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Abstract

We prove that two seemingly-different models of random walk in ran-
dom environment are generically quite close to one another. One model
comes from statistical physics, and describes the behavior of a randomly-
charged random polymer. The other model comes from probability theory,
and was originally designed to describe a large family of asymptotically
self-similar processes that have stationary increments.
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1 Introduction and the main results

The principal goal of this article is to show that two apparently-disparate
models—one from statistical physics of disorder media [KK91, DGH92, DH94]
and one from probability theory [KS79, Bol89]—are very close to one another.

1Research supported in part by NSF grant DMS-0704024.
2Research supported in part by NSF grant DMS-0706728.
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In order to describe the model from statistical physics, let us suppose that
q := {qi}∞i=1 is a collection of i.i.d. mean-zero random variables with finite
variance σ2 > 0. For technical reasons, we assume here and throughout that

µ6 := E(q6
1) < ∞. (1.1)

In addition, we let S := {Si}∞i=0 denote a random walk on Zd with S0 = 0 that
is independent from the collection q. We also rule out the trivial case that S1

has only one possible value.
The object of interest to us is the random quantity

Hn :=
∑∑
1≤i<j≤n

qiqj1{Si=Sj}. (1.2)

In statistical physics, Hn denotes a random Hamiltonian of spin-glass type that
is used to build Gibbsian polymer measures. The qi’s are random charges, and
each realization of S corresponds to a possible polymer path; see the paper by
Kantor and Kardar [KK91], its subsequent variations by Derrida et al [DGH92,
DH94] and Wittmer et al [WJJ93], and its predecessos by Garel and Orland
[GO88] and Obukhov [O86]. The resulting Gibbs measure then corresponds
to a model for “random walk in random environment.” Although we do not
consider continuous processes here, the continuum-limit analogue of Hn has
also been studied in the literature [BP97, MP96].

Kesten and Spitzer [KS79] introduced a different model for “random walk
in random environment,” which they call random walk in random scenery.1 We
can describe that model as follows: Let Z := {Z(x)}x∈Zd is a collection of i.i.d.
random variables, with the same common distribution as q1, and independent
of S. Define

Wn :=
n∑

i=1

Z(Si). (1.3)

The process W := {Wn}∞n=0 is called random walk in random scenery, and can
be thought of as follows: We fix a realization of the d-dimensional random field
Z—the “scenery”—and then run an independent walk S on Zd. At time j, the
walk is at Sj ; we sample the scenery at that point. This yields Z(Sj), which is
then used as the increment of the process W at time j.

Our goal is to make precise the assertion that if n is large, then

Hn ≈ γ1/2 ·Wn in distribution, (1.4)

where

γ :=

{
1 if S is recurrent,∑∞

k=1 P{Sk = 0} if S is transient.
(1.5)

Our derivation is based on a classification of recurrence vs. transience for random
walks that appears to be new. This classification [Theorem 2.4] might be of
independent interest.

1Kesten and Spitzer ascribe the terminology to Paul Shields.
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We can better understand (1.4) by considering separately the cases that S is
transient versus recurrent. The former case is simpler to describe, and appears
next.

Theorem 1.1. If S is transient, then

Wn

n1/2

D→ N(0 , σ2) and
Hn

n1/2

D→ N(0 , γσ2). (1.6)

Kesten and Spitzer [KS79] proved the assertion about Wn under more re-
strictive conditions on S. Similarly, Chen [C07] proved the statement about Hn

under more hypotheses.
Before we can describe the remaining [and more interesting] recurrent case,

we define

an :=

(
n

n∑
k=0

P{Sk = 0}

)1/2

. (1.7)

It is well known [P21, CF51] that S is recurrent if and only if an/n1/2 →∞ as
n →∞.

Theorem 1.2. If S is recurrent, then for all bounded continuous functions
f : Rd → R,

E
[
f

(
Wn

an

)]
= E

[
f

(
Hn

an

)]
+ o(1), (1.8)

where o(1) converges to zero as n → ∞. Moreover, both {Wn/an}n≥1 and
{Hn/an}n≥1 are tight.

We demonstrate Theorems 1.1 and 1.2 by using a variant of the replacement
method of Liapounov [Lia00, pp. 362–364]; this method was rediscovered later
by Lindeberg [Lin22], who used it to prove his famous central limit theorem for
triangular arrays of random variables.

It can be proved that when S is in the domain of attraction of a stable law,
Wn/an converges in distribution to an explicit law [KS79, Bol89]. Consequently,
Hn/an converges in distribution to the same law in that case. This fact was
proved earlier by Chen [C07] under further [mild] conditions on S and q1.

We conclude the introduction by describing the growth of an under natural
conditions on S.

Remark 1.3. Suppose S is strongly aperiodic, mean zero, and finite second
moments, with a nonsingular covariance matrix. Then, S is transient iff d ≥ 3,
and by the local central limit theorem, as n →∞,

n∑
k=1

P{Sk = 0} ∼ const×

{
n1/2 if d = 1,

log n if d = 2.
(1.9)

See, for example Spitzer [S76, P9 on p. 75]. Consequently,

an ∼ const×

{
n3/4 if d = 1,

(n log n)1/2 if d = 2.
(1.10)
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This agrees with the normalization of Kesten and Spitzer [KS79] when d = 1,
and Bolthausen [Bol89] when d = 2.

2 Preliminary estimates

Consider the local times of S defined by

Lx
n :=

n∑
i=1

1{Si=x}. (2.1)

A little thought shows that the random walk in random scenery can be repre-
sented compactly as

Wn =
∑

x∈Zd

Z(x)Lx
n. (2.2)

There is also a nice way to write the random Hamiltonian Hn in local-time
terms. Consider the “level sets,”

Lx
n := {i ∈ {1 , . . . , n} : Si = x} . (2.3)

It is manifest that if j ∈ {2 , . . . , n}, then Lx
j > Lx

j−1 if and only if j ∈ Lx
n.

Thus, we can write

Hn =
1
2

∑
x∈Zd

∣∣∣∣∣
n∑

i=1

qi1{Si=x}

∣∣∣∣∣
2

−
n∑

i=1

q2
i


=
∑

x∈Zd

hx
n,

(2.4)

where

hx
n :=

1
2


∣∣∣∣∣∣
∑
i∈Lx

n

qi

∣∣∣∣∣∣
2

−
∑
i∈Lx

n

q2
i

 . (2.5)

We denote by P̂ the conditional measure, given the entire process S; Ê
denotes the corresponding expectation operator. The following is borrowed
from Chen [C07, Lemma 2.1].

Lemma 2.1. Choose and fix some integer n ≥ 1. Then, {hx
n}x∈Zd is a collection

of i.i.d. random variables under P̂, and

Êhx
n = 0 and Ê

(
|hx

n|
2
)

=
σ2

2
Lx

n (Lx
n − 1) P-a.s. (2.6)

Moreover, there exists a nonrandom positive and finite constant C = C(σ) such
that for all n ≥ 1 and x ∈ Zd,

Ê
(
|hx

n|
3
)
≤ Cµ6 |Lx

n (Lx
n − 1)|3/2 P-a.s. (2.7)
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Next we develop some local-time computations.

Lemma 2.2. For all n ≥ 1,

∑
x∈Zd

ELx
n = n and

∑
x∈Zd

E
(
|Lx

n|
2
)

= n + 2
n−1∑
k=1

(n− k)P{Sk = 0}. (2.8)

Moreover, for all integers k ≥ 1,

∑
x∈Zd

E
(
|Lx

n|
k
)
≤ k!n

∣∣∣∣∣∣
n∑

j=0

P{Sj = 0}

∣∣∣∣∣∣
k−1

. (2.9)

Proof. Since ELx
n =

∑n
j=1 P{Sj = x} and

∑
x∈Zd P{Sj = x} = 1, we have∑

x ELx
n = n. For the second-moment formula we write

E
(
|Lx

n|
2
)

=
∑

1≤i≤n

P{Si = x}+ 2
∑∑
1≤i<j≤n

P{Si = Sj = x}

=
∑

1≤i≤n

P{Si = x}+ 2
∑∑
1≤i<j≤n

P{Si = x}P{Sj−i = 0}.
(2.10)

We can sum this expression over all x ∈ Zd to find that∑
x∈Zd

E
(
|Lx

n|
2
)

= n + 2
∑∑
1≤i<j≤n

P{Sj−i = x}. (2.11)

This readily implies the second-moment formula. Similarly, we write

E
(
|Lx

n|
k
)

≤ k!
∑

· · ·
∑

1≤i1≤···≤ik≤n

P{Si1 = · · · = Sik
= x}

= k!
∑

· · ·
∑

1≤i1≤···≤ik≤n

P{Si1 = x}P{Si2−i1 = 0} · · ·P{Sik−ik−1 = 0}

≤ k!
n∑

i=1

P{Si = x} ·

∣∣∣∣∣∣
n∑

j=1

P{Sj = 0}

∣∣∣∣∣∣
k−1

.

