

C(+) (j`, j`+1) · C(+) (j1, jk)

∣∣∣∣∣∣
≤ Lm+1

2 Lk
3n

(k−1−m)(1−2α)
Sk−1−m(n)

n(m+1)/2
,

(4.46)

where, after recalling (2.2), we have defined

(4.47) Sk(n) :=
n∑

j1=1

· · ·
n∑

jk=1

[Ψk(j)]−2(1−α) .

Thanks to (A.4), the constant L3 can also be chosen to be independent of k and n.
It is not difficult to check that there exists a constant L4 (depends only on α)

such that for all k and n, Sk(n) ≤ Lk
4n

−k(1−2α). By choosing L4 sufficiently large,
we can insure that, in addition, Trace(Ck) ≤ Lk

4n
−k(1−2α). as n → ∞, uniformly
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in k. Thus, we have the following bound: There exists a constant L5, that depends
only on α, such that

(4.48) Sk +Sk(n) + Trace(Ck) ≤ Lk
5n−k(1−2α).

With these observations, we now obtain the following bound that is valid for all
m ≤ k − 1:

(4.49)

∣∣∣∣∣∣
(m)∑ k∏

`=1

C(+)(j`, j`+1) · C(+)(j1, jk)

∣∣∣∣∣∣ ≤ (L2L3L5)kn−(m+1)/2.

Thus, after applying (4.49) to the right-hand side of (4.44), we obtain the following:

|δn(k)| ≤ (L2L3L5)k
k−1∑
m=1

(
k

m

)
n−(m+1)/2 ≤ (2L2L4)kn−1.(4.50)

Since α < 1, the above pointwise bound yields (4.42) as long as |z| < (4L2L3L5)−1.
The proof of Theorem 4.2 is now complete. �

Appendix A. Some Remarks

Remark A.1. The Lorenz curve for Φ [:= the standard normal c.d.f.] is the negative
of the so-called density-quantile function,2

(A.1) GLΦ(t) = −ϕ ◦ Φ−1(t), ∀t ∈ [0, 1].

Indeed, after making a change of variables, we can deduce that for all t ∈ [0, 1],

GLΦ(t) =
∫ Φ−1(t)

−∞ xϕ(x) dx. Equation (A.1) follows from this and the fact that ϕ

solves ϕ′(x) = −xϕ(x).

Remark A.2. The function GLF is always convex. Indeed, by the Lebesgue differ-
entiation theorem, F−1 has a nonnegative derivative almost everywhere. Hence,
almost everywhere, GL′′F ≥ 0.

Remark A.3. The most natural choice of λ is the Lebesgue measure on [0, 1]. In
this case, for any choice of ν ∈ (0, 1),

∫ 1

0
s−ν(1 − s)−ν dλ(s) < +∞, and we have

the following simplification which can be checked by means of direct computations:

(A.2)
∥∥ϕ ◦ Φ−1

∥∥p

p
=

1
(2π)p/2

√
p + 1

, ∀p ≥ 1.

Remark A.4. If {Xi}∞i=1 are the increments of a fractional Brownian motion of
index α ∈ (0, 1), then

(A.3) Cov (X1, X1+k) =
(k + 1)2α + (k − 1)2α

2
− k2α, ∀k ≥ 0.

In particular,

(A.4) Cov (X1, X1+k) = (α + o(1))(2α− 1)k−2(1−α), (k →∞).

2The function ϕ ◦ Φ−1 is also called the Gaussian isoperimetric function in the analy-
sis/geometry/probability literature; cf. Ros [Ros01].
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Another consequence of this, together with convexity, is the following well-known
condition for positive/negative correlations:

(A.5) Cov (X1, X1+k)




< 0, if α ∈ (0, 1
2

)
,

= 0, if α = 1
2 ,

> 0, if α ∈ ( 1
2 , 1
)
.

Lemma A.5. If {ωk}∞k=1 is a stationary short-range dependent Gaussian process,
then for any x, y ∈ R,

(A.6)
∞∑

k=1

∣∣Cov
(
1{ω1≤x},1ω1+k≤y}

)∣∣ < +∞.

Proof. Because x and y are arbitrary, we can and will assume, without loss of
generality, that the ωj’s are standard normal variables.

We let ck := Cov(ω1, ω1+k), and compute the conditional mean and variance of
ω1+k given {ω1 = z} to see that for any y, z ∈ R, and for all integers k ≥ 1,

(A.7) P {ω1+k ≤ y | ω1 = z} = Φ

(
y√

1− c2
k

+ zck

)
.

Therefore, ∣∣Cov
(
1{ω1≤x},1{ω1+k≤y}

)∣∣
=

∣∣∣∣∣
∫ x

−∞

[
Φ

(
y√

1− c2
k

+ zck

)
− Φ(y)

]
dΦ(z)

∣∣∣∣∣
≤ 1√

2π

∫ ∞

−∞

∣∣∣∣∣ y√
1− c2

k

− y + zck

∣∣∣∣∣ dΦ(z).

(A.8)

In the last line we have used the fact that ϕ is bounded above by (2π)−1/2. From
this it follows easily that |Cov(1{ω1≤x},1{ω1+k≤y})| ≤ π−1|ck|(1 + o(1)) as k →∞,
and this completes our proof. �
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