From charged polymers
to random walk in random scenery

Xia Chen! Davar Khoshnevisan?
Department of Mathematics Department of Mathematics
University of Tennessee University of Utah
Knoxville, TN 37996-1300 Salt Lake City, UT 84112-0090
xchen@math.utk.edu davar@math.utah.edu

January 30, 2008

Abstract

We prove that two seemingly-different models of random walk in ran-
dom environment are generically quite close to one another. One model
comes from statistical physics, and describes the behavior of a randomly-
charged random polymer. The other model comes from probability theory,
and was originally designed to describe a large family of asymptotically
self-similar processes that have stationary increments.
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1 Introduction and the main results

The principal goal of this article is to show that two apparently-disparate
models—one from statistical physics of disorder media [KK91, DGH92, DH94|
and one from probability theory [KS79, Bol89]—are very close to one another.

1Research supported in part by NSF grant DMS-0704024.
2Research supported in part by NSF grant DMS-0706728.



In order to describe the model from statistical physics, let us suppose that
q = {¢:}32; is a collection of i.i.d. mean-zero random variables with finite
variance o2 > 0. For technical reasons, we assume here and throughout that

e == E(q}) < 0. (1.1)

In addition, we let S := {S;}22, denote a random walk on Z¢ with Sy = 0 that
is independent from the collection g. We also rule out the trivial case that S
has only one possible value.

The object of interest to us is the random quantity

H, = ZZ 2iq51{s,=5,}- (1.2)

1<i<j<n

In statistical physics, H,, denotes a random Hamiltonian of spin-glass type that
is used to build Gibbsian polymer measures. The ¢;’s are random charges, and
each realization of S corresponds to a possible polymer path; see the paper by
Kantor and Kardar [KK91], its subsequent variations by Derrida et al [DGH92,
DH94] and Wittmer et al [WJJ93], and its predecessos by Garel and Orland
[GO88] and Obukhov [0O86]. The resulting Gibbs measure then corresponds
to a model for “random walk in random environment.” Although we do not
consider continuous processes here, the continuum-limit analogue of H, has
also been studied in the literature [BP97, MP96].

Kesten and Spitzer [KS79] introduced a different model for “random walk
in random environment,” which they call random walk in random scenery." We
can describe that model as follows: Let Z := {Z(x)},cza is a collection of i.i.d.
random variables, with the same common distribution as ¢1, and independent
of S. Define

W, = iZ(SZ-). (1.3)

The process W := {W,}52, is called random walk in random scenery, and can
be thought of as follows: We fix a realization of the d-dimensional random field
Z—the “scenery”—and then run an independent walk S on Z?. At time j, the
walk is at S;; we sample the scenery at that point. This yields Z(.S;), which is
then used as the increment of the process W at time j.

Our goal is to make precise the assertion that if n is large, then

A~ ~Y2. W, in distribution, (1.4)
where
1 if S is recurrent,
V= 0o e . (1.5)
Y oney P{Sk =0} if S is transient.

Our derivation is based on a classification of recurrence vs. transience for random
walks that appears to be new. This classification [Theorem 2.4] might be of
independent interest.

IKesten and Spitzer ascribe the terminology to Paul Shields.



We can better understand (1.4) by considering separately the cases that S is
transient versus recurrent. The former case is simpler to describe, and appears
next.

Theorem 1.1. If S is transient, then

Wy
ni/2

Hy

D
EEEV_QAKO,WUQy (1.6)

ZN (0,0%) and
Kesten and Spitzer [KS79] proved the assertion about W, under more re-
strictive conditions on S. Similarly, Chen [CO7] proved the statement about H,
under more hypotheses.
Before we can describe the remaining [and more interesting] recurrent case,

we define

n 1/2

ay = (nZP{Sk = O}) . (1.7)
k=0

It is well known [P21, CF51] that S is recurrent if and only if a,, /n'/? — cc as

n — oo.

Theorem 1.2. If S is recurrent, then for all bounded continuous functions

f:R* >R,
D@0

where o(1) converges to zero as n — oo. Moreover, both {W, /ay}n>1 and
{Hyn/an}n>1 are tight.