(2.12)

Add over all x ∈ Zd to finish.

Our next lemma provides the first step in a classification of recurrence [versus
transience] for random walks.

Lemma 2.3. It is always the case that

lim
n→∞

1
n

∑
x∈Zd

E
(
|Lx

n|
2
)

= 1 + 2
∞∑

k=1

P{Sk = 0}. (2.13)
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Proof. Thanks to Lemma 2.2, for all n ≥ 1,

1
n

∑
x∈Zd

E
(
|Lx

n|
2
)

= 1 + 2
n−1∑
k=1

(
1− k

n

)
P{Sk = 0}. (2.14)

If S is transient, then the monotone convergence theorem ensures that

lim
n→∞

1
n

∑
x∈Zd

E
(
|Lx

n|
2
)

= 1 + 2
∞∑

k=1

P{Sk = 0}. (2.15)

This proves the lemma in the transient case.
When S is recurrent, we note that (2.14) readily implies that for all integers

m ≥ 2,

lim inf
n→∞

1
n

∑
x∈Zd

E
(
|Lx

n|
2
)
≥ 1 + 2

m−1∑
k=1

(
1− k

m

)
P{Sk = 0}

≥ 1 +
∑

1≤k≤m/2

P{Sk = 0}.
(2.16)

Let m ↑ ∞ to deduce the lemma.

Next we “remove the expectation” from the statement of Lemma 2.3.

Theorem 2.4. As n →∞,

1
n

∑
x∈Zd

(Lx
n)2 → 1 + 2

∞∑
k=1

P{Sk = 0} in probability. (2.17)

Remark 2.5. The quantity In :=
∑

x∈Zd(Lx
n)2 is the socalled self-intersection

local time of the walk S. This terminology stems from the following elementary
calculation: For all integers n ≥ 1,

In =
∑∑
1≤i,j≤n

1{Sj=Si}. (2.18)

Consequently, Theorem 2.4 implies that a random walk S on Zd is recurrent if
and only if its self-intersection local time satisfies In/n →∞ in probability.

Proof. First we study the case that {Si}∞i=0 is transient.
Define

Qn :=
∑∑
1≤i<j≤n

1{Si=Sj}. (2.19)

Then it is not too difficult to see that∑
x∈Zd

(Lx
n)2 = 2Qn + n for all n ≥ 1. (2.20)
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This follows immediately from (2.18), for example. Therefore, it suffices to prove
that, under the assumption of transience,

Qk

k
→

∞∑
j=1

P{Sj = 0} in probability as k →∞. (2.21)

Lemma 2.3 and (2.20) together imply that

lim
k→∞

EQk

k
=

∞∑
j=1

P{Sj = 0}. (2.22)

Hence, it suffices to prove that VarQn = o(n2) as n → ∞. In some cases, this
can be done by making an explicit [though hard] estimate for Var Qn; see, for
instance, Chen [C07, Lemma 5.1], and also the technique employed in the proof
of Lemma 2.4 of Bolthausen [Bol89]. Here, we opt for a more general approach
that is simpler, though it is a little more circuitous. Namely, in rough terms, we
write Qn as Q

(1)
n + Q

(2)
n , where EQ

(1)
n = o(n), and VarQ

(2)
n = o(n2). Moreover,

we will soon see that Q
(1)
n , Q

(2)
n ≥ 0, and this suffices to complete the proof.

For all m := mn ∈ {1 , . . . , n− 1} we write

Qn = Q1,m
n + Q2,m

n , (2.23)

where

Q1,m
n :=

∑∑
1≤i<j≤n:

j≥i+m

1{Si=Sj} and Q2,m
n :=

∑∑
1≤i<j≤n:

j<i+m

1{Si=Sj}. (2.24)

Because n > m, we have

EQ1,m
n ≤ n

∞∑
k=m

P{Sk = 0}. (2.25)

We estimate the variance of Q2,m
n next. We do this by first making an observa-

tion.
Throughout the remainder of this proof, define for all subsets Γ of N2,

Υ(Γ) :=
∑∑
(i,j)∈Γ

1{Si=Sj}. (2.26)

Supppose Γ1,Γ2, . . . ,Γν are finite disjoint sets in N2, with common cardi-
nality, and the added property that whenever 1 ≤ a < b ≤ ν, we have Γa < Γb

in the sense that i < k and j < l for all (i , j) ∈ Γa and (k , l) ∈ Γb. Then, it
follows that

{Υ(Γν)}ν
µ=1 is an i.i.d. sequence. (2.27)

For all integers p ≥ 0 define

Bm
p :=

{
(i , j) ∈ N2 : (p− 1)m < i < j ≤ pm

}
,

Wm
p :=

{
(i , j) ∈ N2 : (p− 1)m < i ≤ pm < j ≤ (p + 1)m

}
.

(2.28)
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j

i
Figure 1: A decomposition of Qn

In Figure 1, {Bm
p }∞p=1 denotes the collection black and {Wm

p }∞p=1 the white
triangles that are inside the slanted strip.

We may write

Q2,m
(n−1)m =

n−1∑
p=1

Υ(Bm
p ) +

n−1∑
p=1

Υ(Wm
p ). (2.29)

Consequently,

VarQ2,m
(n−1)m ≤ 2Var

n−1∑
p=1

Υ(Bm
p ) + 2Var

n−1∑
p=1

Υ(Wm
p ). (2.30)

If 1 ≤ a < b ≤ m − 1, then Bm
a < Bm

b and Wm
a < Wm

b . Consequently, (2.27)
implies that

VarQ2,m
(n−1)m ≤ 2(n− 1) [VarΥ(Bm

1 ) + VarΥ(Wm
1 )] . (2.31)

Because Υ(Bm
1 ) and Υ(Wm

1 ) are individually sums of not more than
(
m
2

)
-many

ones,
VarQ2,m

(n−1)m ≤ 2(n− 1)m2. (2.32)

Let Q
(1)
n := Q1,m

n and Q
(2)
n := Q2,m

n , where m = mn := n1/4 [say]. Then,
Qn = Q

(1)
n + Q

(2)
n , and (2.25) and (2.32) together imply that EQ

(1)
(n−1)m =

o((n − 1)m). Moreover, VarQ
(2)
(n−1)m = o((nm)2). This gives us the desired
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decomposition of Q(n−1)m. Now we complete the proof: Thanks to (2.22),

EQ
(2)
(n−1)m ∼ nm ·

∞∑
j=1

P{Sj = 0} as n →∞. (2.33)

Therefore, the variance of Q
(2)
(n−1)m is little-o of the square of its mean. This

and the Chebyshev inequality together imply that Q
(2)
(n−1)m/(nm) converges

in probability to
∑∞

j=1 P{Sj = 0}. On the other hand, we know also that

Q
(1)
(n−1)m/(nm) converges to zero in L1(P) and hence in probability. Conse-

quently, we can change variables and note that as n →∞,

Qnm

nm
→

∞∑
j=1

P{Sj = 0} in probability. (2.34)

If k is between (n− 1)m and nm, then

Q(n−1)m

nm
≤ Qk

k
≤ Qnm

(n− 1)m
. (2.35)

This proves (2.21), and hence the theorem, in the transient case.
In order to derive the recurrent case, it suffices to prove that Qn/n →∞ in

probability as n →∞.
Let us choose and hold an integer m ≥ 1—so that it does not grow with

n—and observe that Qn ≥ Q2,m
n as long as n is sufficiently large. Evidently,

EQ2,m
n =

∑∑
1≤i<j≤n:

j<i+m

P{Sj = Si}

= (n− 1)
m−1∑
k=1

P{Sk = 0}.

(2.36)

We may also observe that (2.32) continues to hold in the present recurrent
setting. Together with the Chebyshev inequality, these computations imply
that as n →∞,

Q2,m
n(m−1)

n
→

m−1∑
k=1

P{Sk = 0} in probability. (2.37)

Because Qn(m−1) ≥ Q2,m
n(m−1), the preceding implies that

lim
n→∞

P

{
Qn(m−1)

n
≥ 1

2

m∑
k=1

P{Sk = 0}

}
= 1. (2.38)

A monotonicity argument shows that Qn(m−1) can be replaced by Qn with-
out altering the end-result; see (2.35). By recurrence, if λ > 0 is any pre-
described positive number, then we can choose [and fix] our integer m such that∑m

k=1 P{Sk = 0} ≥ 2λ. This proves that limn→∞ P{Qn/n ≥ λ} = 1 for all
λ > 0, and hence follows the theorem in the recurrent case.

9



3 Proofs of the main results

Now we introduce a sequence {ξx}x∈Zd of random variables, independent [under
P] of {qi}∞i=1 and the random walk {Si}∞i=0, such that

Eξ0 = 0, E
(
ξ2
0

)
= σ2, and µ̂3 := E

(
|ξ0|3

)
< ∞. (3.1)

Define

ĥx
n :=

∣∣∣∣Lx
n (Lx

n − 1)
2

∣∣∣∣1/2

ξx for all n ≥ 1 and x ∈ Zd. (3.2)

Evidently, {ĥx
n}x∈Zd is a sequence of [conditionally] i.i.d. random variables, un-

der P̂, and has the same [conditional] mean and variance as {hx
n}x∈Zd .

Lemma 3.1. There exists a positive and finite constant C∗ = C∗(σ) such that
if f : Rd → R is three time continuously differentiable, then for all n ≥ 1,∣∣∣∣∣∣Ef

∑
x∈Zd

ĥx
n

− Ef(Hn)

∣∣∣∣∣∣ ≤ C∗Mf (µ̂3 + µ6)n

∣∣∣∣∣∣
n∑

j=0

P{Sj = 0}

∣∣∣∣∣∣
2

, (3.3)

with Mf := supx∈Rd |f ′′′(x)|.

Proof. Temporarily choose and fix some y ∈ Zd, and notice that

f(Hn)

= f

 ∑
x∈Zd\{y}

hx
n

− f ′

 ∑
x∈Zd\{y}

hx
n

hy
n −

1
2
f ′′

 ∑
x∈Zd\{y}

hx
n

 |hy
n|

2

+ Rn,

(3.4)

where |Rn| ≤ 1
6‖f

′′′‖∞ |hy
n|3. It follows from this and Lemma 2.1 that

Êf(Hn)

= Êf

 ∑
x∈Zd\{y}

hx
n

− σ2

2
Ly

n (Ly
n − 1) Êf ′′

 ∑
x∈Zd\{y}

hx
n

+ R(1)
n ,

(3.5)

where ∣∣∣R(1)
n

∣∣∣ ≤ CMfµ6

12
|Lx

n (Lx
n − 1)|3/2 P-a.s.

≤ CMfµ6

12
|Ly

n|
3
.

(3.6)
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We proceed as in (3.4) and write

f

ĥy
n +

∑
x∈Zd\{y}

hx
n


= f

 ∑
x∈Zd\{y}

hx
n

− f ′

 ∑
x∈Zd\{y}

hx
n

 ĥy
n −

1
2
f ′′

 ∑
x∈Zd\{y}

hx
n

∣∣∣ĥy
n

∣∣∣2
+ R̂n,

(3.7)

where |R̂n| ≤ 1
6Mf |ĥy

n|3 ≤ 1
12
√

2
Mf |Ly

n|3 |ξy|3. It follows from this and Lemma
2.1 that

Êf

ĥy
n +

∑
x∈Zd\{y}

hx
n


= Êf

 ∑
x∈Zd\{y}

hx
n

− σ2

2
Ly

n (Ly
n − 1) Êf ′′

 ∑
x∈Zd\{y}

hx
n

+ R(2)
n ,

(3.8)

where |R(2)
n | ≤ 1

12
√

2
µ̂3Mf |Ly

n|3. Define C∗ := (C + 1)/2 to deduce from the
preceding and (3.5) that P-a.s.,∣∣∣∣∣∣Êf

ĥy
n +

∑
x∈Zd\{y}

hx
n

− Êf

∑
x∈Zd

hx
n

∣∣∣∣∣∣ ≤ A

6
|Ly

n|3, (3.9)

where A := C∗Mf (µ̂3 + µ6). Now we can readily iterate this inequality to find
that P-a.s., ∣∣∣∣∣∣Êf

∑
x∈Zd

ĥx
n

− Êf(Hn)

∣∣∣∣∣∣ ≤ A

6

∑
y∈Zd

|Ly
n|3. (3.10)

We take expectations and appeal to Lemma 2.2 to finish.

Next, we prove Theorem 1.1.

