From charged polymers
to random walk in random scenery

Xia Chen
Department of Mathematics
University of Tennessee
Knoxville, TN 37996-1300
xchen@math.utk.edu

Davar Khoshnevisan
Department of Mathematics
University of Utah
Salt Lake City, UT 84112-0090
davar@math.utah.edu

January 30, 2008

Abstract

We prove that two seemingly-different models of random walk in random environment are generically quite close to one another. One model comes from statistical physics, and describes the behavior of a randomly-charged random polymer. The other model comes from probability theory, and was originally designed to describe a large family of asymptotically self-similar processes that have stationary increments.

AMS 2000 subject classifications: Primary: 60K35; Secondary: 60K37.

Keywords and phrases. Polymer measures, random walk in random scenery

1 Introduction and the main results

The principal goal of this article is to show that two apparently-disparate models—one from statistical physics of disorder media [KK91, DGH92, DH94] and one from probability theory [KS79, Bol89]—are very close to one another.

1Research supported in part by NSF grant DMS-0704024.
2Research supported in part by NSF grant DMS-0706728.
In order to describe the model from statistical physics, let us suppose that
\(q := \{q_i\}_{i=1}^{\infty} \) is a collection of i.i.d. mean-zero random variables with finite
variance \(\sigma^2 > 0 \). For technical reasons, we assume here and throughout that
\[
\mu_6 := E(q_1^6) < \infty.
\] (1.1)

In addition, we let \(S := \{S_i\}_{i=0}^{\infty} \) denote a random walk on \(\mathbb{Z}^d \) with \(S_0 = 0 \) that
is independent from the collection \(q \). We also rule out the trivial case that \(S_1 \)
has only one possible value.

The object of interest to us is the random quantity
\[
H_n := \sum_{1 \leq i < j \leq n} q_i q_j \mathbf{1}_{\{S_i = S_j\}},
\] (1.2)

In statistical physics, \(H_n \) denotes a random Hamiltonian of spin-glass type that
is used to build Gibbsian polymer measures. The \(q_i \)'s are random charges, and
each realization of \(S \) corresponds to a possible polymer path; see the paper by
Kantor and Kardar [KK91], its subsequent variations by Derrida et al [DGH92,
DH94] and Wittmer et al [WJJ93], and its predecessors by Garel and Orland [GO88]
and Obukhov [O86]. The resulting Gibbs measure then corresponds to a model for “random walk in random environment.” Although we do not
consider continuous processes here, the continuum-limit analogue of \(H_n \) has
also been studied in the literature [BP97, MP96].

Kesten and Spitzer [KS79] introduced a different model for “random walk in random environment,” which they call random walk in random scenery.\(^1\) We can describe that model as follows: Let \(Z := \{Z(x)\}_{x \in \mathbb{Z}^d} \) is a collection of i.i.d.
random variables, with the same common distribution as \(q_1 \), and independent
of \(S \). Define
\[
W_n := \sum_{i=1}^{n} Z(S_i).
\] (1.3)

The process \(W := \{W_n\}_{n=0}^{\infty} \) is called random walk in random scenery, and can
be thought of as follows: We fix a realization of the \(d \)-dimensional random field
\(Z \)—the “scenery”—and then run an independent walk \(S \) on \(\mathbb{Z}^d \). At time \(j \),
the walk is at \(S_j \); we sample the scenery at that point. This yields \(Z(S_j) \), which is
then used as the increment of the process \(W \) at time \(j \).

Our goal is to make precise the assertion that if \(n \) is large, then
\[
H_n \approx \gamma^{1/2} \cdot W_n \quad \text{in distribution},
\] (1.4)

where
\[
\gamma := \begin{cases}
1 & \text{if } S \text{ is recurrent}, \\
\sum_{k=1}^{\infty} P\{S_k = 0\} & \text{if } S \text{ is transient}.
\end{cases}
\] (1.5)

Our derivation is based on a classification of recurrence vs. transience for random
walks that appears to be new. This classification [Theorem 2.4] might be of
independent interest.

\(^1\)Kesten and Spitzer ascribe the terminology to Paul Shields.
We can better understand (1.4) by considering separately the cases that S is transient versus recurrent. The former case is simpler to describe, and appears next.

Theorem 1.1. If S is transient, then

$$
\frac{W_n}{n^{1/2}} \xrightarrow{D} N(0, \sigma^2) \quad \text{and} \quad \frac{H_n}{n^{1/2}} \xrightarrow{D} N(0, \gamma \sigma^2).
$$

(Kesten and Spitzer [KS79] proved the assertion about W_n under more restrictive conditions on S. Similarly, Chen [C07] proved the statement about H_n under more hypotheses.

Before we can describe the remaining [and more interesting] recurrent case, we define

$$a_n := \left(n \sum_{k=0}^{n} P\{S_k = 0\} \right)^{1/2}.
$$

It is well known [P21, CF51] that S is recurrent if and only if $a_n/n^{1/2} \to \infty$ as $n \to \infty$.