We demonstrate Theorems 1.1 and 1.2 by using a variant of the replacement
method of Liapounov [Lia00, pp. 362-364]; this method was rediscovered later
by Lindeberg [Lin22], who used it to prove his famous central limit theorem for
triangular arrays of random variables.

It can be proved that when S is in the domain of attraction of a stable law,
W, /a, converges in distribution to an explicit law [KS79, Bol89]. Consequently,
H, /a, converges in distribution to the same law in that case. This fact was
proved earlier by Chen [C07] under further [mild] conditions on S and ¢;.

We conclude the introduction by describing the growth of a,, under natural
conditions on S.

Remark 1.3. Suppose S is strongly aperiodic, mean zero, and finite second
moments, with a nonsingular covariance matrix. Then, S is transient iff d > 3,
and by the local central limit theorem, as n — oo,

n 172 -1
E P{S; = 0} ~ const x " %f d=1 (1.9)
— logn if d=2.

See, for example Spitzer [S76, P9 on p. 75]. Consequently,

n3/4 ifd=1,

1.10
(nlogn)t/? ifd = 2. (1.10)

a, ~ const x {



This agrees with the normalization of Kesten and Spitzer [KS79] when d = 1,
and Bolthausen [Bol89] when d = 2. O

2 Preliminary estimates

Consider the local times of S defined by

n
LY = 1(s,—a}- (2.1)
i=1

A little thought shows that the random walk in random scenery can be repre-
sented compactly as
Wn= Y Z(x)L:. (2.2)
T€eZ

There is also a nice way to write the random Hamiltonian H,, in local-time
terms. Consider the “level sets,”

L£r={ie{l,...,n}: S;=x}. (2.3)

It is manifest that if j € {2,...,n}, then LT > L7, if and only if j € L.
Thus, we can write

n 2 n
H, = % Z Zqz‘l{si:x} - Z(I?
zezd |i=1 i=1 (2.4)
= > h,
x€Z4

where
2

hfﬁ:% Zqi —ZQ? . (2.5)

icLe ieLe

We denote by P the conditional measure, given the entire process S; E
denotes the corresponding expectation operator. The following is borrowed
from Chen [C07, Lemma 2.1].

Lemma 2.1. Choose and fixz some integern > 1. Then, {hZ},cza is a collection

of i.i.d. random variables under IA), and

~ =~ 2 O'2
EhZ =0 and E(|h;§| ) =S Li(Li—1)  Peas. (2.6)

o

Moreover, there exists a nonrandom positive and finite constant C = C(c) such
that for alln > 1 and x € Z¢,

E (|hz§|3) < Opo |LE (L2 —1))*?  P-as. (2.7)

n



Next we develop some local-time computations.

Lemma 2.2. Foralln > 1,

S EL=n and Y E (|Lg\2) =n+ 2§(n — E)P{S, =0}.  (2.8)
z€Zd z€Zd k=1
Moreover, for all integers k > 1,
. k-1
Y E (|L;§\’“) <kn|Y P{s; =0} . (2.9)

T€Z4 j=0

Proof. Since ELE = Z;-Lzl P{S; = 2} and }_ 5. P{S; = o} = 1, we have
> . EL} = n. For the second-moment formula we write

E (|LZ§\2> S P{Si=a}+23 3 P(S,=S; =}

1<i<n 1<i<j<n (2 10)
= Y P{Si=a}+2) Y P{S;=a}P{S;_; =0}
1<i<n 1<i<j<n

We can sum this expression over all z € Z¢ to find that
S E(ILif) =n+2 >3 P{S; i =a} (2.11)
reZd 1<i<j<n

This readily implies the second-moment formula. Similarly, we write

B (")
<B >N P{S, = =8, =1}

1<ir < <ip<n

=k > > P{S;, =a}P{Si, i, =0}---P{S;, _i,_, =0}  (212)

1<iy <--<ig<n

k—1
<K P{S; =z} |)_P{S; =0}
i=1 =1
Add over all z € Z% to finish. O

Our next lemma provides the first step in a classification of recurrence [versus
transience] for random walks.

Lemma 2.3. [t is always the case that
1 o0
lim ~ 3" E (|L:;|2) =142 P{S, =0} (2.13)
k=1

n—oo 1,
TzEZ?



Proof. Thanks to Lemma 2.2, for all n > 1,

1 z|2\ _ « _,E, =
DY B (i) = 1+2k§::1 (1 n) P{S) = 0}. (2.14)

Iy A

If S is transient, then the monotone convergence theorem ensures that

lim 1 S E (|Lﬁ|2) =1 +2§:P{Sk = 0}. (2.15)
k=1

r€Zd

This proves the lemma in the transient case.
When S is recurrent, we note that (2.14) readily implies that for all integers
m > 2,

| 2 - k
lim inf — E(|Ly]")>1+2 (1 - ) P{S, =0}
n—oo 71;2;; ( ) 22; m k

(2.16)
>1+ > P{S; =0}

1<k<m/2
Let m T oo to deduce the lemma. O
Next we “remove the expectation” from the statement of Lemma 2.3.
Theorem 2.4. Asn — oo,
% Z (LE)? —1+2 iP{Sk =0} in probability. (2.17)
z€Z k=1

Remark 2.5. The quantity I, := Y 5 (L%)? is the socalled self-intersection
local time of the walk S. This terminology stems from the following elementary
calculation: For all integers n > 1,

I =Y 15,5, (2.18)

1<ij<n

Consequently, Theorem 2.4 implies that a random walk S on Z? is recurrent if
and only if its self-intersection local time satisfies I, /n — oo in probability. O

Proof. First we study the case that {5;}5°, is transient.

Define
Qni= ) Lsi=s,) (2.19)

1<i<j<n

Then it is not too difficult to see that

> (LE)?=2Qu+n  foralln> 1. (2.20)
zeZd



This follows immediately from (2.18), for example. Therefore, it suffices to prove
that, under the assumption of transience,

% - ZP{Sj =0} in probability as k — oc. (2.21)

Jj=1

Lemma 2.3 and (2.20) together imply that

Jim EQ: _ ZP{S =0}. (2.22)

k—oo k

Hence, it suffices to prove that Var @, = o(n?) as n — oo. In some cases, this
can be done by making an explicit [though hard] estimate for Var Q,; see, for
instance, Chen [C07, Lemma 5.1], and also the technique employed in the proof
of Lemma 2.4 of Bolthausen [Bol89]. Here, we opt for a more general approach
that is simpler, though it is a little more circuitous. Namely, in rough terms, we
write @, as QS) + Qg), where EQS) = o(n), and Var Qf) = o(n?). Moreover,

we will soon see that Qg), Qg) > 0, and this suffices to complete the proof.

For all m :=m,, € {1,...,n — 1} we write
Qn=Qy"+Qum, (2.23)
where
Q= XY tscey md Q=YX ey (221
1<i<j<n: 1<i<j<n:
jzi+m j<i+m

Because n > m, we have

EQL™ <n Y P{S; =0}. (2.25)

k=m

We estimate the variance of Q%™ next. We do this by first making an observa-
tion.
Throughout the remainder of this proof, define for all subsets I' of N2,

)= 1s—s;}- (2.26)
(¢,5)erl’

Supppose I'1, Ty, ..., T, are finite disjoint sets in N2, with common cardi-
nality, and the added property that whenever 1 < a < b < v, we have I'y, < T}
in the sense that ¢ < k and j < [ for all (¢,j) € Ty and (k,l) € Ty. Then, it
follows that

{7(T )}u , isanii.d. sequence. (2.27)

For all integers p > 0 define
Bl :={(i,j) eN*: (p—1)m <i<j<pm},

Wyt = {(i.j) EN*: (p—m <i<pm<j<(p+1)m}. (2.28)



> i
Figure 1: A decomposition of @,

In Figure 1, {B}'};2; denotes the collection black and {W;"}>°; the white
triangles that are inside the slanted strip.
We may write

n—1 n—1
QU = D Y(BR) + > T(W). (2.29)
p=1 p=1
Consequently,
n—1 n—1
Var Q2 < 2Var Y Y(BJY) +2Var Y T(W, (2.30)
p=1 p=1

Ifl1<a<b<m-—1,then B < Bj* and WJ* < W;". Consequently, (2.27)
implies that

Var Q4™ < 2(n — 1) [Var Y(BY") + Var T(W7")]. (2.31)
Because T(B7") and T (W{") are individually sums of not more than (')-many

ones,
Var Q4" ), < 2(n —1)m?. (2.32)

Let Q) := QL™ and QY = Qf;’”, where m = m,, = n'/* [say] Then,
On = 00 + QP and (2.25) and (2.32) together imply that EQ\) ), =
o((n — 1)m). Moreover, Var Q(n m

o((nm)?). This gives us the desired



decomposition of Q,—1),,. Now we complete the proof: Thanks to (2.22),

EQ(Q) ~ T - ZP{Sj =0} asn— 0. (2.33)

(n—1)m
j=1

Therefore, the variance of Q is little-o of the square of its mean. This

(n—1)m
and the Chebyshev inequality together imply that Q(n Hm /(nm) converges
in probability to 377, P{S; = 0}. On the other hand, we know also that

Q(n 1ym /(nm) converges to zero in L'(P) and hence in probability. Conse-
quently, we can change variables and note that as n — oo,

Q"m Z P{S; =0} in probability. (2.34)
j=1

If k is between (n — 1)m and nm, then

Q (n— 1)m Qk Qnm

Sk S m (2:35)

This proves (2.21), and hence the theorem, in the transient case.

In order to derive the recurrent case, it suffices to prove that Q,/n — co in
probability as n — oo.

Let us choose and hold an integer m > 1—so that it does not grow with
n—and observe that Q,, > Q%™ as long as n is sufficiently large. Evidently,

EQR™ =) > P{s5;=51)

1§i{j§n:
j<it+m (236)

=(n-— 1>m2_ P{S; = 0}.
k=1

We may also observe that (2.32) continues to hold in the present recurrent
setting. Together with the Chebyshev inequality, these computations imply
that as n — oo,

Qiﬁrrnni m—1
% — Z P{Sr =0} in probability. (2.37)
k=1
Because Qp(m—1) > Qn(m 1) the preceding implies that
Qn(m—l 1 i
lim P - P{Sx, =0}, = 1. 2.38
Jim { > kZ:: {8, =0} (2.38)

A monotonicity argument shows that @, ,—1) can be replaced by @, with-
out altering the end-result; see (2.35). By recurrence, if A > 0 is any pre-
described positive number, then we can choose [and fix] our integer m such that

ve P{Sk = 0} > 2\. This proves that lim, .. P{Q,/n > A} = 1 for all
A > 0 and hence follows the theorem in the recurrent case. O



3 Proofs of the main results

Now we introduce a sequence {&; },cz« of random variables, independent [under
P] of {¢;}52, and the random walk {S;}5°, such that

B& =0, B(§) =0 and fis:=E(|&l") < oo (3.1)
Define 1o

~|LE(Lz -1

hy = ‘"(;) & for all n > 1 and z € Z%. (3.2)

Evidently, {hZ},cz is a sequence of [conditionally] i.i.d. random variables, un-
der P, and has the same [conditional] mean and variance as {h%}, cza.

Lemma 3.1. There exists a positive and finite constant C, = C. (o) such that
if f:R* — R is three time continuously differentiable, then for alln > 1,

2

Bf [ 3" 0t | —Bf(H,)| < C.M(fis + pe)n ZP{S =0}, (33)

z€Z4 7=0
with My := sup,cgra | (2)].
Proof. Temporarily choose and fix some y € Z¢, and notice that

f(Hn)

1 |2
_ xT / xT 1
z€ZN\{y} z€ZN\{y} z€ZN\{y}

+ R,

where [Ry| < &/ [loo |h%]3. It follows from this and Lemma 2.1 that

Ef(H,)
~ 2 ~ 3.5
=B (Y m|-Tman-nEe (Y |+ R, )
zeZ\{y} z€Z\{y}
where
C’M
f’u6 |LE (L% 1)|3/2 P-a.s.
(3.6)
< % 1Ly 2.
12 "

10



We proceed as in (3.4) and write

flre+ >0 nx

v€Z\{y}

O T BT G i _ Lo S o By2(3'7)
ety vy ) 2 \eemmw )

+ R,

vvher}e1 |]§n| < éMﬂﬁiﬂ?’ < Tl\/ﬁMﬂL%P |&y]3. Tt follows from this and Lemma
2.1 that

Ef | B+ > hE
zeZa
€z4\{y} (3.8)

-~ 2 ~
Ef\ Y mi|-Sm@i-nEf{ > mn) +RY,
z€Z\{y} 2€Z9\{y}

preceding and (3.5) that P-a.s.,

where |R?| < T{/ﬁﬁng|L%|3. Define C, := (C + 1)/2 to deduce from the

R A ~ A

Ef | hY ) _E < Lyp3 )

TR ICEEED SRR T 1D DR | ) 1L CX)
z€Z\{y} T€Z4

where A := C, My (fiz + pg). Now we can readily iterate this inequality to find
that P-a.s.,

o T 5 A 3
Bf | D | —Ef(HL)| <& D LGP (3.10)
z€Z4 yEZ4
We take expectations and appeal to Lemma 2.2 to finish. O

Next, we prove Theorem 1.1.

Proof of Theorem 1.1. We choose, in Lemma 3.1, the collection {{;},cza to be
i.i.d. mean-zero normals with variance o2. Then, we apply Lemma 3.1 with

f(z) := g(x/n'/?) for a smooth bounded function g with bounded derivatives.
This yields,
1 -~ const
Eg(H,/n'/?) — Eg ~7 donr)|< - (3.11)

TE€Z

11



In this way,

1/2
S hr2 IS LrLz -1 N0,1)  under P
z€Z? \/i z€Z?
" (3.12)
g 2
=—=|-n+ Z (Lzrcz) N(071)7
\/i z€Z4

where 2 denotes equality in distribution, and N(0,1) is a standard normal
random variable under P as well as P. Therefore, in accord with Theorem 2.4,

1/2

1 ~ D O 1 9
— E hi =—|—-14+— g Ly N(0,1

z€Z z€Z2

op(1) +7'/%- N(0,0%),

where o5(1) is a term that converges to zero as n — oo in P-probability a.s. [P].
Equation (3.11) then completes the proof in the transient case. O

Theorem 1.2 relies on the following “coupled moderate deviation” result.
Proposition 3.2. Suppose that S is recurrent. Consider a sequence {€;}52, of
nonnegative numbers that satisfy the following:

2

lim en =0. (3.14)

n—oo

> P{S) =0}
k=1

Then for all compactly supported functions f : R — R that are infinitely
differentiable,

Proof. We apply Lemma 3.1 with the &,’s having the same common distribution
as ¢, and with f(x) := g(e,z) for a smooth and bounded function g with
bounded derivatives. This yields,

Elg|en D15 (Ls =12 Z(@) | | - Elg(enHn)]
r€Z9
2 (3.16)

zn: P{S; = 0}

k=0

< QC*Mg,anei’L

=o(1),

owing to Lemma (3.4).

12



According to Taylor’s formula,

glen D ILE(LE -2 Z(2)
reZd

(3.17)
=gl > Z@irs |+ > (1B @E -1 - L8) 2(2) - R,

z€Z4 z€Z4

where |R| < sup,cre |¢'(x)]. Thanks to (2.2), we can write the preceding as
follows:

en Y LI (LE =DV Z(x) | —g(enWn)
reZd (3.18)
—e Y (I8 L -V - L7) 2(@) - R.

z€Z4

Consequently, P-almost surely,

Elglen Y ILE (L5 =" Z(2) | | —Elg(enWn)]
rcZ9

e (319)
~ 2
< sup |g/(a)lo-en S B D0 (125 (Le - )7 — L)

2eRd
z€R: rcZd

We apply the elementary inequality (a'/? —b'/2)? < |a — b|—valid for all a,b >
0—to deduce that P-almost surely,

Elglen D122 (L2 =D Z(@) || — Elg(eaWn)]
reZd
1/2
(3.20)
< sup |¢'(x)|o - € ZLI
z€R4 z€Z4

= Sup |g/($)|0' : €nn1/2-
zeRI

We take E-expectations and apply Lemma (3.4) to deduce from this and (3.16)
that

B g (eaWn)] = Elg (enHy)]| = o(1). (3:21)
This completes the proof. O

Our proof of Theorem 1.2 hinges on two more basic lemmas. The first is an
elementary lemma from integration theory.

13



Lemma 3.3. Suppose X := {X,,}>2, and Y := {Y,,}>2; are R¥-valued random
variables such that: (i) X and Y each form a tight sequence; and (ii) for all
bounded infinitely-differentiable functions g : R* — R,

lim [Eg(X,) — Eg(Y,)| = 0. (3.22)

Then, the preceding holds for all bounded continuous functions g : R* — R.

Proof. The proof uses standard arguments, but we repeat it for the sake of
completeness.

Let K., := [-m,m]¢, where m takes values in N. Given a bounded con-
tinuous function g : R — R, we can find a bounded infinitely-differentiable
function h,, : R* — R such that h,, = g on K,,. It follows that

|E9(Xn) - Eg(Yn)| < |Ehm(Xn) - Ehm(Yn)|

+2 sup |g(@)|(P{Xn & Ko} + P{Yy & Kp}). (323
reRA

Consequently,
limsup [Eg(X,,) — Eg(Y,,)|

<2 sup [g(z)|sup (P{X; & K} + P{Y; & Kin}).
wERd i>1

(3.24)

Let m diverge and appeal to tightness to conclude that the left-had side vanishes.
O

The final ingredient in the proof of Theorem 1.1 is the following harmonic-
analytic result.

Lemma 3.4. Ife, :=1/ay,, then (3.14) holds.

Proof. Let ¢ denote the characteristic function of S;. Our immediate goal is
to prove that |¢(t)| < 1 for all but a countable number of ¢ € R?. We present
an argument, due to Firas Rassoul-Agha, that is simpler and more elegant than
our original proof.

Suppose S is an independent copy of Si, and note that whenever ¢ € R% is
such that |¢(¢)] = 1, D := exp{it-(S1—57)} has expectation one. Consequently,
E(|D — 1|?) = E(]D]?) — 1 = 0, whence D = 1 a.s. Because S; is assumed to
have at least two possible values, S; # S7 with positive probability, and this
proves that t € 2nZ<. It follows readily from this that

{teR*: |p(t)| = 1} =272, (3.25)

and in particular, [¢(¢)| < 1 for almost all t € R.
By the inversion theorem [S76, P3(b), p. 57], for all n > 0,

1

/( y {p(t)}" dt. (3.26)

14



This and the dominated convergence theorem together tell us that P{S,, = 0} =
o(1) as n — oo, whence it follows that

> P{Sk =0} =o(n) asn— oc. (3.27)
k=1

For our particular choice of €, we find that

n 1/2
<71L > P{S = 0}) , (3.28)
k=1

and this quantity vanishes as n — oo by (3.27). This proves the lemma. O

2

3
€,n

Zn: P{S; = 0}
k=1

Proof of Theorem 1.2. Let €, := 1/a,. In light of Proposition 3.2, and Lemmas
3.3 and 3.4, it suffices to prove that the sequences n — ¢,W,, and n — ¢, H,
are tight.

Lemma 2.2, (2.2), and recurrence together imply that for all n large,

E (|ean|2> 0?2 Y E (|L;§|2)

z€Z4

< const - ein Z P{S), = 0} (3.29)

k=1
= const.

Thus, n +— €, W, is bounded in L?(P), and hence is tight.
We conclude the proof by verifying that n — €, H,, is tight. Thanks to (2.4)
and recurrence, for all n large,

E (|enHy|?) < const - e2E Z (LE)?

z€Z?

< const - ein Z P{S, =0} (3.30)

k=1
= const.

Confer with Lemma 2.2 for the penultimate line. Thus, n — €, H,, is bounded
in L?(P) and hence is tight, as was announced. O

Acknowledgement. We wish to thank Siegfried Hormann, Richard Nickl, Jon
Peterson, and Firas Rassoul-Agha for many enjoyable discussions, particularly
on the first portion of Lemma 3.4. Special thanks are extended to Firas Rassoul-
Agha for providing us with his elegant argument that replaced our clumsier proof
of the first part of Lemma 3.4.
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