Proof of Theorem 1.1. We choose, in Lemma 3.1, the collection {ξx}x∈Zd to be
i.i.d. mean-zero normals with variance σ2. Then, we apply Lemma 3.1 with
f(x) := g(x/n1/2) for a smooth bounded function g with bounded derivatives.
This yields, ∣∣∣∣∣∣Eg(Hn/n1/2)− Eg

 1
n1/2

∑
x∈Zd

ĥx
n

∣∣∣∣∣∣ ≤ const
n1/2

. (3.11)
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In this way,

∑
x∈Zd

ĥx
n
D=

σ√
2

∣∣∣∣∣∣
∑

x∈Zd

Lx
n (Lx

n − 1)

∣∣∣∣∣∣
1/2

N(0 , 1) under P̂

=
σ√
2

∣∣∣∣∣∣−n +
∑

x∈Zd

(Lx
n)2

∣∣∣∣∣∣
1/2

N(0 , 1),

(3.12)

where D= denotes equality in distribution, and N(0 , 1) is a standard normal
random variable under P̂ as well as P. Therefore, in accord with Theorem 2.4,

1
n1/2

∑
x∈Zd

ĥx
n
D=

σ√
2

∣∣∣∣∣∣−1 +
1
n

∑
x∈Zd

(Lx
n)2

∣∣∣∣∣∣
1/2

N(0 , 1)

= obP(1) + γ1/2 ·N(0 , σ2),

(3.13)

where obP(1) is a term that converges to zero as n →∞ in P̂-probability a.s. [P].
Equation (3.11) then completes the proof in the transient case.

Theorem 1.2 relies on the following “coupled moderate deviation” result.

Proposition 3.2. Suppose that S is recurrent. Consider a sequence {εj}∞j=1 of
nonnegative numbers that satisfy the following:

lim
n→∞

ε3nn

∣∣∣∣∣
n∑

k=1

P{Sk = 0}

∣∣∣∣∣
2

= 0. (3.14)

Then for all compactly supported functions f : Rd → R that are infinitely
differentiable,

lim
n→∞

|E [f (εnWn)]− E [f (εnHn)]| = 0, (3.15)

Proof. We apply Lemma 3.1 with the ξx’s having the same common distribution
as q1, and with f(x) := g(εnx) for a smooth and bounded function g with
bounded derivatives. This yields,∣∣∣∣∣∣E

g

εn

∑
x∈Zd

|Lx
n (Lx

n − 1)|1/2
Z(x)

− E [g (εnHn)]

∣∣∣∣∣∣
≤ 2C∗Mgµ6nε3n

∣∣∣∣∣
n∑

k=0

P{Sk = 0}

∣∣∣∣∣
2

= o(1),

(3.16)

owing to Lemma (3.4).
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According to Taylor’s formula,

g

εn

∑
x∈Zd

|Lx
n (Lx

n − 1)|1/2
Z(x)


= g

εn

∑
x∈Zd

Z(x)Lx
n

+ εn

∑
x∈Zd

(
|Lx

n (Lx
n − 1)|1/2 − Lx

n

)
Z(x) ·R,

(3.17)

where |R| ≤ supx∈Rd |g′(x)|. Thanks to (2.2), we can write the preceding as
follows:

g

εn

∑
x∈Zd

|Lx
n (Lx

n − 1)|1/2
Z(x)

− g (εnWn)

= εn

∑
x∈Zd

(
|Lx

n (Lx
n − 1)|1/2 − Lx

n

)
Z(x) ·R.

(3.18)

Consequently, P-almost surely,∣∣∣∣∣∣Ê
g

εn

∑
x∈Zd

|Lx
n (Lx

n − 1)|1/2
Z(x)

− Ê [g (εnWn)]

∣∣∣∣∣∣
≤ sup

x∈Rd

|g′(x)|σ · εn

Ê

∑
x∈Zd

(
|Lx

n (Lx
n − 1)|1/2 − Lx

n

)2


1/2

.

(3.19)

We apply the elementary inequality (a1/2 − b1/2)2 ≤ |a− b|—valid for all a, b ≥
0—to deduce that P-almost surely,∣∣∣∣∣∣Ê

g

εn

∑
x∈Zd

|Lx
n (Lx

n − 1)|1/2
Z(x)

− Ê [g (εnWn)]

∣∣∣∣∣∣
≤ sup

x∈Rd

|g′(x)|σ · εn

Ê

∑
x∈Zd

Lx
n


1/2

= sup
x∈Rd

|g′(x)|σ · εnn1/2.

(3.20)

We take E-expectations and apply Lemma (3.4) to deduce from this and (3.16)
that

|E [g (εnWn)]− E [g (εnHn)]| = o(1). (3.21)

This completes the proof.

Our proof of Theorem 1.2 hinges on two more basic lemmas. The first is an
elementary lemma from integration theory.
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Lemma 3.3. Suppose X := {Xn}∞n=1 and Y := {Yn}∞n=1 are Rd-valued random
variables such that: (i) X and Y each form a tight sequence; and (ii) for all
bounded infinitely-differentiable functions g : Rd → R,

lim
n→∞

|Eg(Xn)− Eg(Yn)| = 0. (3.22)

Then, the preceding holds for all bounded continuous functions g : Rd → R.

Proof. The proof uses standard arguments, but we repeat it for the sake of
completeness.

Let Km := [−m ,m]d, where m takes values in N. Given a bounded con-
tinuous function g : Rd → R, we can find a bounded infinitely-differentiable
function hm : Rd → R such that hm = g on Km. It follows that

|Eg(Xn)− Eg(Yn)| ≤ |Ehm(Xn)− Ehm(Yn)|
+ 2 sup

x∈Rd

|g(x)|
(
P{Xn 6∈ Km}+ P{Yn 6∈ Km}

)
. (3.23)

Consequently,

lim sup
n→∞

|Eg(Xn)− Eg(Yn)|

≤ 2 sup
x∈Rd

|g(x)| sup
j≥1

(P{Xj 6∈ Km}+ P{Yj 6∈ Km}) .
(3.24)

Let m diverge and appeal to tightness to conclude that the left-had side vanishes.

The final ingredient in the proof of Theorem 1.1 is the following harmonic-
analytic result.

Lemma 3.4. If εn := 1/an, then (3.14) holds.

Proof. Let φ denote the characteristic function of S1. Our immediate goal is
to prove that |φ(t)| < 1 for all but a countable number of t ∈ Rd. We present
an argument, due to Firas Rassoul-Agha, that is simpler and more elegant than
our original proof.

Suppose S′1 is an independent copy of S1, and note that whenever t ∈ Rd is
such that |φ(t)| = 1, D := exp{it·(S1−S′1)} has expectation one. Consequently,
E(|D − 1|2) = E(|D|2) − 1 = 0, whence D = 1 a.s. Because S1 is assumed to
have at least two possible values, S1 6= S′1 with positive probability, and this
proves that t ∈ 2πZd. It follows readily from this that{

t ∈ Rd : |φ(t)| = 1
}

= 2πZd, (3.25)

and in particular, |φ(t)| < 1 for almost all t ∈ Rd.
By the inversion theorem [S76, P3(b), p. 57], for all n ≥ 0,

P{Sn = 0} =
1

(2π)d

∫
(−π,π)d

{φ(t)}n
dt. (3.26)
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This and the dominated convergence theorem together tell us that P{Sn = 0} =
o(1) as n →∞, whence it follows that

n∑
k=1

P{Sk = 0} = o(n) as n →∞. (3.27)

For our particular choice of εn we find that

ε3nn

∣∣∣∣∣
n∑

k=1

P{Sk = 0}

∣∣∣∣∣
2

=

(
1
n

n∑
k=1

P{Sk = 0}

)1/2

, (3.28)

and this quantity vanishes as n →∞ by (3.27). This proves the lemma.

Proof of Theorem 1.2. Let εn := 1/an. In light of Proposition 3.2, and Lemmas
3.3 and 3.4, it suffices to prove that the sequences n 7→ εnWn and n 7→ εnHn

are tight.
Lemma 2.2, (2.2), and recurrence together imply that for all n large,

E
(
|εnWn|2

)
= σ2ε2n

∑
x∈Zd

E
(
|Lx

n|
2
)

≤ const · ε2nn
n∑

k=1

P{Sk = 0}

= const.

(3.29)

Thus, n 7→ εnWn is bounded in L2(P), and hence is tight.
We conclude the proof by verifying that n 7→ εnHn is tight. Thanks to (2.4)

and recurrence, for all n large,

E
(
|εnHn|2

)
≤ const · ε2nE

∑
x∈Zd

(Lx
n)2

≤ const · ε2nn
n∑

k=1

P{Sk = 0}

= const.

(3.30)

Confer with Lemma 2.2 for the penultimate line. Thus, n 7→ εnHn is bounded
in L2(P) and hence is tight, as was announced.
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