Theorem 1.2. If S is recurrent, then for all bounded continuous functions $f : \mathbb{R}^d \to \mathbb{R}$,

$$
E \left[f \left(\frac{W_n}{a_n} \right) \right] = E \left[f \left(\frac{H_n}{a_n} \right) \right] + o(1),
$$

where $o(1)$ converges to zero as $n \to \infty$. Moreover, both $\{W_n/a_n\}_{n \geq 1}$ and $\{H_n/a_n\}_{n \geq 1}$ are tight.

We demonstrate Theorems 1.1 and 1.2 by using a variant of the replacement method of Liapounov [Lia00, pp. 362–364]; this method was rediscovered later by Lindeberg [Lin22], who used it to prove his famous central limit theorem for triangular arrays of random variables.

It can be proved that when S is in the domain of attraction of a stable law, W_n/a_n converges in distribution to an explicit law [KS79, Bol89]. Consequently, H_n/a_n converges in distribution to the same law in that case. This fact was proved earlier by Chen [C07] under further [mild] conditions on S and q_1.

We conclude the introduction by describing the growth of a_n under natural conditions on S.

Remark 1.3. Suppose S is strongly aperiodic, mean zero, and finite second moments, with a nonsingular covariance matrix. Then, S is transient iff $d \geq 3$, and by the local central limit theorem, as $n \to \infty$,

$$
\sum_{k=1}^{n} P\{S_k = 0\} \sim \text{const} \times \begin{cases} n^{1/2} & \text{if } d = 1, \\ \log n & \text{if } d = 2. \end{cases}
$$

See, for example Spitzer [S76, P9 on p. 75]. Consequently,

$$a_n \sim \text{const} \times \begin{cases} n^{3/4} & \text{if } d = 1, \\ (n \log n)^{1/2} & \text{if } d = 2. \end{cases}
$$
This agrees with the normalization of Kesten and Spitzer [KS79] when \(d = 1 \), and Bolthausen [Bol89] when \(d = 2 \).

2 Preliminary estimates

Consider the local times of \(S \) defined by

\[
L_n^x := \sum_{i=1}^{n} 1_{\{S_i = x\}}.
\]

(2.1)

A little thought shows that the random walk in random scenery can be represented compactly as

\[
W_n = \sum_{x \in \mathbb{Z}^d} Z(x) L_n^x.
\]

(2.2)

There is also a nice way to write the random Hamiltonian \(H_n \) in local-time terms. Consider the “level sets,”

\[
\mathcal{L}_n^x := \{ i \in \{1, \ldots, n\} : S_i = x \}.
\]

(2.3)

It is manifest that if \(j \in \{2, \ldots, n\} \), then \(L_j^x > L_{j-1}^x \) if and only if \(j \in \mathcal{L}_n^x \). Thus, we can write

\[
H_n = \frac{1}{2} \left(\sum_{x \in \mathbb{Z}^d} \left| \sum_{i=1}^{n} q_i 1_{\{S_i = x\}} \right|^2 - \sum_{i=1}^{n} q_i^2 \right)
\]

\[
= \sum_{x \in \mathbb{Z}^d} h_n^x,
\]

(2.4)

where

\[
h_n^x := \frac{1}{2} \left(\sum_{i \in \mathcal{L}_n^x} q_i^2 - \sum_{i \in \mathcal{L}_n^x} q_i^2 \right).
\]

(2.5)

We denote by \(\hat{P} \) the conditional measure, given the entire process \(S \); \(\hat{E} \) denotes the corresponding expectation operator. The following is borrowed from Chen [C07, Lemma 2.1].

Lemma 2.1. Choose and fix some integer \(n \geq 1 \). Then, \(\{h_n^x\}_{x \in \mathbb{Z}^d} \) is a collection of i.i.d. random variables under \(\hat{P} \), and

\[
\hat{E} h_n^x = 0 \quad \text{and} \quad \hat{E} \left(|h_n^x|^2 \right) = \frac{\sigma^2}{2} L_n^x (L_n^x - 1) \quad \text{P.-a.s.}
\]

(2.6)

Moreover, there exists a nonrandom positive and finite constant \(C = C(\sigma) \) such that for all \(n \geq 1 \) and \(x \in \mathbb{Z}^d \),

\[
\hat{E} \left(|h_n^x|^3 \right) \leq C \mu_6 |L_n^x (L_n^x - 1)|^{3/2} \quad \text{P.-a.s.}
\]

(2.7)
Next we develop some local-time computations.

Lemma 2.2. For all \(n \geq 1 \),

\[
\sum_{x \in \mathbb{Z}^d} EL^x = n \quad \text{and} \quad \sum_{x \in \mathbb{Z}^d} E \left(\left| L^x \right|^2 \right) = n + 2 \sum_{k=1}^{n-1} \langle n - k \rangle P\{S_k = 0\}. \tag{2.8}
\]

Moreover, for all integers \(k \geq 1 \),

\[
\sum_{x \in \mathbb{Z}^d} E \left(\left| L^x \right|^k \right) \leq k! \sum_{j=0}^{n} P\{S_j = 0\} \right|_{k-1}. \tag{2.9}
\]

Proof. Since \(EL^x = \sum_{i=1}^{n} P\{S_i = x\} \) and \(\sum_{x \in \mathbb{Z}^d} P\{S_j = x\} = 1 \), we have \(\sum_{x} EL^x = n \). For the second-moment formula we write

\[
E \left(\left| L^x \right|^2 \right) = \sum_{1 \leq i \leq n} P\{S_i = x\} + 2 \sum_{1 \leq i < j \leq n} P\{S_i = x\} P\{S_j - S_i = 0\}. \tag{2.10}
\]

We can sum this expression over all \(x \in \mathbb{Z}^d \) to find that

\[
\sum_{x \in \mathbb{Z}^d} E \left(\left| L^x \right|^2 \right) = n + 2 \sum_{1 \leq i < j \leq n} P\{S_{j-i} = x\}. \tag{2.11}
\]

This readily implies the second-moment formula. Similarly, we write

\[
E \left(\left| L^x \right|^k \right) \leq k! \sum_{1 \leq i_1 \leq \cdots \leq i_k \leq n} P\{S_{i_1} = \cdots = S_{i_k} = x\}
\]

\[
= k! \sum_{1 \leq i_1 \leq \cdots \leq i_k \leq n} P\{S_{i_1} = x\} P\{S_{i_2} = 0\} \cdots P\{S_{i_k} = 0\} \tag{2.12}
\]

\[
\leq k! \sum_{i=1}^{n} P\{S_i = x\} \left| \sum_{j=1}^{n} P\{S_j = 0\} \right|^{k-1}
\]

Add over all \(x \in \mathbb{Z}^d \) to finish. \(\square \)

Our next lemma provides the first step in a classification of recurrence [versus transience] for random walks.

Lemma 2.3. It is always the case that

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{x \in \mathbb{Z}^d} E \left(\left| L^x \right|^2 \right) = 1 + 2 \sum_{k=1}^{\infty} P\{S_k = 0\}. \tag{2.13}
\]

5
Proof. Thanks to Lemma 2.2, for all \(n \geq 1 \),

\[
\frac{1}{n} \sum_{x \in \mathbb{Z}^d} \mathbb{E} \left(|L_n^x|^2 \right) = 1 + 2 \sum_{k=1}^{n-1} \left(1 - \frac{k}{n} \right) \mathbb{P}\{S_k = 0\}. \quad (2.14)
\]

If \(S \) is transient, then the monotone convergence theorem ensures that

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{x \in \mathbb{Z}^d} \mathbb{E} \left(|L_n^x|^2 \right) = 1 + 2 \sum_{k=1}^{\infty} \mathbb{P}\{S_k = 0\}. \quad (2.15)
\]

This proves the lemma in the transient case.

When \(S \) is recurrent, we note that (2.14) readily implies that for all integers \(m \geq 2 \),

\[
\liminf_{n \to \infty} \frac{1}{n} \sum_{x \in \mathbb{Z}^d} \mathbb{E} \left(|L_n^x|^2 \right) \geq 1 + \sum_{1 \leq k \leq m/2} \mathbb{P}\{S_k = 0\}. \quad (2.16)
\]

Let \(m \uparrow \infty \) to deduce the lemma. \(\square \)

Next we “remove the expectation” from the statement of Lemma 2.3.

Theorem 2.4. As \(n \to \infty \),

\[
\frac{1}{n} \sum_{x \in \mathbb{Z}^d} (L_n^x)^2 \to 1 + 2 \sum_{k=1}^{\infty} \mathbb{P}\{S_k = 0\} \quad \text{in probability.} \quad (2.17)
\]

Remark 2.5. The quantity \(I_n := \sum_{x \in \mathbb{Z}^d} (L_n^x)^2 \) is the so-called self-intersection local time of the walk \(S \). This terminology stems from the following elementary calculation: For all integers \(n \geq 1 \),

\[
I_n = \sum_{1 \leq i < j \leq n} \mathbb{1}_{\{S_i = S_j\}}. \quad (2.18)
\]

Consequently, Theorem 2.4 implies that a random walk \(S \) on \(\mathbb{Z}^d \) is recurrent if and only if its self-intersection local time satisfies \(I_n/n \to \infty \) in probability. \(\square \)

Proof. First we study the case that \(\{S_i\}_{i=0}^{\infty} \) is transient.

Define

\[
Q_n := \sum_{1 \leq i < j \leq n} \mathbb{1}_{\{S_i = S_j\}}. \quad (2.19)
\]

Then it is not too difficult to see that

\[
\sum_{x \in \mathbb{Z}^d} (L_n^x)^2 = 2Q_n + n \quad \text{for all } n \geq 1. \quad (2.20)
\]
This follows immediately from (2.18), for example. Therefore, it suffices to prove that, under the assumption of transience,

\[\frac{Q_k}{k} \to \sum_{j=1}^{\infty} P\{S_j = 0\} \quad \text{in probability as } k \to \infty. \]

(2.21)

Lemma 2.3 and (2.20) together imply that

\[\lim_{k \to \infty} \frac{E Q_k}{k} = \sum_{j=1}^{\infty} P\{S_j = 0\}. \]

(2.22)

Hence, it suffices to prove that \(\text{Var} Q_n = o(n^2) \) as \(n \to \infty \). In some cases, this can be done by making an explicit [though hard] estimate for \(\text{Var} Q_n \); see, for instance, Chen [C07, Lemma 5.1], and also the technique employed in the proof of Lemma 2.4 of Bolthausen [Bol89]. Here, we opt for a more general approach that is simpler, though it is a little more circuitous. Namely, in rough terms, we write \(Q_n \) as \(Q_n^{(1)} + Q_n^{(2)} \), where \(E Q_n^{(1)} = o(n) \), and \(\text{Var} Q_n^{(2)} = o(n^2) \). Moreover, we will soon see that \(Q_n^{(1)}, Q_n^{(2)} \geq 0 \), and this suffices to complete the proof.

