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Abstract. Let X1, . . . , XN denote N independent, symmetric Lévy

processes on Rd. The corresponding additive Lévy process is defined as

the following N -parameter random field on Rd:

(0.1) X(t) := X1(t1) + · · ·+ XN (tN ) (t ∈ RN
+ ).

Khoshnevisan and Xiao (2002) have found a necessary and sufficient

condition for the zero-set X−1({0}) of X to be non-trivial with positive

probability. They also provide bounds for the Hausdorff dimension of

X−1({0}) which hold with positive probability in the case that X−1({0})
can be non-void.

Here, we prove that the Hausdorff dimension of X−1({0}) is a con-

stant almost surely on the event {X−1({0}) 6= ∅}. Moreover, we derive

a formula for the said constant. This portion of our work extends the

one-parameter formulas of Horowitz (1968) and Hawkes (1974).

More generally, we prove that for every non-random Borel set F in

(0 ,∞)N , the Hausdorff dimension of X−1({0})∩F is a constant almost

surely on the event {X−1({0}) ∩ F 6= ∅}. This constant is computed

explicitly in many cases.
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1. Introduction

Let X1, . . . , XN denote N independent symmetric Lévy processes on Rd.
We construct the N -parameter random field X := {X(t)}t∈RN

+
on Rd as

follows:

(1.1) X(t) := X1(t1) + · · ·+ XN (tN ),

where t := (t1, . . . , tN ) ranges over RN
+ . Thus, X is called a “symmetric

additive Lévy process,” and has found a number of applications in the study
of classical Lévy processes (Khoshnevisan and Xiao, 2002; 2003; 2003; 2005).

Consider the level set at x,

(1.2) X−1({x}) :=
{
t ∈ (0 ,∞)N : X(t) = x

}
for x ∈ Rd.

By defining X−1({x}) in this way, we have deliberately ruled out the possi-
bility that 0 ∈ X−1({0}).

Khoshnevisan and Xiao (2002) assert that, under a mild technical condi-
tion, X−1({0}) 6= ∅ if and only if a certain function Φ is locally integrable.
Moreover, the function Φ is easy to describe: It is the density function of
X(|t1| , . . . , |tN |) at x = 0.

As a by-product of their arguments, Khoshnevisan and Xiao (2002) pro-
duce bounds on the Hausdorff dimension of X−1({0}) as well. In fact, they
exhibit two numbers γ ≤ γ, both computable in terms of the Lévy exponents
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of X1, . . . , XN , such that

(1.3) γ ≤ dimH X−1({0}) ≤ γ̄ with positive probability.

Originally, the present paper was motivated by our desire to have better
information on the Hausdorff dimension of X−1({0}) in the truly multipa-
rameter setting N ≥ 2. Recall that when N = 1, X is a Lévy process in the
classical sense, and

(1.4) Either P
{
X−1({0}) = ∅

}
= 1 or P

{
X−1({0}) is uncountable

}
= 1.

This is a consequence of the general theory of Markov processes; see Propo-
sition 3.5 and Theorem 3.8 of Blumenthal and Getoor (1968, pp. 213 and
214). Moreover, it is known exactly when X−1({0}) is uncountable and, in
general, X−1({0}) can be viewed as the range of a subordinator [which differs
from X−1({0}) by at most a countable number of points]. Consequently, a
nice formula for dimH X−1({0}) can be derived from the result of Horowitz
(1968) on the Hausdorff dimension of the range of a subordinator. For a
modern elegant treatment, see Theorem 15 of Bertoin (1996, p. 94). On the
other hand, by using potential theory of Lévy processes and a subordination
argument, Hawkes (1974) derived a formula for dimH X−1({0}) in terms of
the Lévy exponent of X.

We were puzzled by why the extension of the said refinements to N ≥ 2
are so much more difficult to obtain. For example, the issue of when {0}
is regular for itself—i.e., (1.4)—becomes much more delicate once N ≥ 2.
[This will be dealt with elsewhere.] Thus, it is not obvious—nor does it
appear to be true—that dimH X−1({0}) is a.s. a constant.

In the present paper, we prove that under a mild technical condition, the
Hausdorff dimension of X−1({0}) in (0 ,∞)N is a simple function of ω. In
fact, it is a constant a.s. on the set where X−1({0}) is non-trivial.

We are even able to find a nice formula for the Hausdorff dimension of
the zero set X−1({0}), on the event that it is non-empty. See Theorem 1.1
below. It can be shown that when N = 1 our formula agrees with the
one-parameter findings of Horowitz (1968) and Hawkes (1974).

Suppose X−1({0}) were replaced by the closure of X−1({0}) in (0 ,∞)N .
Then, our derivations show that the same formula holds almost surely on
the event that the said closure is non-empty. However, the reader should
be warned that our formula might change if “X−1({0}) in (0 ,∞)N” were
replaced by “X−1({0}).” This phenomenon does not have a one-parameter
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counter-part, and contributes to the difficulty of the analysis in the presence
of several time parameters.

The remainder of the Introduction is dedicated to developing the requisite
background needed to describe our dimension formula precisely.

Let Ψ1, . . . ,ΨN denote the respective Lévy exponents of X1, . . . , XN .
That is, for all 1 ≤ j ≤ N , ξ ∈ Rd, and u ≥ 0,

(1.5) E
[
eiξ·Xj(u)

]
= e−uΨj(ξ).

We recall that the functions Ψ1, . . . ,ΨN are real, non-negative, and sym-
metric. We say that X is absolutely continuous if

(1.6)
∫
Rd

e−u
P

1≤j≤N Ψj(ξ) dξ < ∞ for all u > 0.

Define for all t ∈ RN ,

(1.7) Φ(t) :=
∫
Rd

e−
P

1≤j≤N |tj |Ψj(ξ) dξ.

This defines Φ on RN ; Φ is uniformly continuous and bounded away from
{0}, and blows up at 0. As a consequence of Khoshnevisan and Xiao (2002),
we have

P
{
X−1({0}) 6= ∅

}
> 0 ⇐⇒ P

{
X−1({0}) ∩ (0 ,∞)N 6= ∅

}
> 0

⇐⇒ Φ ∈ L1
loc(R

N ),
(1.8)

where A denotes the Euclidean closure of A. Then, our main result is the
following:

Theorem 1.1. If X1, . . . , XN are symmetric, absolutely continuous Lévy
processes in Rd, then almost surely on {X−1({0}) 6= ∅},

(1.9) dimH X−1({0}) = sup

{
q > 0 :

∫
[0,1]N

Φ(t)
‖t‖q

dt < ∞

}
.

If, in addition, there is a constant K > 0 such that

(1.10) Φ(t) ≤ Φ(K‖t‖ , . . . ,K‖t‖) for all t ∈ (0 , 1]N ,

then

(1.11) dimH X−1({0}) = N − lim sup
t→0

log Φ(t)
log(1/‖t‖)

.

When N = 1, (1.10) holds automatically, and so (1.9) and (1.11) coincide.
They are essentially due to Horowitz (1968) and Hawkes (1974). We will
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show in Example 3.6 that when N > 1, formula (1.11) does not hold in
general; an extra condition such as (1.10) is necessary.

Compared to the one-parameter case, the proof of Theorem 1.1 is consid-
erably more complicated when N > 1. This is mainly due to the fact that
classical covering arguments produce only (1.3) in general. Thus, we are led
to a different route: We introduce a rich family of random sets with nice
intersection properties, and strive to find exactly which of these random sets
can intersect X−1({0}). There is a sense of symmetry about our arguments,
since everything is described in terms of additive Lévy processes; the said
random sets are constructed by means of introducing auxiliary additive Lévy
processes. This argument allows us to establish a formula for the Hausdorff
dimension of X−1({0}) ∩ F for every non-random Borel set F ⊂ (0,∞)N .
See Theorem 3.2 and the examples in Section 3.

The idea of introducing random sets to help compute dimension seems
to be due to Taylor (1966, Theorem 4). Since its original discovery, this
method has been used by many others; in diverse ways, and to good effect
(Barlow and Perkins, 1984; Benjamini et al., 2003; Blath and Mörters, 2005;
Dalang and Nualart, 2004; Dembo et al., 2002; 1999; Khoshnevisan, 2003;
Khoshnevisan et al., 2005a; 2005b; Khoshnevisan et al., 2000; Khoshnevisan
and Shi, 2000; Khoshnevisan and Xiao, 2005; Klenke and Mörters, 2005;
Lyons, 1992; 1990; Mörters, 2001; Peres, 1996a; 1996b; Peres and Steif,
1998).

We conclude the Introduction by introducing some notation that is used
throughout and consistently.

• For every integer m ≥ 1, and for all x ∈ Rm,

(1.12) ‖x‖ :=
(
x2

1 + · · ·+ x2
m

)1/2 and |x| := |x1|+ · · ·+ |xm|.

• Multiparameter “time” variables are typeset in bold letters in order
to help the reader in his/her perusal.

• For all integers k ≥ 1 and s, t ∈ Rk
+, we write

(1.13) s ≺ t iff t � s iff si ≤ ti for all 1 ≤ i ≤ k.

• Let k ≥ 1 be a fixed integer and q ≥ 0 a fixed real number. Suppose
f : Rk → R+ is Borel measurable, and µ is a Borel probability
measure on Rk. Then,

(1.14) I
(q)
f (µ) :=

∫∫
f(x− y)
|x− y|q

µ(dx) µ(dy).
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• P(A) denotes the collection of all Borel probability measures on A.
• If f : RN \ {0} → R+, then we define the upper index and lower

index of f (at 0 ∈ RN ) respectively as

(1.15) ind(f) := lim sup
‖x‖→0

log f(x)
log(1/‖x‖)

, ind(f) := lim inf
‖x‖→0

log f(x)
log(1/‖x‖)

.

Consequently, Theorem 1.1 asserts that if (1.10) holds then a.s. on the
event that X−1({0}) 6= ∅,

(1.16) dimH X−1({0}) = N − ind(Φ).

2. Background on Additive Lévy Processes

2.1. Absolute Continuity. We follow Khoshnevisan and Xiao (2002) and
call the following function Ψ the Lévy exponent of X. It is defined as follows.
For ξ ∈ Rd,

(2.1) Ψ(ξ) := (Ψ1(ξ) , . . . ,ΨN (ξ)) .

In this way, we can write

(2.2) E
[
eiξ·X(t)

]
= e−t·Ψ(ξ) for ξ ∈ Rd and t ∈ RN

+ .

We follow Khoshnevisan and Xiao (2002) and declare X to be absolutely
continuous if the function ξ 7→ exp{−t · Ψ(ξ)} is in L1(Rd) for all t ∈
(0 ,∞)N .

If any one of the Xj ’s is absolutely continuous, then so is X. A similar
remark continues to apply if Xj is replaced by an additive process based
on a proper, non-empty subset of {X1, . . . , XN}. However, it is possible to
construct counter-examples and deduce that the converse to these assertion
are in general false.

Here and throughout, we assume, without fail, that

(2.3) X is absolutely continuous.

It is possible to check that this is equivalent to the absolute-continuity con-
dition (1.6) mentioned in the Introduction.

We may apply the inversion theorem and deduce that X(t) has a density
function pt(•) for all t ∈ (0 ,∞)N . Moreover, for all x ∈ Rd and t ∈ (0 ,∞)N ,

(2.4) pt(x) =
1

(2π)d

∫
Rd

cos(ξ · x) e−t·Ψ(ξ) dξ.
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Evidently, p is continuous on (0 ,∞)N ×Rd, and for all t ∈ (0,∞)N ,

(2.5) sup
x∈Rd

pt(x) = pt(0) = Φ(t).

See (1.7) for the definition of Φ.
Throughout, we consider the probabilities:

Φr(x ; t) :=
1

(2r)d
P
{∣∣X(|t1| , . . . , |tN |)− x

∣∣ ≤ r
}

,

Φr(t) := Φr(0 ; t),
(2.6)

valid for all r > 0, x ∈ Rd, and t = (t1, . . . , tN ) ∈ RN . Evidently, for all
t ∈ RN such that (|t1|, . . . , |tN |) ∈ (0,∞)N ,

lim
r→0+

Φr(t) = Φ(t),

sup
x∈Rd

Φr(x ; t) ≤ Φ(t).
(2.7)

The first statement follows from the continuity of x 7→ pt(x), and the second
from (2.5). Similarly, we have

(2.8) lim
r→0+

Φr(x ; t) = pt(x),

valid for all t ∈ (0 ,∞)N .

2.2. Weak Unimodality. We follow Khoshnevisan and Xiao (2002) and
say that a Borel probability measure µ on Rk is weakly unimodal (with
constant κ) if for all r > 0,

(2.9) sup
x∈Rd

µ
(
B(x ; r)

)
≤ κ µ

(
B(0 ; r)

)
,

where B(x ; r) :=
{
y ∈ Rk : |x− y| ