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ABSTRACT. Consider a sequence {Xi(0)}n
i=1 of i.i.d. random variables. Asso-

ciate to each Xi(0) an independent mean-one Poisson clock. Every time a clock
rings replace that X-variable by an independent copy and restart the clock. In
this way, we obtain i.i.d. stationary processes {Xi(t)}t≥0 (i = 1, 2, · · · ) whose
invariant distribution is the law ν of X1(0).

Benjamini et al. (2003) introduced the dynamical walk Sn(t) = X1(t) + · · ·+
Xn(t), and proved among other things that the LIL holds for n 7→ Sn(t) for all t.
In other words, the LIL is dynamically stable. Subsequently (2004b), we showed
that in the case that the Xi(0)’s are standard normal, the classical integral test is
not dynamically stable.

Presently, we study the set of times t when n 7→ Sn(t) exceeds a given enve-
lope infinitely often. Our analysis is made possible thanks to a connection to the
Kolmogorov ε-entropy. When used in conjunction with the invariance principle
of this paper, this connection has other interesting by-products some of which
we relate.

We prove also that the infinite-dimensional process t 7→ Sbn•c(t)/
√

n con-
verges weakly in D(D([0, 1])) to the Ornstein–Uhlenbeck process in C ([0, 1]). For
this we assume only that the increments have mean zero and variance one.

In addition, we extend a result of Benjamini et al. (2003) by proving that if the
Xi(0)’s are lattice, mean-zero variance-one, and possess 2+ε finite absolute mo-
ments for some ε > 0, then the recurrence of the origin is dynamically stable. To
prove this we derive a gambler’s ruin estimate that is valid for all lattice random
walks that have mean zero and finite variance. We believe the latter may be of
independent interest.
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1. INTRODUCTION AND MAIN RESULTS

Let {ξkj }∞j,k=0 denote a double-array of i.i.d. real-valued random variables with
common distribution ν. Also let {Cn}∞n=1 denote a sequence of rate-one Poisson
clocks that are totally independent from themselves as well as the ξ’s. If the jump
times of Cn are denoted by 0 = τn(0) < τn(1) < τn(2) < · · · , then we define the
discrete-time function-valued process X = {Xn(t); t ≥ 0}∞n=1 as follows: For all
n ≥ 1,

(1.1) Xn(t) = ξkn, if τn(k) ≤ t < τn(k + 1).

For every n ≥ 1, Xn is the random step function which starts, at time zero, at
the value ξ0n. Then it proceeds iteratively by replacing its previous value by an
independent copy every time the clock Cn rings. As a process indexed by t, t 7→
(X1(t), X2(t), . . .) is a stationary Markov process in R∞, and its invariant measure
is ν∞.

The dynamical walk corresponding to the X’s is the random field

(1.2) Sn(t) = X1(t) + · · ·+Xn(t), t ≥ 0, n ≥ 1.

One can think of the ensuing object in different ways. We take the following
points of view interchangeably:

(1) For a given t ≥ 0, {Sn(t)}∞n=1 is a classical random walk with increment-
distribution ν.

(2) For a given n ≥ 1, {Sn(t)}t≥0 is a right-continuous stationary Markov
process in R whose invariant measure is ν ∗ · · · ∗ ν (n times).

(3) The process {Sn(·)}∞n=1 is a random walk with values in the Skorohod
space D([0, 1]).
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(4) The R∞-valued process t 7→ (S1(t), S2(t), . . .) is right-continuous, sta-
tionary, and Markov. Moreover, its invariant measure is the evolution law
of a classical random walk with increment-distribution ν.

Dynamical walks were introduced recently by I. Benjamini, O. Häggström,
Y. Peres, and J. Steif (2003) who posed the following question:

Which a.s.-properties of the classical random walk [ν]
hold simultaneously for all t ∈ [0, 1]?(1.3)

Random-walk properties that satisfy (1.3) are called dynamically stable; all
others are called dynamically sensitive. This definition was introduced by Ben-
jamini et al. (2003) who proved, among many other things, that if

∫∞
−∞ x2 ν(dx) is

finite then:

(1.4) The law of the iterated logarithm is dynamically stable.

In order to write this out properly, let us assume, without loss of generality, that∫
x ν(dx) = 0 and

∫
x2 ν(dx) = 1. For any non-decreasing measurable function

H : R+ → R+ define

(1.5) ΛH =
{
t ∈ [0, 1] : Sn(t) > H(n)

√
n infinitely often [n]

}
.

In words, ΛH denotes the set of times t ∈ [0, 1] when H(n)
√
n fails to be in the

upper class [in the sense of P. Lévy] of the process {Sn(t)}∞n=1. According to the
Hewitt–Savage zero-one law, the event {ΛH 6= ∅} has probability zero or one.

Now set H(n) =
√

2c ln lnn. Then, dynamical stability of the LIL (1.4) is equiv-
alent to the statement that ΛH = ∅ a.s. if c > 1, whereas ΛH = [0, 1] a.s. if c < 1.
After ignoring a null set, we can write this in the following more conventional
form:

(1.6) lim sup
n→∞

Sn(t)√
2n ln lnn

= 1, ∀t ∈ [0, 1].

Despite this, in the case that ν is standard normal, we have:

The characterization of the upper class of a Gaussian
random walk is dynamically sensitive.(1.7)

Let Φ denote the standard normal distribution function and define Φ̄ = 1−Φ. Re-
call thatH(n)

√
n is in the upper class ofSn(0) if and only if

∫∞
1
H2(t)Φ̄(H(t)) dt/t <

∞ (Erdős, 1942). Then, (1.7) is a consequence of Erdős’s theorem, used in con-
junction with the following recent result (Khoshnevisan et al., 2004b, Theorem
1.5):

(1.8) ΛH 6= ∅ ⇐⇒
∫ ∞

1

H4(t)Φ̄(H(t))
dt

t
= ∞.

This leaves open the following natural question: Given a non-decreasing func-
tion H , how large is the collection of all times t ∈ [0, 1] at which H fails to be in
the upper class of {Sn(t)}∞n=1? In other words, we ask, “How large is ΛH”? Define

(1.9) δ(H) = sup
{
ζ > 0 :

∫ ∞

1

Hζ(t)Φ̄(H(t))
dt

t
<∞

}
,

where sup ∅ = 0. The following describes the size of ΛH in terms of its Hausdorff–
Besicovitch dimension dimH ΛH .
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Theorem 1.1. Suppose ν is standard normal and H : R+ → R+ is non-random
and non-decreasing. Then with probability one,

(1.10) dimH ΛH = min
(

1 ,
4− δ(H)

2

)
,

where dimH A < 0 means that A is empty.

In order to prove this we develop a series of technical results of independent
interest. We describe one of them next.

First define, for any ε > 0, k = KE(ε) to be the maximal number of points
x1, . . . , xk ∈ E such that whenever i 6= j, |xi − xj | ≥ ε. The function KE is
known as the Kolmogorov ε-entropy ofE (Tihomirov, 1963), as well as the packing
number (or function) of E (Mattila, 1995). Now suppose {zj}∞j=1 is any sequence
of real numbers that satisfies

(1.11) inf
n
zn ≥ 1, lim

n→∞
zn = ∞, and lim

n→∞

zn
n1/4

= 0.

Then we have the following estimate; it expresses how the geometry of E affects
probabilities of moderate deviations.

Theorem 1.2. Let ν be standard normal. In addition, choose and fix a sequence
{zj}∞j=1 that satisfies (1.11). Then there exists a finite constant A1.12 > 1 such that
for all n ≥ 1 and all non-empty non-random measurable sets E ⊆ [0, 1],

(1.12) A−1
1.12KE

(
1
z2
n

)
Φ̄(zn) ≤ P

{
sup
t∈E

Sn(t) ≥ zn
√
n

}
≤ A1.12KE

(
1
z2
n

)
Φ̄(zn).

Theorem 2.5 below appeals to Theorem 1.2 to characterize all non-random
Borel sets E ⊆ [0, 1] that intersect ΛH . Our characterization is not so easy to
describe here in the Introduction. For now, suffice it to say that it readily yields
Theorem 1.1. The following is another consequence of the said characterization:
If ν is standard normal, then

(1.13) sup
t∈E

lim sup
n→∞

(Sn(t))
2 − 2n ln lnn

n ln ln lnn
= 3 + 2dimP E.

Here, dimP denotes packing dimension (Mattila, 1995). The preceding display
follows from (2.22) below.

On one hand, if we setE to be the entire interval [0, 1], then the right-hand side
of (1.13) is equal to 5, and we obtain an earlier result of ours (2004b, Eq. 1.15). On
the other hand, if we set E to be a singleton, then the right-hand side of (1.13) is
equal to 3, and we obtain the second-term correction to the classical law of the
iterated logarithm (Kolmogorov, 1929; Erdős, 1942).

Somewhat unexpectedly, the next result follows also from Theorem 1.2. To the
best of our knowledge it is new.

Corollary 1.3. Let {Zt}t≥0 denote the Ornstein–Uhlenbeck (OU) process on the
real line that satisfies the s.d.e. dZ = −Z dt +

√
2 dW for a Brownian motion W .

Then for every non-empty non-random closed set E ⊆ [0, 1], and all z > 1,

(1.14) A−1
1.12KE

(
1
z2

)
Φ̄(z) ≤ P

{
sup
t∈E

Zt ≥ z

}
≤ A1.12KE

(
1
z2

)
Φ̄(z).
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Section 8 below contains further remarks along these lines.
For a proof of Corollary 1.3 consider the two-parameter processes,

(1.15) Sn(u, t) =
X1(t) + · · ·+Xbunc(t)√

n
(0 ≤ u, t ≤ 1), ∀n = 1, 2, . . . .

Our recent work (2004b, Theorem 1.1) implies that if ν is standard normal, then
Sn ⇒ U in the sense of D([0, 1]2) (Bickel and Wichura, 1971), and U is the con-
tinuous centered Gaussian process with correlation function

(1.16) E [U (u, t)U (v, s)] = e−|t−s| min(u, v), 0 ≤ u, v, s, t ≤ 1.

In particular, supt∈E Sn(t)/
√
n converges in distribution to supt∈E U (1, t). Corol-

lary 1.3 follows from this and the fact that supt∈E U (1, t) has the same distribu-
tion as supt∈E Zt.

In this paper we apply stochastic calculus to strengthen our earlier central
limit theorem (2004b, Theorem 1.1). Indeed we offer the following invariance
principle.

Theorem 1.4. If
∫∞
−∞ x ν(dx) = 0 and

∫∞
−∞ x2 ν(dx) = 1, then Sn ⇒ U in the

sense of D([0, 1]2).

We close the introduction by presenting the following dynamic stability result.

Theorem 1.5. Suppose ν is a distribution on Z which has mean zero and variance
one. If there exists ε > 0 such that

∫∞
−∞ |x|2+ε ν(dx) <∞, then

(1.17) P

{ ∞∑
n=1

1{Sn(t)=0} = ∞ for all t ≥ 0

}
= 1.

In words, under the conditions of Theorem 1.5, the recurrence of the origin is
dynamically stable. When ν is supported by a finite subset of Z this was proved
by Benjamini et al. (2003, Theorem 1.11). In order to generalize to the present
setting, we first develop the following quantitative form of the classical gambler’s
ruin theorem. We state it next, since it may be of independent interest.

Consider i.i.d. integer-valued random variables {ξn}∞n=1 such that E[ξ1] = 0
and σ2 = E[ξ21 ] < ∞. Define sn = ξ1 + · · · + ξn to be the corresponding random
walk, and let T (z) denote the first-passage time to z; i.e.,

(1.18) T (z) = inf {n ≥ 1 : sn = z} ∀z ∈ Z (inf ∅ = ∞).

Theorem 1.6 (Gambler’s Ruin). IfG denotes the additive subgroup of Z generated
by the possible values of {sn}∞n=1, then there exists a constantA1.19 = A1.19(σ,G) >
1 such that

(1.19)
A−1

1.19

1 + |z|
≤ P {T (z) ≤ T (0)} ≤ A1.19

1 + |z|
∀z ∈ G.

Acknowledgements We wish to thank Professor Harry Kesten for discussions re-
garding Theorem 1.6, and Professor Mikhael Lifshits for bringing the work of
Rusakov (1995) to our attention.
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2. ON THE KOLMOGOROV ε-ENTROPY

2.1. ΛH-Polar Sets. Let H : R+ → R+ be non-decreasing and measurable, and
recall the random set ΛH from (1.5).

We say that a measurable set E ⊂ [0, 1] is ΛH-polar if P{ΛH ∩ E 6= ∅} = 0. If
E is not ΛH-polar, then the Hewitt–Savage law insures that P{ΛH ∩ E 6= ∅} = 1.
Our characterization of ΛH-polar sets is described in terms of the function

(2.1) ψH(E) =
∫ ∞

1

H2(t)KE

(
1

H2(t)

)
Φ̄(H(t))

dt

t
, ∀E ⊆ [0, 1].

Although ψH is subadditive, it is not a measure; e.g., ψH assigns equal mass∫∞
1
H2(t)Φ̄(H(t)) dtt to all singletons. We will show that the function ψE deter-

mines the growth-rate of supt∈E Sn(t) in the following sense.

Theorem 2.1. Suppose E ⊆ [0, 1] is Borel-measurable and H : R+ → R+ is non-
decreasing. Then,

(2.2) lim sup
n→∞

[
sup
t∈E

Sn(t)−H(n)
√
n

]
> 0 if and only if ψH(E) = ∞.

Remark 2.2. In fact, we will prove that:

ψH(E) = ∞ =⇒ lim sup
n→∞

[
sup
t∈E

Sn(t)−H(n)
√
n

]
= ∞;

ψH(E) <∞ =⇒ lim sup
n→∞

[
sup
t∈E

Sn(t)−H(n)
√
n

]
= −∞.

(2.3)

Definition 2.3. We write ΨH(E) < ∞ if we can decompose E as E = ∪∞n=1En—
where E1, E2, . . . , are closed—such that for all n ≥ 1, ψH(En) < ∞. Else, we say
that ΨH(E) = ∞.

Remark 2.4. One can have ΨH(E) <∞ although ψH(E) = ∞. See Example 2.10
below.

The following then characterizes all polar sets of ΛH ; it will be shown to be a
ready consequence of Theorem 2.1.

Theorem 2.5. Suppose E ⊂ [0, 1] is a fixed compact set, and H : R+ → R+ is
non-decreasing. Then, E is ΛH-polar if and only if ΨH(E) = ∞.

Remark 2.6. The following variation of Remark 2.2 is valid:

ΨH(E) = ∞ =⇒ sup
t∈E

lim sup
n→∞

[
Sn(t)−H(n)

√
n
]

= ∞;

ΨH(E) <∞ =⇒ sup
t∈E

lim sup
n→∞

[
Sn(t)−H(n)

√
n
]

= −∞.
(2.4)

2.2. Relation to Minkowski Contents. In the remainder of this section we say a
few words about the function KE . To begin with, let us note that the defining
maximal Kolmogorov sequence {xj}kj=1 has the property that any

(2.5) w ∈ E satisfies |w − xj | ≤ ε for some j = 1, . . . , k.

The Kolmogorov ε-entropy is related to the Minkowski content of E ⊆ R. The
latter can be defined as follows:

(2.6) Mn(E) =
∞∑

i=−∞
ai,n(E), where ai,n(E) =

{
1, if

[
i
n ,

i+1
n

)
∩ E 6= ∅,

0, otherwise.
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Here is the relation. See Dudley (1973, Theorem 6.0.1) and Mattila (1995, p. 78,
eq. 5.8) for a related inequality.

Proposition 2.7. For all non-empty sets E ⊆ [0, 1] and all integers n ≥ 1,

(2.7) KE(1/n) ≤ Mn(E) ≤ 3KE(1/n).

Remark 2.8. It is not difficult to see that both bounds can be attained.

Proof. Let k = KE(1/n) and choose maximal (Kolmogorov) points x1 < x2 . . . <
xk such that any distinct pair (xi, xj) are distance at least 1/n apart. Define E to
be the collection of all intervals [ in ,

i+1
n ), 0 ≤ i < n, such that any I ∈ E intersects

E. Let G denote the collection of all I ∈ E such that some xj is in I. These are the
“good” intervals. Let B = E \ G denote the “bad” ones. Good intervals contain
exactly one of the maximal Kolmogorov points, whereas bad ones contain none.
Therefore, KE(1/n) = |G | ≤ |E | = ME(1/n), where | · · · | denotes cardinality. To
complete our derivation we prove that |B| ≤ 2KE(1/n).

We observe that any bad interval is necessarily adjacent to a good one. There-
fore, we can write B = BL ∪BR where BL [resp. BR] denotes the collection of
all bad intervals I such that there exists a good interval adjacent to the left [resp.
right] of I. By virtue of their definition, both BL and BR each have no more than
KE(1/n) elements. This completes the proof. �

An immediate consequence of this result is that if ε ∈ [2−n−1, 2−n] then

(2.8) KE(ε) ≤ KE

(
2−n−1

)
≤M2n+1(E) ≤ 2M2n(E) ≤ 6KE

(
2−n

)
.

2.3. Relation to Minkowski and Packing Dimensions. There are well-known con-
nections between ε-entropy and the (upper) Minkowski dimension, some of which
we have already seen; many more of which one can find, in fine pedagogic form,
in Mattila (1995, Ch. 5). We now present a relation that is particularly suited for
our needs. Let Hρ be any locally-bounded non-decreasing function such that

(2.9) Hρ(t) =
√

2 ln ln t+ 2ρ ln ln ln t, ∀t > e10000.

One or two lines of calculations then reveal that

(2.10) ψHρ(E) <∞ if and only if
∫ ∞

1

KE(1/s)s
1
2−ρ ds <∞.

Proposition 2.9. For all compact linear sets E,

dimME = inf
{
ρ > 0 : ψHρ

(E) <∞
}
− 3

2
, and

dimP E = inf
{
ρ > 0 : ΨHρ

(E) <∞
}
− 3

2
.

(2.11)

There are well-known examples of setsE whose packing and upper Minkowski
dimension differ. Therefore, Proposition 2.9 provides us with an example of func-
tions H (namely an appropriate Hρ) and sets E such that ψH(E) is infinite al-
though ΨH(E) is finite. This is good enough to address the issue raised in Re-
mark 2.4. In fact, one can do more at little extra cost.

Example 2.10. Define

(2.12) Jζ(H) =
∫ ∞

1

Hζ(t)Φ̄(H(t))
dt

t
∀ζ > 0.



8 D. KHOSHNEVISAN, D. A. LEVIN, AND P. MÉNDEZ

Now consider any measurable non-decreasing function H : R+ → R+ such that
J2(H) < ∞ but J2+ε(H) = ∞ for some ε > 0. Then there are compact sets
E ⊆ [0, 1] such that ψH(E) = ∞ although ΨH(E) <∞. Our construction of such
an E is based on a well-known example (Mattila, 1995, Exercise 1, p. 88).

Without loss of generality, we may assume that ε ∈ (0, 1). Bearing this in mind,
define r0 = 1 and rk = 1−

∑k
j=1 j

−1/ε (k = 1, 2, . . .). Now consider

(2.13) E = {0} ∪
∞⋃
k=0

{rk}.

Then it is possible to prove that there is a constant A > 1 such that for all δ ∈
(0, 1), A−1δε ≤ KE(δ) ≤ Aδε. In particular, ψH(E) is comparable to J2+ε(H) =
∞. On the other hand, because E is countable and J2(H) <∞, we readily have
ΨH(E) <∞.

Our proof of Proposition 2.9 requires the following little lemma from geomet-
ric measure theory.

Lemma 2.11. Suppose H : R+ → R+ is non-decreasing and measurable, and
E ⊆ [0, 1] is Borel and satisfies ΨH(E) = ∞. Then, there exists a compact set
G ⊆ E such that ψH(I ∩ G) = ∞ for all rational intervals I ⊆ [0, 1] that intersect
G.

Proof. Let R denote the collection of all open rational intervals in [0, 1], and de-
fine

(2.14) E∗ =
⋃

I∈R: ψH(E∩I)<∞

I.

A little thought makes it manifest that E∗ is an open set in [0, 1], and G = E \ E∗
has the desired properties. �

Proof of Proposition 2.9. We will prove the assertion about dimM ; the formula for
dimP follows from the one for dimM , Lemma 2.11, and regularization (Mattila,
1995, p. 81).

Throughout the proof, we let d = dimM (E) denote the Minkowski dimension
of E (Mattila, 1995, p. 79). By its very definition, and thanks to Proposition 2.7, d
can be written as

(2.15) d = dimME = lim sup
s→∞

log KE(1/s)
log s

.

Now ∫ ∞

1

KE(1/s)s
1
2−ρ ds =

∞∑
n=0

∫ 2n+1

2n

KE(1/s)s
1
2−ρ ds

≥ 2−ρ
∞∑
n=0

KE

(
2−n

)
2−(ρ− 3

2 )n

≥ 2−ρ lim sup
n→∞

KE

(
2−n

)
2−(ρ− 3

2 )n.

(2.16)

Thus, if 2n ≤ s ≤ 2n+1 and ρ > 2, then for all sufficiently large n,

(2.17) s−(ρ− 3
2 )KE(1/s) ≤ 6 · 2−n(ρ− 3

2 )KE

(
2−n

)
.
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See (2.8). This development shows that

(2.18)
∫ ∞

1

KE(1/s)s
1
2−ρ ds ≥ 1

6 · 2ρ
lim sup
s→∞

KE(1/s)
s(ρ−

3
2 )

.

Therefore, whenever ρ − 3
2 < d, the integral on the left-hand side is infinite.

Thanks to (2.10), this means that

(2.19) inf
{
ρ > 0 : ψHρ

(E) <∞
}
≤ 3

2
+ d =

3
2

+ dimME.

This is half of the result for the Minkowski dimension. To prove the converse half,
we argue similarly, and appeal to (2.8), to deduce that

(2.20)
∫ ∞

1

KE(1/s)s
1
2−ρ ds ≤ 6

∞∑
n=0

KE

(
2−n

)
2−n(ρ− 3

2 ) ≤ 6
∞∑
n=0

2n(d−ρ+ 3
2 )+o(n).

In particular, if ρ > d+ 3
2 , then the left-hand side is finite. This and (2.10) together

verify the asserted identity for dimM . �

Remark 2.12. In conjunction, Theorem 2.5 and Proposition 2.9 show that for any
non-random Borel set E ⊆ [0, 1],

ρ >
3
2

+ dimP E =⇒ ΛHρ
∩ E = ∅

ρ <
3
2

+ dimP E =⇒ ΛHρ
∩ E 6= ∅.

(2.21)

Moreover, the intersection argument of Khoshnevisan et al. (2000, Theorem 3.2)
goes through unhindered to imply that if ρ < 3

2 + dimP E, then dimP (ΛH ∩E) =
dimP E. In particular, we can apply this withE = [0, 1], and recall (1.8), to deduce
the following:

ρ <
5
2

=⇒ dimP ΛHρ
= 1,

ρ >
5
2

=⇒ ΛHρ
= ∅.

(2.22)

Equation (1.13) is an immediate consequence of this. One could alternatively use
the limsup-random-fractal theories of Khoshnevisan et al. (2000) and Dembo et
al. (2000) to derive (2.22).

2.4. An Application to Stable Processes. Let {Yα(t)}t≥0 denote a symmetric sta-
ble process with index α ∈ (0, 1), and let us consider the random set Rα =
cl(Yα([1, 2])) denote the closed range of {Yα(t)}t∈[1,2].

Proposition 2.13. Consider a given α, β ∈ (0, 1). Then, for all M > 0 and p ≥ 1,
there exists a finite constantA2.23 = A2.23(α, β, p,M) > 1 such that for all intervals
I ⊂ [−M,M ] with length ≥ β, and all ε ∈ (0, 1),

(2.23) A−1
2.23ε

−αp ≤ E
[
Kp

Rα∩I(ε)
]
≤ A2.23ε

−αp.

Proof. Thanks to Proposition 2.7, it suffices to show that we can find A2.24 > 1
[depending only on α,M, p] such that for all n ≥ 1,

(2.24) A−1
2.24n

αp ≤ E [Mp
n (Rα ∩ I)] ≤ A2.24n

αp.

This follows from connections to potential-theoretic notions, for which we
need to introduce some notation.
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Let pt(x, y) denote the transition densities of the process Yα. As usual, Px de-
notes the law of x + Yα(•) on path-space. Define r(x, y) to be the 1-potential
density of Yα; i.e.,

(2.25) r(x, y) =
∫ ∞

0

e−sps(x, y) ds.

Finally, let T (z, ε) = inf{s > 0 : |Yα(s) − z| ≤ ε} designate the entrance time of
the interval [z − ε, z + ε]; as usual, inf ∅ = ∞.

It is well known that for any M > 0, there exists a constant A = A(M,α) > 1
such that

A−1ε1−α ≤ inf
x∈[−M,M ]

P {Rα ∩ [x− ε, x+ ε] 6= ∅}

≤ sup
x∈R

P {Rα ∩ [x− ε, x+ ε] 6= ∅} ≤ Aε1−α;
(2.26)

see, for example Khoshnevisan (2002, Proposition 1.4.1, p. 351). In the case p = 1,
this proves Equation (2.24). Because Lp(P)-norms are increasing in p, the lower
bound in (2.24) follows, in fact, for all p ≥ 1. Thus, it remains to prove the corre-
sponding upper bound for p > 1.

Modern variants of classical probabilistic potential theory tell us that for all
x 6∈ [y − ε, y + ε],∫ ∞

0

e−sPx {T (y, ε) ≤ s} ds

≤ S
[

inf
µ∈P([y−ε,y+ε])

∫∫
r(u, v)µ(du)µ(dv)

]−1

.

(2.27)

See Khoshnevisan (2002, Theorem 2.3.1, P. 368). Here, S = supz∈[y−ε,y+ε] r(x, z),
In the preceding, E is a linear Borel set, and P(E) denotes the collection of all
probability measures on the Borel set E.

On the other hand, there exists a finite constant A2.28 > 1 such that whenever
x, y are both in [−2M, 2M ],

(2.28) A−1
2.28|x− y|−1+α ≤ r(x, y) ≤ A2.28|x− y|−1+α.

See, for example, Khoshnevisan (2002, Lemma 3.4.1, p. 383). Now as soon as we
have |x− y| ≥ 2ε and |z − y| ≤ ε, it follows that |x− z| ≥ 1

2 |x− y|. Therefore, the

inequality
∫∞
0

(· · · ) ≥
∫ 1

0
(· · · ) leads us to the following:

Px {T (y, ε) ≤ 1}

≤ 21−αeA2
2.28|x− y|−1+α

[
inf

µ∈P([−ε,+ε])

∫∫
|u− v|−1+α µ(du)µ(dv)

]−1

.
(2.29)

The term [· · · ]−1 is the (1 − α)-dimensional Riesz capacity of [−ε, ε]. It is a clas-
sical fact that the said capacity is, up to multiplicative constants, of exact or-
der ε1−α. Therefore, there exists A2.30 > 1 such that for all ε ∈ (0, 1) and all
x, y ∈ [−2M, 2M ] that satisfy |x− y| ≥ 2ε,

(2.30) Px {T (y, ε) ≤ 1} ≤ A2.30|x− y|−1+αε1−α.

We now prove the upper bound in (2.24) for the case p = 2 and hence all p ∈ [1, 2].
By the strong Markov property and time reversal, whenever x, y ∈ [−2M, 2M ]
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satisfy |x− y| ≥ 4ε,

P {Rα ∩ [x− ε, x+ ε] 6= ∅ , Rα ∩ [y − ε, y + ε] 6= ∅}
≤ 2P {Rα ∩ [x− ε, x+ ε] 6= ∅} sup

v∈[x−ε,x+ε]
Pv {T (y, ε) ≤ 1}

≤ 2A2.30|x− y|−1+αε2(1−α).

(2.31)

Equation (2.23) readily follows from this in the case that p = 2. To derive the
result for an arbitrary positive integer p, simply iterate this argument p− 1 times.

�

3. PROOF OF THEOREM 1.2

This proof rests on half of the following preliminary technical result. Through-
out this section {zn}∞n=1 is a fixed sequence that satisfies (1.11), and E ⊆ [0, 1] is
a fixed non-random compact set.

Proposition 3.1. Let {δn}∞n=1 be a fixed sequence of numbers in [0, 1] that satisfy

(3.1) lim inf
n→∞

δnz
2
n > 0.

Then there exists a finite constant A3.2 > 1 such that for all n ≥ 1,

(3.2) A−1
3.2δnz

2
nΦ̄(zn) ≤ P

{
sup

t∈[0,δn]

Sn(t) ≥ zn
√
n

}
≤ A3.2δnz

2
nΦ̄(zn).

Proof. We will need some of the notation, as well as results, of Khoshnevisan et
al. (2004b). Therefore, we first recall the things that we need.

Let PN (resp. EN ) denote the ‘quenched’ measure P(· · · |N ) (resp. expecta-
tion operator E[· · · |N ]), where N denotes the σ-algebra generated by all of the
clocks, and define Fn

t to be the σ-algebra generated by {Sj(s); 0 ≤ s ≤ t}nj=1.
Define

Ln(t) =
∫ t

0

1Bn(u) du, where

Bn(t) =
{
ω ∈ Ω : Sn(t) ≥ zn

√
n
}
.

(3.3)

We replace the variable Jn of Khoshnevisan et al. (2004b, eq. 5.3) by our Ln(2δn),
and go through the proof of Khoshnevisan et al. (2004b, Lemma 5.2) to see that
there exists an N -measurable eventAn, 12 such that for any u ∈ [0, δn], the follow-
ing holds P-almost surely:

EN [Ln(2δn) | Fn
u ] ≥ 2

3z2
n

∫ 3
2 (2δn−u)z2n

0

Φ̄
(√

t
)
dt · 1An,1/2∩Bn(u)

≥ 2
3z2
n

∫ 3
2 δnz

2
n

0

Φ̄
(√

t
)
dt · 1An,1/2∩Bn(u)

≥ A3.4

z2
n

· 1An,1/2∩Bn(u),

(3.4)

where A3.4 is an absolute constant that is bounded below. Moreover, thanks
to Khoshnevisan et al. (2004b, Theorem 2.1) and (3.1), there exists a finite con-
stant A3.5 ∈ (0, 1) such that for all n ≥ 1,

(3.5) P
(
A{
n, 12

)
≤ z2

nδn e
−A3.5n/z

2
n .
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Now, u 7→ EN [Ln(2δn) |Fn
u ] is a non-negative and bounded PN -martingale.

Therefore, P-almost surely,

1An,1/2PN

{
sup

u∈[0,δn]

Sn(t) ≥ zn
√
n

}
= PN

{
sup

u∈[0,δn]∩Q

1An,1/2∩Bn(u) ≥ 1

}

≤ PN

{
sup

u∈[0,δn]∩Q

EN

[
Ln(2δn)

∣∣ Fn
u

]
≥ A3.4

z2
n

}
(3.6)

≤ z2
n

A3.4
EN [Ln(2δn)] =

2
A3.4

δnz
2
nΦ̄(zn).

The ultimate inequality follows from Doob’s maximal inequality for martingales,
and the last equality from the stationarity of t 7→ Sn(t). Taking expectations and
applying (3.5) yields

(3.7) P

{
sup

t∈[0,δn]

Sn(t) ≥ zn
√
n

}
≤ 2
A3.4

δnz
2
n

[
Φ̄(zn) + e−A3.5n/z

2
n .

]
Equation (1.11) shows that the first term on the right-hand side dominates the
second one for all n sufficiently large. This yields the probability upper bound of
the proposition. Now we work toward the lower bound.

By adapting the argument of Khoshnevisan et al. (2004b, eq. 6.12), we can con-
clude that P-almost surely there exists an N -measurable P-a.s. finite random
variable γ such that for all n ≥ γ,

(3.8) EN

[
(Ln(δn))

2
]
≤ A3.8δnz

−2
n Φ̄(zn).

where A3.8 > 1 is a non-random and finite constant. [Replace Jn by Ln(δn) and
proceed to revise equation (6.12) of Khoshnevisan et al. (2004b).] Since, by sta-
tionarity, EN [Ln(δn)] = δnΦ̄(zn), the Paley–Zygmund inequality shows that P-
almost surely for all n ≥ γ,

(3.9) PN {Ln(δn) > 0} ≥ (EN [Ln(δn)])
2

EN

[
(Ln(δn))

2
] ≥ 1

A3.8
δnz

2
nΦ̄(zn).

On the other hand,

(3.10) P

{
sup

t∈[0,δn]

Sn(t) ≥ zn
√
n

}
≥ P {Ln(δn) > 0} ≥ P {Ln(δn) > 0 , n ≥ γ} .

This is at least A−1
3.8δnz

2
nΦ̄(zn)P{n ≥ γ}. Therefore, the proposition follows for all

n large, and hence all n by adjusting the constants. �

Proof of Theorem 1.2: Upper Bound. Let k = bz2
nc + 1, and recall the intervals

Ij,k = [j/k, (j + 1)/k) for 0 ≤ j ≤ k. Then,

P
{

sup
t∈E

Sn(t) ≥ zn
√
n

}
≤

∑
0≤j≤k:
Ij,k∩E 6=∅

P

{
sup
t∈Ij,k

Sn(t) ≥ zn
√
n

}

= Mk(E)P

{
sup

t∈[0,1/k]

Sn(t) ≥ zn
√
n

}
.

(3.11)
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The last line follows from stationarity. Because lim infn→∞ k−1z2
n = 1 > 0, Propo-

sition 3.1 applies, and we obtain the following:

(3.12) P
{

sup
t∈E

Sn(t) ≥ zn
√
n

}
≤ A3.1

z2
n

k
Mk(E)Φ̄(zn).

As n → ∞, z2
n = O(k), and Mk(E) ≤ 3KE(1/k) ≤ 18KE(z−2

n ); cf. Proposition 2.7,
as well as equation (2.8). The probability upper bound of Theorem 1.2 follows
from this discussion. �

Proof of Theorem 1.2: Lower Bound. It is likely that one can use Proposition 3.1
for this bound as well, but we favor a more direct approach. Let k = KE((16zn)−2),
and based on this find and fix maximal Kolmogorov points x1, . . . , xk in E such
that whenever i 6= j, |xi − xj | ≥ (16zn)−2. Without loss of generality, we may
assume that x1 < x2 < · · · < xk. In terms of these maximal Kolmogorov points,
we define

(3.13) Vn =
k∑
j=1

1{Sn(xj)≥zn
√
n}.

Evidently, P-almost surely,

(3.14) EN [Vn] = kΦ̄(zn) ≥ KE

(
z−2
n

)
Φ̄(zn).

Now we estimate the quenched second moment ofVn: There exists an N -measurable
P-almost surely finite random variable σ such that for all n ≥ σ,

EN

[
V 2
n

]
≤ 2

∑ ∑
1≤i≤j≤k

PN

{
Sn(xi) ≥ zn

√
n , Sn(xj) ≥ zn

√
n
}

≤ 4
∑ ∑
1≤i≤j≤k

exp
(
−1

8
z2
n(xj − xi)

)
Φ̄(zn).

(3.15)

See Khoshnevisan et al. (2004b, Lemma 6.2) for the requisite joint-probability
estimate. Whenever j > i, we have xj − xi =

∑j−1
l=i (xl+1 − xl) ≥ 1

16 (j − i)z−2
n .

Therefore, for all n ≥ σ,

EN

[
V 2
n

]
≤ 4

∑ ∑
1≤i≤j≤k

exp
(
− 1

128
(j − i)

)
Φ̄(zn)

≤ 4
1− e−1/128

kΦ̄(zn) = A3.16KE

(
1

16z2
n

)
Φ̄(zn)

≤ 64A3.16KE

(
1
z2
n

)
Φ̄(zn).

(3.16)

The last line relies on four successive applications of (2.8), and is valid if n is at
least r = inf{k : z2

k ≥ 4}. We combine (3.14), (3.16), and the Paley–Zygmund
inequality to deduce that for all n ≥ σ ∨ r,

(3.17) PN {Vn > 0} ≥ (EN Vn)
2

EN [V 2
n ]

≥ 1
64A3.16

KE

(
z−2
n

)
Φ̄(zn),
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P-almost surely. But for all n ≥ r,

P
{

sup
t∈E

Sn(t) ≥ zn
√
n

}
≥ P {Vn > 0} ≥ P {Vn > 0 , n ≥ σ}

≥ 1
64A3.16

KE

(
z−2
n

)
Φ̄(zn)P{n ≥ σ}.

(3.18)

Because σ is finite P-almost surely, the lower bound in Theorem 1.2 follows for
all sufficiently large n, and hence for all n after adjusting the constants. �

4. PROOFS OF THEOREMS 2.1, 2.5, AND 1.1, AND REMARKS 2.2 AND 2.6

The critical result is Theorem 2.1, and has a long and laborious proof. Fortu-
nately, most of this argument appears, in a simplified setting, in Khoshnevisan et
al. (2004b) from which we borrow liberally.

Throughout the following derivation, en = e(n) = ben/ ln+(n)c, which is the
so-called Erdős sequence.

Proof of Theorem 2.1. Without loss of generality, we can assume that

(4.1)
√

ln+ ln+ t ≤ H(t) ≤ 2
√

ln+ ln+ t
∀t > 0.

For the argument, follows Erdős (1942, eq.’s (1.2) and (3.4)).
We first dispose of the simple case ψH(E) <∞.
By the reflection principle and by Theorem 1.2,

P
{

max
1≤k≤e(n+1)

sup
t∈E

Sk(t) ≥ H(en)
√

en

}
≤ 2P

{
sup
t∈E

Se(n+1)(t) ≥ H(en)
√

en

}
≤ 2A1.12KE

(
1

H2(en)

)
Φ̄(H(en)).

(4.2)

Under (4.1),ψH(E) is finite if and only if
∑
n KE(1/H2(en))Φ̄(H(en)) <∞. Hence,

the case ψH(E) <∞ follows from a monotonicity argument.
In the case ψH(E) = ∞, define for a fixed ϑ > 0,

S∗n = sup
t∈E

Se(n)(t), Hn = H(en),

In =
(
Hn

√
en,

(
Hn +

ϑ

Hn

)
√

en

]
, Ln =

n∑
j=1

1{S∗
j ∈Ij},(4.3)

f(z) = KE(1/z2)Φ̄(z).

These are the present article’s replacement of Khoshnevisan et al. (2004b, eq.
8.10). We can choose ϑ large enough (though independent of n) such that there
exists η ∈ (0, 1) with the property that for all n ≥ 1,

(4.4) η ≤ P {S∗n ∈ In}
P {S∗n ≥ Hn

√
en}

≤ η−1.

To see why this holds, we mimic the proof of Khoshnevisan et al. (2004b, Lemma
8.3), but in place of their Theorem 1.4, we use Theorem 1.2 of the present paper.

Now in light of (4.4) and condition ψH(E) = ∞, limn→∞ E[Ln] = ∞. There-
fore, by the Borel–Cantelli lemma, it suffices to show that

(4.5) lim sup
n→∞

E
[
L2
n

]
(E[Ln])

2 <∞.
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Everything comes down to estimating the following joint probability:

(4.6) Pi,j = P
{
S∗i ∈ Ii , S

∗
j ∈ Ij

}
, ∀j > i ≥ 1.

This painful task is performed by considering Pi,j on three different scales: (a)
j ≥ i + ln10

+ (i); (b) j ∈ [i + ln+(i), i + ln10
+ (i)); and (c) j ∈ (i, i + ln+(i)). Fortu-

nately, Lemmas 8.4–8.7 of Khoshnevisan et al. (2004b) do this for us at no cost.
However, we note that they hold only after we replace their S∗i with ours and all
multiplicative constants are adjusted. Moreover, everywhere in their proofs, re-
place “ supt∈[0,1]” by “ supt∈E .” Equation (4.5) follows from these estimates. �

Proof of Theorem 2.5. First, let us suppose that ΨH(E) < ∞. Then, we can write
E = ∪∞m=1Em, with Em’s closed, such that for all m, ψH(Em) < ∞. Theorem 2.1
proves, then, that for all m,

(4.7) sup
t∈Em

lim sup
n→∞

[
Sn(t)−H(n)

√
n
]
≤ 0, a.s.

Maximize over m = 1, 2, . . . to prove half of Theorem 2.5.
To prove the second half of the theorem, we assume that ΨH(E) = ∞. By

Lemma 2.11, we can find a compact set G ⊆ E such that whenever I is a rational
interval that intersects G, ψH(I ∩G) is infinite. Now consider the random sets

(4.8) ΛnH =
{
t ∈ [0, 1] : sup

ε>0
inf

t−ε<s<t+ε

[
Sn(s)−H(n)

√
n
]
> 0

}
.

By the regularity of the paths of Sn, ΛnH is open for every n.
By Theorem 2.5, for any rational interval I that intersects G, ΛnH ∩ (I ∩ G) is

non-empty infinitely often. In particular, ∪∞i=nΛiH intersects I∩G infinitely often.
Therefore, we have shown that ∪∞i=n ΛiH ∩ G is an everywhere-dense relatively-
open subset of the complete compact separable metric space G. By the Baire
category theorem, ∩∞n=1 ∪∞i=nΛiH ∩ G is non-empty. In particular, there exist
uncountably-many times t ∈ G ⊆ E such that t ∈ lim supn ΛnH = ΛH , whence
the theorem. �

Proof of Theorem 1.1. We use a codimension argument. Let Yα be the stable pro-
cess of §2.4 which is chosen to be independent of the entire dynamical Gaussian
walk, and let Rα denote its (closed) range.

By Theorem 2.1 the following are equivalent for any dyadic interval I:

lim sup
n→∞

[
sup

t∈Rα∩I
Sn(t)−H(n)

√
n

]
> 0 ⇐⇒ ψH (Rα ∩ I) = ∞

lim sup
n→∞

[
sup

t∈Rα∩I
Sn(t)−H(n)

√
n

]
≤ 0 ⇐⇒ ψH (Rα ∩ I) <∞.

(4.9)

Recall (2.12). Thanks to (2.23),

(4.10) E [ψH (Rα ∩ I)] �
∫ ∞

1

H2(1+α)(t)Φ̄(H(t))
dt

t
= J2(1+α)(H).

where ‘α � β’ stands for ‘α is finite if and only if β is’. Therefore, by (2.24) and
the Paley–Zygmund inequality, ψH (Rα ∩ I) is infinite with positive probability if
and only if its expectation is infinite. In particular,

(4.11) P
{

lim sup
n→∞

sup
t∈Rα∩I

[
Sn(t)−H(n)

√
n
]
> 0

}
> 0 ⇐⇒ J2(1+α)(H) = ∞.
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Because the condition on J2(1+α) does not involve the dyadic interval I, and
since there are countably-many dyadic intervals, it follows from the category
portion of the proof of Theorem 2.5 that

(4.12) P
{

sup
t∈Rα

lim sup
n→∞

[
Sn(t)−H(n)

√
n
]
> 0

}
> 0 ⇐⇒ J2(1+α)(H) = ∞.

That is, ΛH intersects Rα with positive probability if and only if J2(1+α)(H) =
∞. But it is known that Rα can hit a set E if and only if E has positive (1 − α)-
dimensional Riesz capacity Cap1−α(E) (Khoshnevisan, 2002, Theorem 3.4.1, p.
384). Thus, by the Fubini–Tonneli theorem,

(4.13) E
[
Cap1−α (ΛH)

]
> 0 ⇐⇒ J2(1+α)(H) = ∞.

Because α ∈ (0, 1) is arbitrary, we have shown that for any ζ ∈ (0, 1),

(4.14) E
[
Cap2−(ζ/2) (ΛH)

]
> 0 ⇐⇒ Jζ(H) = ∞.

Frostman’s theorem (Khoshnevisan, 2002, Theorem 2.2.1, p. 521) then implies
the result. �

Proof of Remark 2.2. Because Φ̄(x) ∼ (2π)−1/2x−1 exp(−x2/2) as x→∞,

(4.15) ψH(E) <∞ ⇐⇒
∫ ∞

1

H(t)KE

(
1

H2(t)

)
e−

1
2H

2(t) dt <∞.

Therefore, we can appeal to (2.8) to see, after one or two lines of calculations,
that

(4.16) ψH(E) <∞ ⇐⇒ ∀c ∈ R : ψH+(c/H)(E) <∞.

Now we can prove the remark.
If ψH(E) < ∞, then the preceding remarks and Theorem 2.1 together prove

that for any c < 0,

(4.17) lim sup
n→∞

[
sup
t∈E

Sn(t)−
√
n

(
H(n) +

c

H(n)

)]
≤ 0, a.s.

Thanks to (4.1), H(n) = o(
√
n) as n→∞. Thus, let c→ −∞ to see that

(4.18) lim sup
n→∞

[
sup
t∈E

Sn(t)−H(n)
√
n

]
= −∞, a.s.

If ψH(E) = ∞, then we argue as above, but, this time, we let c tend to ∞. �

Proof of Remark 2.6. We follow the proof of Remark 2.2 verbatim, but apply The-
orem 2.5 in place of Theorem 2.1 everywhere. �

5. PROOF OF THEOREM 1.4

A key idea of our proof of Theorem 1.4 is to appeal to martingale problems via
the semi-martingale weak-convergence theory of Jacod and Shiryaev (2002). To
elaborate on this connection a bit further let us note that {Xk}∞k=1 are i.i.d. copies
of a pure-jump Feller process with generator

(5.1) Af(x) =
∫ ∞

−∞
f(z) ν(dz)− f(x) ∀f ∈ C0(R).

Before citing the result of Jacod and Shiryaev (2002) we need to introduce
some more notation. This will be done in the first subsection. Let us note in
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advance that ours differs slightly from the notation of Jacod and Shiryaev (2002).
In particular, our B corresponds to their B′ and our C corresponds to their C̃ ′.

Throughout, we use the following particular construction of the process U :
Let {β(s, t)}s,t≥0 denote the Brownian sheet, and define

(5.2) U (s, t) =
β

(
s, e2t

)
et

∀s, t ≥ 0.

The reader can check that U is indeed a continuous centered Gaussian process
whose correlation function is given by (1.16).

We aim to prove the following:

Proposition 5.1. Assume, in addition, that there exists ε > 0 such that

(5.3)
∫ ∞

−∞
|x|2+ε ν(dx) <∞.

Then, for each fixed u ≥ 0, Sn(u, ·) ⇒ U (u, ·) in the sense of D([0, 1]).

O. Rusakov (1995, Theorem 3.1) has demonstrated that a similar result holds
for a closely-related model.

Because u 7→ Sn(u, •) is an infinite-dimensional Lévy process on D([0, 1]), a
standard argument then yields the following. [See Lemma 2.4 of Eisenbaum and
Khoshnevisan (2002), but replace DT (C (K)) there by D(D([0, 1])).]

Proposition 5.2. Under the additional constraint (5.3), the finite-dimensional
distributions of Sn converge to those of U .

In light of this, Proposition 5.1 and “tightness” together would yield Theo-
rem 1.4 under (5.3). A truncation argument then removes (5.3). Our proof of
Proposition uses the machinery of Jacod and Shiryaev (2002). Then we follow
the general outline of Khoshnevisan et al. (2004b, §4) to establish tightness.

5.1. Background on Semi-Martingales. Let {Xt}t≥0 be a cadlag semimartin-
gale. We assume that X is defined on the canonical sample space D(R+).

Given a measurable function g, {vt(g)}t≥0 denotes the compensator of the
process t 7→

∑
s≤t,∆Xs 6=0 g(∆Xs), where ∆Xt = Xt − Xt− designates the size

of the jump of X at time t. We specialize our discussion further by considering
the subclass of processes X that satisfy:

(1) X = M + B, where B is continuous and adapted, and M is a local mar-
tingale.

(2) vt(x2) <∞ for all t. Of course, vt(x2) stands for vt(g) where g(x) = x2.
For such a process X, write

(5.4) Ct = 〈M c〉t + vt(x2) ∀t ≥ 0,

where M c is the continuous part of M , and 〈·〉 denotes quadratic variation.
Let CCC bz denote the class of functions which are bounded and vanish near 0.

Define

(5.5) τa = inf{t > 0 : |Xt| ∨ |Xt−| ≥ a} ∀a > 0.

Now let {Xn}∞n=1 denote a sequence of such semimartingales;Bn,Cn, τna , and
vn(g) denote the corresponding characteristics for the process Xn.

Theorem 5.3 ((Jacod and Shiryaev, 2002, Theorem IX.3.48)). If the following hold
for a dense subset D of R+, then Xn ⇒ X in the sense of D(R+):
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(1) For each a > 0 there is an increasing and continuous non-random func-
tion F a so that F a(t)− Vτa∧t(B), F a(t)− 〈M c〉τa∧t, and F a(t)− vτa∧t(x

2)
are increasing functions of t, where Vt(B) denotes the total variation B on
[0, t].

(2) For all a > 0 and t > 0,

(5.6) lim
b↑∞

sup
ω∈D(R+)

vτa∧t
(
x21{|x|>b}

)
(ω) = 0.

(3) The martingale problem for X has local uniqueness in the sense of Jacod
and Shiryaev (2002).

(4) For all t ∈ D and g ∈ CCC bz, the function ω 7→ (Bt(ω), Ct(ω), vt(g)(ω)) is
Skorohod continuous.

(5) Xn
0 converges in distribution to X0.

(6) For all g ∈ CCC bz, vnt∧τn
a
(g)− vt∧τa

(g) P→ 0.

(7) For all a, t > 0, sups≤t |Bns∧τn
a
−Bs∧τa

(Xn)| P→ 0.

(8) For all t ∈ D and a > 0, Cnt∧τn
a
− Ct∧τa

(Xn) P→ 0.
(9) For all a, t, ε > 0,

(5.7) lim
b↑∞

lim sup
n→∞

P
{
vnτn

a ∧t
(
x21{|x|>b}

)
> ε

}
= 0.

5.2. Proof of Proposition 5.1. Write Out = U (u, t). We then begin by noting
the semi-martingale characteristics of the process {Out }t≥0. First, Ou solves the
s.d.e.,

(5.8) dXt = −Xt dt+
√

2u dβut ,

where {βut }t≥0 is the Brownian motion {β(u, t)}t≥0. It follows thatOut = Bt(Ou)+
a martingale, where Bt : D(R+) → R is defined by Bt(ω) = −

∫ t
0
ω(s) ds. Also

note that 〈Ou〉t = 2ut. Since {Out }t≥0 is path-continuous, vt(g) ≡ 0.

Proof of Proposition 5.1. We will verify the conditions of Theorem 5.3 as they ap-
ply to {Sn(u, ·)}∞n=1 and Ou.

The total variation of r 7→ Br(ω) = −
∫ r
0
ω(s) dson [0, t] isVt(B(ω)) =

∫ t
0
|ω(s)| ds.

Therefore,

(5.9) Vτa(ω)∧t(B(ω)) ≤ a(τa(ω) ∧ t).

Since 〈M c〉t = 2ut and v ≡ 0, F a(t) = [(2u ∨ a) + 1]t satisfies condition (1).
Condition (2) is met automatically because vt(g) ≡ 0.
Ou is a Feller diffusion with infinitesimal drift a(x) = −x and infinitesimal

variance σ2(x) = 2u. In particular, a is Lipshitz-continuous and σ2 is bounded.
Hence, by Theorems III.2.32, III.2.33, and III.2.40 of Jacod and Shiryaev (2002),
condition (3) is satisfied.

Because 〈Ou〉t = 2ut, it follows that Ct = 2ut; cf. (5.4). In particular, D(R+) 3
ω 7→ C(ω) is constant. Because vt(g) = 0 also, this establishes the continuity
condition (4) for both C and v. Since ω 7→

∫ t
0
ω(s) ds is Skorohod-continuous

condition (4) is satisfied.
Condition (5) follows from Donsker’s Theorem; see, for example, (Billingsley,

1968, Theorem 10.1).
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Fix a non-negative g ∈ CCC bz, define L = supx g(x), and suppose that g vanishes
on [−δ, δ]. Then, we have, in differential notation,

dvnt (g) = E [dtg (∆tSn(u, t)) | Fn
t ] =

bunc∑
k=1

∫ ∞

−∞
g

(
x−Xk(t)√

n

)
ν(dx) dt

≤ L

bunc∑
k=1

ν{|x−Xk(t)| ≥
√
nδ} dt

≤ L

bunc∑
k=1

1
δ2+εn1+(ε/2)

∫ ∞

−∞
|x−Xk(t)|2+ε ν(dx) dt

≤ 22+εL

δ2+εn1+(ε/2)

bunc∑
k=1

(ν2+ε + |Xk(t)|2+ε) dt.

(5.10)

Here, να denote the αth absolute moment of the measure ν. This implies condi-
tion (6).

Next, let Ft = ∨∞n=1F
n
t denote the σ-algebra generated by {Sn(u); 0 ≤ u ≤

t}∞n=1, and note that

(5.11) E [dXk(t) | Ft] =
(∫ ∞

−∞
x ν(dx)−Xk(t)

)
dt = −Xk(t) dt.

Summing over k gives

(5.12) E [dtSn(u, t) | Ft] = −Sn(u, t) dt.

Consequently, Sn(u, t) has the following semi-martingale decomposition:

(5.13) Sn(u, t) = −
∫ t

0

Sn(u, s) ds+ a local F -martingale ∀t ≥ 0.

Likewise, from (5.8) we conclude that

(5.14) Out = −
∫ t

0

Ous ds+ a local F -martingale ∀t ≥ 0.

Together (5.13) and (5.14) verify condition (7).
Because ν has mean zero and variance one,

dtv
n
t (x2) = E

[
dtS

2
n (u, t)

∣∣ Ft

]
=

bunc∑
k=1

∫ ∞

−∞

(
x−Xk(t)√

n

)2

ν(dx) dt

=

bunc
n

+
1
n

bunc∑
k=1

(Xk(t))2

 dt.

(5.15)

The pure-jump character of Sn(u, ·) implies that the quadratic variation of the
continuous part of the local martingale in (5.13) is zero, whence Cnt = vnt (x2). By

the computation above and the law of large numbers, Cnt
P→ 2ut = Ct = 〈Ou〉t.

Therefore, condition (8) is satisfied.
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Finally, after recalling that να is the αth absolute moment of ν, we have

vnt
(
x21{|x|>b}

)
=

∫ t

0

E
[
dsS

2
n (u, s)1{|dsSn(u,s)|>b}

∣∣ Fs

]
=

1
n

∫ t

0

bunc∑
k=1

∫ ∞

−∞
(x−Xk(s))

2 1{|x−Xk(s)|>b} ν(dx) ds

≤ 1
n

∫ t

0

bunc∑
k=1

[∫ ∞

−∞
(x−Xk(s))2+ε ν(dx)

]2/(2+ε)

× [ν{|x−Xk(s)| > b}]ε/(2+ε) ds

≤ 22+ε

nbε/(2+ε)

∫ t

0

bunc∑
k=1

(
ν2+ε + |Xk(s)|2+ε

)2/(2+ε)
(ν1 + |Xk(s)|)ε/(2+ε) ds.

(5.16)

By the stationarity of X,

E
[
vnt

(
x21{|x|>b}

)]
≤ 22+εt

bε/(2+ε)
E

[(
ν2+ε + |X1(0)|2+ε

)2/(2+ε)
(ν1 + |X1(0)|)ε/(2+ε)

]
.

(5.17)

Also, since t 7→ vnt (x21{|x|>b}) is non-decreasing we have

(5.18) E
[
vnτn

a ∧t
(
x21{|x|>b}

)]
≤ At

bε/(2+ε)
.

Therefore, by Markov’s inequality, condition (9) holds. �

5.3. Tightness. This portion contains a variation on the argument in Khosh-
nevisan et al. (2004b, §4). We appeal to a criterion for tightness in D([0, 1]2) due to
Bickel and Wichura (1971). [Because D([0, 1]2) ' D(D([0, 1])), we will not make
a distinction between the two spaces.]

A block is a two-dimensional half-open rectangle whose sides are parallel to
the axes; i.e., I is a block if and only if it has the form (s, t] × (u, v] ⊆ (0, 1]2. Two
blocks I and I ′ are neighboring if either: (i) I = (s, t]×(u, v] and I ′ = (s′, t′]×(u, v]
(horizontal neighboring); or (ii) I = (s, t]× (u, v] and I ′ = (s, t]× (u′, v′] (vertical
neighboring).

Given any two-parameter stochastic process Y = {Y (s, t); s, t ∈ [0, 1]}, and
any block I = (s, t]×(u, v], the increment of Y over I [written as ∆Y (I)] is defined
as

(5.19) ∆Y (I) = Y (t, v)− Y (t, u)− Y (s, v) + Y (s, u).

Lemma 5.4 (Refinement to Bickel and Wichura (1971, Theorem 3)). Let {Yn}∞n=1

denote a sequence of random fields in D([0, 1]2) such that for all n ≥ 1, Yn(s, t) = 0
if st = 0. Suppose that there exist constants A5.20 > 1, θ1, θ2, γ1, γ2 > 0 such that
they are all independent of n, and whenever I = (s, t] × (u, v] and J = (s′, t′] ×
(u′, v′] are neighboring blocks, and if s, t, s′, t′ ∈ n−1Z ∩ [0, 1], then

(5.20) E
[
|∆Yn(I)|θ1 |∆Yn(J)|θ2

]
≤ A5.20 |I|γ1 |J |γ2 ,

where |I| and |J | denote respectively the planar Lebesgue measures of I and J . If,
in addition, γ1 + γ2 > 1, then {Yn}∞n=1 is a tight sequence.

Additionally, we need the following a priori estimate.
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Lemma 5.5. In Theorem 1.4,

(5.21) E

[
max

k∈{1,...,n}
sup
u∈[0,1]

|Sk(u)|2
]
≤ 64n ∀n ≥ 1.

Proof. We choose and fix an integer n ≥ 1. Also, we write EN for the conditional-
expectation operator E[· · · |N ], where N denotes the σ-algebra generated by
the clocks.

We can collect the jump-times of the process {Si(u)}u∈[0,1] for all i = 1, . . . , n.
These times occur at the jump-times of a homogeneous, mean-nPoisson process
by time one. Define T0 = 0 and enumerate the said jumps to obtain 0 = T0 <
T1 < T2 < . . . < TN(n). The variableN(n) has the Poisson distribution with mean
n.

If u ∈ [Tj , Tj+1), then Sn(u) = Sn(Tj) =
∑j−1
`=0{Sn(T`+1)−Sn(T`)}. This proves

that

(5.22) sup
u∈[0,1]

|Sn(u)| = max
1≤j≤N(n)

∣∣∣∣∣
j−1∑
`=0

ζ`

∣∣∣∣∣ .
Here, the ζ’s are independent of N , and have the same distribution as ν ? ν−

where ν−(G) = ν(−G). Moreover, the ζ2i’s [resp. ζ2i+1’s] form an independent
collection. In accord with Doob’s maximal (2, 2)-inequality,

EN

[
sup
u∈[0,1]

|Sn(u)|2
]

≤ 2

EN

 max
1≤j≤N(n)

∣∣∣∣∣∣
∑

`<j: odd

ζ`

∣∣∣∣∣∣
2
 + EN

 max
1≤j≤N(n)

∣∣∣∣∣∣
∑

`<j: even

ζ`

∣∣∣∣∣∣
2



≤ 8EN

N(n)−1∑
`=0

ζ2
`

 = 16N(n) a.s.

(5.23)

[We have used also the inequality (x + y)2 ≤ 2{x2 + y2}.] Take expectations to
obtain

(5.24) E

[
sup
u∈[0,1]

|Sn(u)|2
]
≤ 16n.

It is easy to see that n→ supu∈[0,1] |Sn(u)| is a submartingale. Thus, Doob’s strong
(2, 2)-inequality and (5.24) together imply the lemma. �

5.4. Proof of Theorem 1.4. We proceed in two steps.
Step 1. The L4(P) Case. First we derive the theorem when E{|X0(u)|4} is fi-

nite. In this case, (5.3) holds and so it remains to derive tightness. We do so by
appealing to Lemma 5.4.

Consider first the vertical neighboring case. By the stationarity of the incre-
ments of random walks we need only consider the case where I = (0, s] × (0, u]
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and J = (0, s]× (u, v], where s ∈ n−1Z. Clearly,

∆Sn(I) = Sn(s, u)−Sn(s, 0) =
Sbsnc(u)− Sbsnc(0)

√
n

,

∆Sn(J) = Sn(s, v)−Sn(s, u) =
Sbsnc(v)− Sbsnc(u)√

n
.

(5.25)

By the Cauchy-Schwarz inequality, ‖∆Sn(I)∆Sn(J)‖2
2 ≤ ‖∆Sn(I)‖4

4 ‖∆Sn(J)‖4
4.

Note that the distribution of ∆Sn(I) [resp. ∆Sn(J)] is the same as
∑Nn(u)
i=1 (ξi−ξ′i)

[resp.
∑Nn(v−u)
i=1 (ξi − ξ′i)], where: (i) {ξi}∞i=1 is an i.i.d. sequence, each distributed

according to ν; (ii) {ξ′i}∞i=1 is an independent copy of {ξi}∞i=1; and (iii) Nn(r) is
a Poisson random variable, with mean bnrc, that is independent of all of the ξ’s.
These remarks, together with a direct computation, show that there exists a finite
constant K such that ‖∆Sn(I)∆Sn(J)‖2 ≤ K|I| |J |. A similar inequality is valid
for the horizontal neighboring case. That is simpler to derive than the preced-
ing, and so we omit the details. This and Lemma 5.4 together prove tightness in
the case that the Xk(0)’s are in L4(P). According to Proposition 5.2, Theorem 1.4
follows suit in the case that X1(0) ∈ L4(P).

Step 2. Truncation. Now we prove Theorem 1.4 under the conditions give
there; that is,

∫∞
−∞ x ν(dx) = 0 and

∫∞
−∞ x2 ν(dx) = 1.

For any c > 0 define Xc
k(u) = Xk(u)1{|Xk(u)|≤c} −

∫ c
−c x ν(dx). Also define

Scn(u) =
∑n
k=1X

c
k(u). It is easy to see that {Scn}∞n=1 and {Sn − Scn}∞n=1 define two

independent, centered, dynamical random walks. According to Step 1, σ(c)S c
n ⇒

U as n → ∞, where: (a) S c is defined as S , but in terms of the Xc’s instead of
the X’s; and (b) σ−2(c) = Var(X1(0); |X1(0)| ≤ c). Because limc→∞ σ(c) = 1 and
U is continuous it suffices to prove that for all ε > 0,

(5.26) lim
c→∞

sup
n≥1

P

{
sup

s,t∈[0,1]

|Sn(s, t)−S c
n(s, t)| ≥ ε

}
= 0.

But we can change scale and apply Lemma 5.5 to deduce that

(5.27) E

[
max

k∈{1,...,n}
sup
u∈[0,1]

|Sk(u)− Sck(u)|
2

]
≤ 64Var (X1(0); |X1(0)| ≥ c)n,

for all integers n ≥ 1. Equation (5.26) follows from the preceding and the Cheby-
shev inequality; Theorem 1.4 follows. �

6. PROOF OF THEOREM 1.6

First, we develop some estimates for general random walks. Thus, for the time
being, let {sn}∞n=1 denote a random walk on Z with increments {ξn}∞n=1. As is
customary, let Px denote the law of {x + sn}∞n=1 for any x ∈ R, and introduce
s0 so that Pz{s0 = z} = 1 for all z ∈ Z; note that P = P0. We assume, for
the time being, that the set of possible points of {sn}∞n=1 generates the entire
additive group Z. Thanks to the free abelian-group theorem this is a harmless
assumption. See Khoshnevisan (2002, p. 78) for details. Define

(6.1) G(n) =
n∑
i=1

P0{si = 0} ∀n ≥ 1.



DYNAMICAL WALKS 23

Lemma 6.1. For all n ≥ 1 and z ∈ Z,

(6.2) Pz{T (0) > n} ≤ 1
G(n)P0{T (z) ≤ T (0)}

.

Proof. We start with a last-exit decomposition. Because the following are disjoint
events,

1 ≥
n∑
j=1

P0 {sj = 0, sj+1 6= 0, . . . , sj+n 6= 0}

=
n∑
j=1

P0 {sj = 0, sj+1 − sj 6= 0, . . . , sj+n − sj 6= 0}

=
n∑
j=1

P0{sj = 0}P0{T (0) > n}

= G(n)P0{T (0) > n}.

(6.3)

By the strong Markov property,

(6.4) P0{T (0) > n} ≥ P0{T (z) ≤ T (0)}Pz{T (0) > n}.

The result follows from this and the preceding display. �

Consider the local times,

(6.5) Lxn =
n∑
j=0

1{sj=x}
∀x ∈ Z, n ≥ 0.

Evidently, G(n) = E0[L0
n] − 1, where Ez denotes the expectation operator under

Pz.

Lemma 6.2. For all z ∈ Z and n ≥ 1, Pz{T (0) > n} ≤ E0[L0
T (z)]/G(n).

Proof. If z = 0, then L0
T (z) = 2, and the lemma follows from Lemma 6.1. From

now on, we assume that z 6= 0. We can apply the strong Markov property to the
return times to z, and deduce that for all non-negative integers k,

(6.6) P0

{
L0
T (z) = k + 1

}
= [P0 {T (0) < T (z)}]k P0{T (z) < T (0)}.

[The k+1 is accounted for by the fact that L0
0 = 1.] Therefore, the P0-law of L0

T (z)

is geometric with mean

(6.7) E0

[
L0
T (z)

]
=

1
P0 {T (z) < T (0)}

.

This and Lemma 6.1 together prove the lemma. �

Lemma 6.3. If {sn}∞n=1 is recurrent, then for all non-zero integers z and all n ≥ 1,

Pz {T (0) > n} ≤ 2{1 +G(θ(z))}
G(n)

, where

θ(z) = inf
{
n ≥ 1 : P0 {T (z) > n} ≤ 1

8

}
.

(6.8)
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Proof. Recurrence insures that θ(z) is finite for all z ∈ Z. Now for any positive
integer m,

E0

[
L0
T (z)

]
≤ E0

[
L0
m

]
+ E0

[
L0
T (z);T (z) > m

]
≤ 1 +G(m) +

√
E0

[(
L0
T (z)

)2
]
P0 [T (z) > m}.

(6.9)

Since L0
T (z) has a geometric distribution [see (6.6)], E0[(L0

T (z))
2] ≤ 2{E0[L0

T (z)]}
2.

Thus,

(6.10) E0

[
L0
T (z)

]
≤ 1 +G(m) + E0

[
L0
T (z)

] √
2P0 [T (z) > m}.

Choose m = θ(z) to find that the square root is at most 1
2 . Solve for E0[L0

T (z)] to
finish. �

Lemma 6.4. Suppose E[ξ1] = 0 and σ2 = E[ξ21 ] < ∞. Then we can find a finite
constant A6.11 > 1 such that

(6.11) Pz{T (0) > n} ≤ A6.11
1 + |z|√

n
∀z ∈ Z, n ≥ 1.

Proof. First of all, we claim that there exists A6.12 > 1 such that for all n ≥ 1,

(6.12) A−1
6.12

√
n ≤ G(n) ≤ A6.12

√
n.

When {sn}∞n=1 is strongly aperiodic this follows from the local central limit theo-
rem (Spitzer, 1976, II.7.P9). In the general case, consider the random walk {s′n}∞n=1

whose increment-distribution is 1
2 (ν + δ0). The walk {s′n}∞n=1 has the same law

as {sc(n)}∞n=1 where c(n) = min{m : λ0 + · · · + λm ≥ n} for an i.i.d. sequence
{λn}∞n=1 of mean-( 1

2 ) geometric random variables that are totally independent of
{sn}∞n=1. Because

∑n
i=0 1{s′i=0} =

∑n
i=0 λi1{si=0}, it follows that G′(n) = 2G(n)

where G′(n) =
∑n
i=1 P{s′i = 0}. Because {s′n}∞n=1 is strongly aperiodic, (6.12)

follows. In light of this and Lemmas 6.1 and 6.3, it suffices to prove that

(6.13) θ(z) = O(z2) as |z| → ∞ in Z.

If β > 0 is fixed, then

Pz
{
T (0) > bβz2c

}
= P0

{
L−zbβz2c = 0

}
≤ P0

{
L−zbβz2c ≤

√
|z|

}
= P0

{
`−1
σβ ≤ σ

}
+ o(1) as |z| → ∞.

(6.14)

Here `−1
t denotes the local time of Brownian motion at −1 by time t. [The preced-

ing display follows from the local-time invariance principle of Borodin (1981).]
Recurrence of Brownian motion implies that there exist β, z0 > 0 such that when-
ever |z| ≥ z0, Pz{T (0) > βz2} ≤ 1

8 ; i.e., θ(z) ≤ βz2 as long as |z| ≥ z0. This verifies
(6.13) and completes our proof. �

Proof of Theorem 1.6. We can appeal to the free abelian-group theorem again to
assume without loss of generality that the possible values of {sn}∞n=1 generate
the entire additive group Z.

Apply (6.10) with m = θ(z) to find that E0[L0
T (z)] ≤ 2{1 + G(θ(z))}. Combine

this with (6.12) and (6.13) to find that E0[L0
T (z)] ≤ A

√
1 + z2 for some constant A
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that does not depend on z ∈ Z. This and (6.7) together imply the lower bound of
Theorem 1.6.

To obtain the other bound let τ = inf{n : sn ≤ 0}. Because T (0) ≥ τ ,
Lemma 6.4 and (6.4) together prove that

(6.15)
A6.11√
n

≥ P0{T (z) ≤ T (0)}Pz{τ > n}.

Thanks to Pemantle and Peres (1995, Lemma 3.3), as long as |z| ≤ A′
√
n for a

fixed A′, Pz{τ > n} ≥ A′′|z|/
√
n for a fixed A′′. The result follows. �

Remark 6.5. The last portion of the preceding proof shows also that Pz{T (0) >
n} ≥ A′′|z|/

√
n. This proves that the bound in Lemma 6.4 is sharp up to a multi-

plicative constant.

7. PROOF OF THEOREM 1.5

The basic outline of our proof follows the same general line of thought as the
derivation of (3.1) of Penrose (1990). However, as was noted by Benjamini et al.
(2003), the present discrete set-up contains inherent technical difficulties that do
not arise in the continuous setting of Penrose (1990).

Choose and fix a large positive integer M , and define

(7.1) γ =
3

6 + 2ε
, qn =

⌊ n
M

⌋
, ∀n = 1, 2, . . . .

Within [n/2, n] we can find bn/(4qn)c-many closed intervals {Ink }
bn/(4qn)c
k=1 , of length

qn each, such that the distance between Ini and Inj is at least qn if i 6= j. Motivated
by §5 of Benjamini et al. (2003), let En(t) denote the event that

{Sk(t)}∞k=0 takes both (strictly) positive and (strictly) negative

values in every one of In1 , . . . , I
n
bn/(4qn)c.

(7.2)

Also let Fn(t) denote the event that

(7.3) {Sk(t)}∞k=0 does not return to zero in [n/2, n].

Lemma 7.1. Uniformly for all t ≥ 0,

(7.4) lim sup
n→∞

ln P(En(t) ∩ Fn(t))
lnn

≤ −Mγ

12
.

Proof. The uniformity assertion holds tautologically since P(En(t) ∩ Fn(t)) does
not depend on t ≥ 0. Without loss of generality, we may and will work with t = 0.

Let fni denote the smallest value in Ini . Also define

(7.5) cni = inf {` ∈ Ini \ {fni } : S`−1(0)S`(0) < 0} ,

where inf ∅ = ∞. Finally, defineAni to be the event that cni is finite, but Sk(0) 6= 0
for all k = cni + 1, . . . , cni + qn. A little thought shows that for any integer j ≥ 1,

P
(
Anj+1

∣∣ An1 , . . . , Anj )
≤ P

{
max

1≤i≤n
|Xi(0)| ≥ nγ

}
+ sup

|x|≤nγ

Px
{
Sk(0) 6= 0, ∀k = 1, . . . , qn

}
.

(7.6)
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To estimate the first term we note that (2 + ε)γ − 1 = γ/3. Therefore,

P
{

max
1≤i≤n

|Xi(0)| ≥ nγ
}
≤ nP {|X1(0)| ≥ nγ} ≤

E
{
|X1(0)|2+ε

}
n−(2+ε)γ−1

= O
(
n−γ/3

)
as n→∞.

(7.7)

See (7.1). On the other hand, by Lemma 6.4 and (7.1),

(7.8) sup
|x|≤nγ

Px
{
Sk(0) 6= 0, ∀k = 1, . . . , qn

}
≤ A6.11

nγ
√
qn

= O
(
n−γ/3

)
,

as n→∞. These remarks, together with (7.6) imply that

(7.9) sup
j≥1

P
(
Anj+1

∣∣ An1 , . . . , Anj ) = O
(
n−γ/3

)
.

Thus, as n→∞,

P(En(t) ∩ Fn(t)) ≤ P

bn/(4qn)c⋂
i=1

Ani


= O

(
n−γbn/(4qn)c/3

)
≤ no(1)−Mγ/12.

(7.10)

This proves the lemma. �

Lemma 7.2. There exists M0 = M0(ε) such that whenever M > M0,

(7.11)
∞∑
n=1

P

 ⋂
s∈[0,1]

[En(s) ∩ Fn(s)]

 <∞.

Proof. By Lemma 7.1 and the strong Markov property,

(7.12)
∫ ∞

0

P

 ⋂
s∈[0,t]

[En(s) ∩ Fn(s)]

 e−t dt ≤ no(1)+1−Mγ/12 (n→∞).

See the proof of Lemma 5.3 of Benjamini et al. (2003). On the other hand,∫ ∞

0

P

 ⋂
s∈[0,t]

[En(s) ∩ Fn(s)]

 e−t dt

≥ 1
e

∫ 1

0

P

 ⋂
s∈[0,t]

[En(s) ∩ Fn(s)]

 dt

≥ 1
e
P

 ⋂
s∈[0,1]

[En(s) ∩ Fn(s)]

 .

(7.13)

Therefore, P(∩s∈[0,1][En(s) ∩ Fn(s)]) ≤ no(1)+1−Mγ/12. The lemma follows with
M0 = 24/γ. �

The following is essentially Lemma 5.4 of Benjamini et al. (2003). To prove it,
go through their derivation, and replace their Ini ’s by ours.
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Lemma 7.3. Suppose M > M0. Then,

(7.14) P

⋂
t≥0

lim sup
n

En(t)

 = 1.

Proof of Theorem 1.5. Choose and fix someM > M0. Then follow along the proof
of Benjamini et al. (2003, Theorem 1.11), but replace their τ by one, and the re-
spective applications of their Lemmas 5.3 and 5.4 by our Lemmas 7.2 and 7.3. �

8. APPLICATIONS TO THE OU PROCESS ON CLASSICAL WIENER SPACE

Let β denote a two-parameter Brownian sheet and consider once more the
construction (5.2). In addition, recall from §5.2 the process {Out ;u ∈ [0, 1]}t≥0,
which can be written in terms of the Brownian sheet β as follows:

(8.1) Out =
β(u, e2t)

et
∀t ≥ 0, u ∈ [0, 1].

This proves readily that the process {O•
t }t≥0 is an infinite-dimensional stationary

diffusion onC([0, 1]) whose invariant measure is the Wiener measure onC([0, 1]).
The process O = {O•

t }t≥0 is a fundamental object in infinite-dimensional anal-
ysis. See, for example, Kuelbs (1973), Malliavin (1979), and Walsh (1986). These
furnish three diverse theories in each of which O plays a central role.

An interesting artifact of our Theorem 1.4 is that it gives the coin-tosser a
chance to understand some of this infinite-dimensional theory. For example,
note that for any fixed u ≥ 0, the process {Out }t≥0 is an ordinary one-dimensional
Ornstein–Uhlenbeck process. Therefore, Corollary 1.3 can be stated, equiva-
lently, as follows:

Corollary 8.1. Let E and H be as in Theorem 1.2. Then there exists a finite con-
stant A8.2 > 1 such that for all z ≥ 1 and u ≥ 0,

(8.2) A−1
8.2KE

(
1
z2

)
Φ̄(z) ≤ P

{
sup
t∈E

Out ≥ z

}
≤ A8.2KE

(
1
z2

)
Φ̄(z).

Similarly, the methods of this paper yield the following. We omit the details.

Corollary 8.2. If E and H are as in Theorem 2.1,

sup
t∈E

lim sup
u→∞

[
Out −H(u)

√
u
]
> 0 ⇐⇒ ΨH(E) = +∞

dimH

{
t ∈ [0, 1] : lim sup

u→∞

[
Out −H(u)

√
u
]
≥ 0

}
= min

(
4− δ(H)

2
, 1

)
.

(8.3)

This is a multi-fractal extension of the main result of Mountford (1992) and
extends some of the latter’s infinite-dimensional potential theory. The results of
this section seem to be new.

9. CONCLUDING REMARKS AND OPEN PROBLEMS

The single-most important problem left open here is to remove the normality
assumption in Theorems 1.1 and 1.2. For instance, these theorems are not known
to hold in the most important case where the increments are Rademacher vari-
ables.
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Problem 9.1. Do Theorems 1.1 and 1.2 hold for all incremental distributions ν
that have mean zero, variance one, and 2 + ε moments for some ε > 0?

We suspect the answer is yes, but have no proof in any but the Gaussian case.
As regards our invariance principles, we cannot resolve the following:

Problem 9.2. Does Theorem 1.5 hold for ε = 0?

We do not have a plausible conjecture in either direction.
There is a large literature on tails of highly-oscillatory Gaussian random fields.

See, for instance, Pickands (1967) and Qualls and Watanabe (1971); see Berman
(1992) for a pedagogic account as well as further references. In their simplest
non-trivial setting, these works seek to find good asymptotic estimates for the
tails of the distribution of supt∈E g(t) where g is a stationary centered Gaussian
random field that satisfies E{|g(0) − g(t)|2} = 1 + c(1 + o(1))|t|α as |t| → 0. The
“time-set” E is often an interval or, more generally, a hyper-cube. What if E is a
fractal set? More generally, one can ask:

Problem 9.3. Do the results of §8 have analogues for more general Gaussian ran-
dom fields?

There are a number of other interesting a.s. properties of random walks one of
which is the following due to Chung (1948): Suppose {ξi}∞i=1 are i.i.d., mean-zero
variance-one, and ξ1 ∈ L3(P). Then sn = ξ1 + · · ·+ ξn satisfies

(9.1) lim inf
n→∞

max
1≤j≤n

|sj |√
n/ ln lnn

=
π√
8

a.s.

Chung (1948) contains the corresponding integral test. In the context of dynam-
ical walks let us state, without proof, the following: If, in addition, ξ1 ∈ L4(P),
then

(9.2) Chung’s LIL is dynamically stable.

That is, with probability one,

(9.3) lim inf
n→∞

max
1≤j≤n

|Sj(t)|√
n/ ln lnn

=
π√
8

∀t ≥ 0.

Problem 9.4. What can one say about the set of times t ∈ [0, 1] at which {Sn(t)}∞n=1

is below
√
n/H(n) infinitely often?

This is related to finding sharp estimates for the “lower tail” of max1≤j≤n |Sj(t)|.
At this point, we have only partial results along these directions. For instance,
when ν is standard normal, we can prove the existence of a constant A such that
for all compact E ⊆ [0, 1],

(9.4)
eπ

2/(8ε2n)

Aε2n
≤ P

{
inf

t∈[0,1]
max

1≤j≤n
|Sj(t)| ≤ εn

√
n

}
≤ Aeπ

2/(8ε2n)

ε6n
,

for any (0, 1)-valued {εn}∞n=1 that tends to zero and lim infn nε8n > π/
√

2. The
solution to the preceding problem would require, invariably, a tightening of this
bound. In a companion article (Khoshnevisan et al., 2004a) we prove that the
right-hand side of (9.4) is tight for the continuum-limit of dynamical walks. The
said theorem uses a second-order eigenvalue estimate of Lifshits and Shi (2003)
which is not yet available in the context of dynamical random walks. Thus it is
natural to end the paper with the following open problem.
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Problem 9.5. Is the right-hand side of (9.4) is sharp up to a multiplicative con-
stant?
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