For all \(m := m_n \in \{1, \ldots, n - 1\} \) we write

\[Q_n = Q_n^{1,m} + Q_n^{2,m}, \]

(2.23)

where

\[Q_n^{1,m} := \sum_{\substack{1 \leq i < j \leq n: \ \ j \geq i + m}} 1_{\{S_i = S_j\}} \quad \text{and} \quad Q_n^{2,m} := \sum_{\substack{1 \leq i < j \leq n: \ \ j < i + m}} 1_{\{S_i = S_j\}}. \]

(2.24)

Because \(n > m \), we have

\[\text{E} Q_n^{1,m} \leq n \sum_{k=m}^{\infty} P\{S_k = 0\}. \]

(2.25)

We estimate the variance of \(Q_n^{2,m} \) next. We do this by first making an observation.

Throughout the remainder of this proof, define for all subsets \(\Gamma \) of \(\mathbb{N}^2 \),

\[\Upsilon(\Gamma) := \sum_{(i,j) \in \Gamma} 1_{\{S_i = S_j\}}. \]

(2.26)

Suppose \(\Gamma_1, \Gamma_2, \ldots, \Gamma_\nu \) are finite disjoint sets in \(\mathbb{N}^2 \), with common cardinality, and the added property that whenever \(1 \leq a < b \leq \nu \), we have \(\Gamma_a < \Gamma_b \) in the sense that \(i < k \) and \(j < l \) for all \((i,j) \in \Gamma_a \) and \((k,l) \in \Gamma_b \). Then, it follows that

\(\{\Upsilon(\Gamma_\nu)\}_{\mu=1}^\nu \) is an i.i.d. sequence.

(2.27)

For all integers \(p \geq 0 \) define

\[B_p^m := \{(i,j) \in \mathbb{N}^2 : (p-1)m < i < j \leq pm\}, \]

\[W_p^m := \{(i,j) \in \mathbb{N}^2 : (p-1)m < i \leq pm < j \leq (p+1)m\}. \]

(2.28)
In Figure 1, \(\{B^m_p\}_{p=1}^\infty \) denotes the collection black and \(\{W^m_p\}_{p=1}^\infty \) the white triangles that are inside the slanted strip.

We may write

\[
Q_{2m}^{(n-1)m} = \sum_{p=1}^{n-1} \Upsilon(B^m_p) + \sum_{p=1}^{n-1} \Upsilon(W^m_p). \tag{2.29}
\]

Consequently,

\[
\text{Var} Q_{(n-1)m}^{2m} \leq 2 \text{Var} \sum_{p=1}^{n-1} \Upsilon(B^m_p) + 2 \text{Var} \sum_{p=1}^{n-1} \Upsilon(W^m_p). \tag{2.30}
\]

If \(1 \leq a < b \leq m - 1 \), then \(B^m_a < B^m_b \) and \(W^m_a < W^m_b \). Consequently, (2.27) implies that

\[
\text{Var} Q_{(n-1)m}^{2m} \leq 2(n - 1) [\text{Var} \Upsilon(B^m_1) + \text{Var} \Upsilon(W^m_1)]. \tag{2.31}
\]

Because \(\Upsilon(B^m_1) \) and \(\Upsilon(W^m_1) \) are individually sums of not more than \(\binom{m}{2} \)-many ones,

\[
\text{Var} Q_{(n-1)m}^{2m} \leq 2(n - 1)m^2. \tag{2.32}
\]

Let \(Q_n^{(1)} := Q_n^{1m} \) and \(Q_n^{(2)} := Q_n^{2m} \), where \(m = m_n := n^{1/4} \) [say]. Then, \(Q_n = Q_n^{(1)} + Q_n^{(2)} \), and (2.25) and (2.32) together imply that \(\text{E} Q_{(n-1)m}^{(1)} = o((n - 1)m) \). Moreover, \(\text{Var} Q_{(n-1)m}^{(2)} = o((nm)^2) \). This gives us the desired
decomposition of $Q_{(n-1)m}$. Now we complete the proof: Thanks to (2.22),

$$EQ^{(2)}_{(n-1)m} \sim nm \cdot \sum_{j=1}^{\infty} P\{S_j = 0\} \quad \text{as } n \to \infty. \quad (2.33)$$

Therefore, the variance of $Q^{(2)}_{(n-1)m}$ is little-o of the square of its mean. This and the Chebyshev inequality together imply that $Q^{(2)}_{(n-1)m}/(nm)$ converges in probability to $\sum_{j=1}^{\infty} P\{S_j = 0\}$. On the other hand, we know also that $Q^{(1)}_{(n-1)m}/(nm)$ converges to zero in $L^1(P)$ and hence in probability. Consequently, we can change variables and note that as $n \to \infty$,

$$Q_{nm}/nm \to \sum_{j=1}^{\infty} P\{S_j = 0\} \quad \text{in probability.} \quad (2.34)$$

If k is between $(n-1)m$ and nm, then

$$\frac{Q_{(n-1)m}}{nm} \leq \frac{Q_k}{k} \leq \frac{Q_{nm}}{(n-1)m}. \quad (2.35)$$

This proves (2.21), and hence the theorem, in the transient case.

In order to derive the recurrent case, it suffices to prove that $Q_n/n \to \infty$ in probability as $n \to \infty$.

Let us choose and hold an integer $m \geq 1$—so that it does not grow with n—and observe that $Q_n \geq Q^{2,m}_n$ as long as n is sufficiently large. Evidently,

$$EQ^{2,m}_n = \sum_{1 \leq i < j \leq n} \sum_{j \leq i+m} P\{S_j = S_i\}$$

$$= (n-1) \sum_{k=1}^{m-1} P\{S_k = 0\}. \quad (2.36)$$

We may also observe that (2.32) continues to hold in the present recurrent setting. Together with the Chebyshev inequality, these computations imply that as $n \to \infty$,

$$\frac{Q^{2,m}_{n(m-1)}}{n} \to \sum_{k=1}^{m-1} P\{S_k = 0\} \quad \text{in probability.} \quad (2.37)$$

Because $Q_{n(m-1)} \geq Q^{2,m}_{n(m-1)}$, the preceding implies that

$$\lim_{n \to \infty} P\left\{\frac{Q_{n(m-1)}}{n} \geq \frac{1}{2} \sum_{k=1}^{m} P\{S_k = 0\}\right\} = 1. \quad (2.38)$$

A monotonicity argument shows that $Q_{n(m-1)}$ can be replaced by Q_n without altering the end-result; see (2.35). By recurrence, if $\lambda > 0$ is any pre-described positive number, then we can choose [and fix] our integer m such that $\sum_{k=1}^{m} P\{S_k = 0\} \geq 2\lambda$. This proves that $\lim_{n \to \infty} P\{Q_n/n \geq \lambda\} = 1$ for all $\lambda > 0$, and hence follows the theorem in the recurrent case.
3 Proofs of the main results

Now we introduce a sequence \(\{\xi_x\} \) of random variables, independent \([\text{under } P]\) of \(\{q_i\}_{i=1}^\infty \) and the random walk \(\{S_i\}_{i=0}^\infty \), such that

\[
E\xi_0 = 0, \quad E(\xi_0^2) = \sigma^2, \quad \text{and} \quad \hat{\mu}_3 := E(|\xi_0|^3) < \infty. \tag{3.1}
\]

Define

\[
\hat{h}_n^x := \left| \frac{L_n^x(L_n^x - 1)}{2} \right|^{1/2} \xi_x \quad \text{for all } n \geq 1 \text{ and } x \in \mathbb{Z}^d. \tag{3.2}
\]

Evidently, \(\{\hat{h}_n^x\} \) is a sequence of \([\text{conditionally } \text{i.i.d.}]\) random variables, under \(\hat{P} \), and has the same \([\text{conditional}]\) mean and variance as \(\{h_n^x\} \).

Lemma 3.1. There exists a positive and finite constant \(C_* = C_*(\sigma) \) such that if \(f : \mathbb{R}^d \to \mathbb{R} \) is three time continuously differentiable, then for all \(n \geq 1 \),

\[
\left| \mathbb{E}f \left(\sum_{x \in \mathbb{Z}^d} \hat{h}_n^x \right) - \mathbb{E}f(H_n) \right| \leq C_* M_f(\hat{\mu}_3 + \mu_6) n \sum_{j=0}^n P\{S_j = 0\} \left| h_n^y \right|^2 \tag{3.3}
\]

with \(M_f := \sup_{x \in \mathbb{R}^d} |f'''(x)| \).

Proof. Temporarily choose and fix some \(y \in \mathbb{Z}^d \), and notice that

\[
f(H_n) = f \left(\sum_{x \in \mathbb{Z}^d \setminus \{y\}} h_n^x \right) - f' \left(\sum_{x \in \mathbb{Z}^d \setminus \{y\}} h_n^x \right) h_n^y - \frac{1}{2} f'' \left(\sum_{x \in \mathbb{Z}^d \setminus \{y\}} h_n^x \right) |h_n^y|^2 + R_n, \tag{3.4}
\]

where \(|R_n| \leq \frac{1}{8} \|f'''\|_\infty |h_n^y|^3 \). It follows from this and Lemma 2.1 that

\[
\hat{E}f(H_n) = \hat{E}f \left(\sum_{x \in \mathbb{Z}^d \setminus \{y\}} h_n^x \right) - \frac{\sigma^2}{2} L_n^y(L_n^y - 1) \hat{E}f'' \left(\sum_{x \in \mathbb{Z}^d \setminus \{y\}} h_n^x \right) + R_n^{(1)}, \tag{3.5}
\]

where

\[
\left| R_n^{(1)} \right| \leq \frac{CM_f \mu_6}{12} |L_n^y(L_n^y - 1)|^{3/2} \quad \text{P-a.s.} \leq \frac{CM_f \mu_6}{12} |L_n^y|^3. \tag{3.6}
\]
We proceed as in (3.4) and write
\[
\begin{align*}
& f \left(\hat{h}_n^y + \sum_{x \in \mathbb{Z}^d \setminus \{y\}} h_n^x \right) \\
= & f \left(\sum_{x \in \mathbb{Z}^d \setminus \{y\}} h_n^x \right) - f' \left(\sum_{x \in \mathbb{Z}^d \setminus \{y\}} h_n^x \right) \hat{y}_n^y - \frac{1}{2} f'' \left(\sum_{x \in \mathbb{Z}^d \setminus \{y\}} h_n^x \right) \left| \hat{y}_n^y \right|^2 \tag{3.7}
\end{align*}
\]
\[+ \hat{R}_n,\]

where \(|\hat{R}_n| \leq \frac{1}{6} M_f |\hat{y}_n^y|^3 \leq \frac{1}{12 \sqrt{2}} M_f |L_n^y|^3 |\xi|^3\). It follows from this and Lemma 2.1 that
\[
\hat{E} f \left(\hat{h}_n^y + \sum_{x \in \mathbb{Z}^d \setminus \{y\}} h_n^x \right) - \hat{E} f \left(\sum_{x \in \mathbb{Z}^d \setminus \{y\}} h_n^x \right) - \frac{\sigma^2}{2} L_n^y (L_n^y - 1) \hat{E} f'' \left(\sum_{x \in \mathbb{Z}^d \setminus \{y\}} h_n^x \right) + R_n^{(2)}, \tag{3.8}
\]

where \(|R_n^{(2)}| \leq \frac{1}{12 \sqrt{2}} \hat{\mu}_3 M_f |L_n^y|^3\). Define \(C_* := (C + 1)/2\) to deduce from the preceding and (3.5) that P-a.s.,
\[
\left| \hat{E} f \left(\hat{h}_n^y + \sum_{x \in \mathbb{Z}^d \setminus \{y\}} h_n^x \right) - \hat{E} f \left(\sum_{x \in \mathbb{Z}^d} h_n^x \right) \right| \leq \frac{A}{6} |L_n^y|^3, \tag{3.9}
\]

where \(A := C_* M_f (\hat{\mu}_3 + \mu_0)\). Now we can readily iterate this inequality to find that P-a.s.,
\[
\left| \hat{E} f \left(\sum_{x \in \mathbb{Z}^d} \hat{h}_n^x \right) - \hat{E} f (H_n) \right| \leq \frac{A}{6} \sum_{y \in \mathbb{Z}^d} |L_n^y|^3. \tag{3.10}
\]

We take expectations and appeal to Lemma 2.2 to finish. \(\square\)

Next, we prove Theorem 1.1.

Proof of Theorem 1.1. We choose, in Lemma 3.1, the collection \(\{\xi_x\}_{x \in \mathbb{Z}^d}\) to be i.i.d. mean-zero normals with variance \(\sigma^2\). Then, we apply Lemma 3.1 with \(f(x) := g(x/n^{1/2})\) for a smooth bounded function \(g\) with bounded derivatives. This yields,
\[
\left| \hat{E} g(H_n/n^{1/2}) - \hat{E} g \left(\frac{1}{n^{1/2}} \sum_{x \in \mathbb{Z}^d} \hat{h}_n^x \right) \right| \leq \frac{\text{const.}}{n^{1/2}}. \tag{3.11}
\]
In this way,
\[
\sum_{x \in \mathbb{Z}^d} \hat{h}_n^x \overset{D}{=} \frac{\sigma}{\sqrt{2}} \left| \sum_{x \in \mathbb{Z}^d} L_n^x (L_n^x - 1) \right|^{1/2} N(0, 1) \quad \text{under } \hat{P}
\]
\[
= \frac{\sigma}{\sqrt{2}} \left| -n + \sum_{x \in \mathbb{Z}^d} (L_n^x)^2 \right|^{1/2} N(0, 1),
\]
where \(D\) denotes equality in distribution, and \(N(0, 1)\) is a standard normal random variable under \(\hat{P}\) as well as \(P\). Therefore, in accord with Theorem 2.4,
\[
\frac{1}{n^{1/2}} \sum_{x \in \mathbb{Z}^d} \hat{h}_n^x \overset{D}{=} \frac{\sigma}{\sqrt{2}} \left| -1 + \frac{1}{n} \sum_{x \in \mathbb{Z}^d} (L_n^x)^2 \right|^{1/2} N(0, 1)
\]
\[
= o_{\hat{P}}(1) + \gamma^{1/2} \cdot N(0, \sigma^2),
\]
where \(o_{\hat{P}}(1)\) is a term that converges to zero as \(n \to \infty\) in \(\hat{P}\)-probability a.s. \([P]\). Equation (3.11) then completes the proof in the transient case.

Theorem 1.2 relies on the following “coupled moderate deviation” result.

Proposition 3.2. Suppose that \(S\) is recurrent. Consider a sequence \(\{\epsilon_j\}_{j=1}^\infty\) of nonnegative numbers that satisfy the following:
\[
\lim_{n \to \infty} \epsilon_n^3 \left| \sum_{k=1}^n P\{S_k = 0\} \right|^2 = 0.
\]
Then for all compactly supported functions \(f : \mathbb{R}^d \to \mathbb{R}\) that are infinitely differentiable,
\[
\lim_{n \to \infty} \left| E[f(\epsilon_n W_n)] - E[f(\epsilon_n H_n)] \right| = 0.
\]

Proof. We apply Lemma 3.1 with the \(\xi_x\)'s having the same common distribution as \(q_1\), and with \(f(x) := g(\epsilon_n x)\) for a smooth and bounded function \(g\) with bounded derivatives. This yields,
\[
\left| E \left[g \left(\epsilon_n \sum_{x \in \mathbb{Z}^d} \left| L_n^x (L_n^x - 1) \right|^{1/2} Z(x) \right) \right] - E [g(\epsilon_n H_n)] \right| \leq 2C_s M g \mu_6 \mu_n \delta \epsilon_n \left| \sum_{k=0}^n P\{S_k = 0\} \right|^2 (3.16)
\]
\[
= o(1),
\]
owing to Lemma (3.4).
According to Taylor's formula,

\[
g \left(\epsilon_n \sum_{x \in \mathbb{Z}^d} |L_n^x (L_n^x - 1)|^{1/2} Z(x) \right) = g \left(\epsilon_n \sum_{x \in \mathbb{Z}^d} Z(x)L_n^x \right) + \epsilon_n \sum_{x \in \mathbb{Z}^d} \left(|L_n^x (L_n^x - 1)|^{1/2} - L_n^x \right) Z(x) \cdot R,
\]

(3.17)

where \(|R| \leq \sup_{x \in \mathbb{R}^d} |g'(x)|\). Thanks to (2.2), we can write the preceding as follows:

\[
g \left(\epsilon_n \sum_{x \in \mathbb{Z}^d} |L_n^x (L_n^x - 1)|^{1/2} Z(x) \right) - g(\epsilon_n W_n)
= \epsilon_n \sum_{x \in \mathbb{Z}^d} \left(|L_n^x (L_n^x - 1)|^{1/2} - L_n^x \right) Z(x) \cdot R.
\]

(3.18)

Consequently, P-almost surely,

\[
\left| \widehat{E} \left[g \left(\epsilon_n \sum_{x \in \mathbb{Z}^d} |L_n^x (L_n^x - 1)|^{1/2} Z(x) \right) \right] - \widehat{E} [g(\epsilon_n W_n)] \right| \\
\leq \sup_{x \in \mathbb{R}^d} |g'(x)| \sigma \epsilon_n \left\{ \widehat{E} \left(\sum_{x \in \mathbb{Z}^d} \left(|L_n^x (L_n^x - 1)|^{1/2} - L_n^x \right)^2 \right) \right\}^{1/2}.
\]

(3.19)

We apply the elementary inequality \((a^{1/2} - b^{1/2})^2 \leq |a - b|\)—valid for all \(a, b \geq 0\)—to deduce that P-almost surely,

\[
\left| \widehat{E} \left[g \left(\epsilon_n \sum_{x \in \mathbb{Z}^d} |L_n^x (L_n^x - 1)|^{1/2} Z(x) \right) \right] - \widehat{E} [g(\epsilon_n W_n)] \right| \leq \sup_{x \in \mathbb{R}^d} |g'(x)| \sigma \epsilon_n \left\{ \widehat{E} \left(\sum_{x \in \mathbb{Z}^d} L_n^x \right) \right\}^{1/2}
\]

(3.20)

We take E-expectations and apply Lemma (3.4) to deduce from this and (3.16) that

\[
|E [g(\epsilon_n W_n)] - E [g(\epsilon_n H_n)]| = o(1).
\]

(3.21)

This completes the proof. \(\square\)

Our proof of Theorem 1.2 hinges on two more basic lemmas. The first is an elementary lemma from integration theory.
Lemma 3.3. Suppose \(X := \{X_n\}_{n=1}^{\infty} \) and \(Y := \{Y_n\}_{n=1}^{\infty} \) are \(\mathbb{R}^d \)-valued random variables such that: (i) \(X \) and \(Y \) each form a tight sequence; and (ii) for all bounded infinitely-differentiable functions \(g : \mathbb{R}^d \to \mathbb{R} \),

\[
\lim_{n \to \infty} \left| E_g(X_n) - E_g(Y_n) \right| = 0. \tag{3.22}
\]

Then, the preceding holds for all bounded continuous functions \(g : \mathbb{R}^d \to \mathbb{R} \).

Proof. The proof uses standard arguments, but we repeat it for the sake of completeness.

Let \(K_m := [-m, m]^d \), where \(m \) takes values in \(\mathbb{N} \). Given a bounded continuous function \(g : \mathbb{R}^d \to \mathbb{R} \), we can find a bounded infinitely-differentiable function \(h_m : \mathbb{R}^d \to \mathbb{R} \) such that \(h_m = g \) on \(K_m \). It follows that

\[
\left| E_g(X_n) - E_g(Y_n) \right| \leq \left| E h_m(X_n) - E h_m(Y_n) \right| + 2 \sup_{x \in \mathbb{R}^d} |g(x)| \left(P\{X_n \notin K_m\} + P\{Y_n \notin K_m\} \right). \tag{3.23}
\]

Consequently,

\[
\limsup_{n \to \infty} \left| E_g(X_n) - E_g(Y_n) \right| \leq 2 \sup_{x \in \mathbb{R}^d} |g(x)| \sup_{j \geq 1} \left(P\{X_j \notin K_m\} + P\{Y_j \notin K_m\} \right). \tag{3.24}
\]

Let \(m \) diverge and appeal to tightness to conclude that the left-hand side vanishes.

The final ingredient in the proof of Theorem 1.1 is the following harmonic-analytic result.

Lemma 3.4. If \(\epsilon_n := 1/a_n \), then (3.14) holds.

Proof. Let \(\phi \) denote the characteristic function of \(S_1 \). Our immediate goal is to prove that \(|\phi(t)| < 1 \) for all but a countable number of \(t \in \mathbb{R}^d \). We present an argument, due to Firas Rassoul-Agha, that is simpler and more elegant than our original proof.

Suppose \(S'_1 \) is an independent copy of \(S_1 \), and note that whenever \(t \in \mathbb{R}^d \) is such that \(|\phi(t)| = 1 \), \(D := \exp\{it \cdot (S_1 - S'_1)\} \) has expectation one. Consequently, \(E(|D - 1|^2) = E(D^2) - 1 = 0 \), whence \(D = 1 \) a.s. Because \(S_1 \) is assumed to have at least two possible values, \(S_1 \neq S'_1 \) with positive probability, and this proves that \(t \in 2\pi \mathbb{Z}^d \). It follows readily from this that

\[
\{ t \in \mathbb{R}^d : |\phi(t)| = 1 \} = 2\pi \mathbb{Z}^d, \tag{3.25}
\]

and in particular, \(|\phi(t)| < 1 \) for almost all \(t \in \mathbb{R}^d \).

By the inversion theorem \([S76, P3(b), p. 57]\), for all \(n \geq 0 \),

\[
P\{S_n = 0\} = \frac{1}{(2\pi)^d} \int_{(-\pi,\pi)^d} \{\phi(t)\}^n \, dt. \tag{3.26}
\]
This and the dominated convergence theorem together tell us that \(P\{S_n = 0\} = o(1) \) as \(n \to \infty \), whence it follows that

\[
\sum_{k=1}^{n} P\{S_k = 0\} = o(n) \quad \text{as} \quad n \to \infty.
\] (3.27)

For our particular choice of \(\epsilon_n \) we find that

\[
\epsilon_n^3 \left| \sum_{k=1}^{n} P\{S_k = 0\} \right|^2 = \left(\frac{1}{n} \sum_{k=1}^{n} P\{S_k = 0\} \right)^{1/2},
\] (3.28)

and this quantity vanishes as \(n \to \infty \) by (3.27). This proves the lemma. \(\square \)

Proof of Theorem 1.2. Let \(\epsilon_n := 1/a_n \). In light of Proposition 3.2, and Lemmas 3.3 and 3.4, it suffices to prove that the sequences \(n \mapsto \epsilon_n W_n \) and \(n \mapsto \epsilon_n H_n \) are tight. Lemma 2.2, (2.2), and recurrence together imply that for all \(n \) large,

\[
E\left(|\epsilon_n W_n|^2 \right) = \sigma^2 \epsilon_n^2 \sum_{x \in \mathbb{Z}^d} E\left(|L^x_n|^2 \right)
\]

\[
\leq \text{const} \cdot \epsilon_n^2 n \sum_{k=1}^{n} P\{S_k = 0\}
\]

\[
= \text{const}.
\] (3.29)

Thus, \(n \mapsto \epsilon_n W_n \) is bounded in \(L^2(P) \), and hence is tight.

We conclude the proof by verifying that \(n \mapsto \epsilon_n H_n \) is tight. Thanks to (2.4) and recurrence, for all \(n \) large,

\[
E\left(|\epsilon_n H_n|^2 \right) \leq \text{const} \cdot \epsilon_n^2 E \sum_{x \in \mathbb{Z}^d} (L^x_n)^2
\]

\[
\leq \text{const} \cdot \epsilon_n^2 n \sum_{k=1}^{n} P\{S_k = 0\}
\]

\[
= \text{const}.
\] (3.30)

Confer with Lemma 2.2 for the penultimate line. Thus, \(n \mapsto \epsilon_n H_n \) is bounded in \(L^2(P) \) and hence is tight, as was announced. \(\square \)

Acknowledgement. We wish to thank Siegfried Hörmann, Richard Nickl, Jon Peterson, and Firas Rassoul-Agha for many enjoyable discussions, particularly on the first portion of Lemma 3.4. Special thanks are extended to Firas Rassoul-Agha for providing us with his elegant argument that replaced our clumsier proof of the first part of Lemma 3.4.
References

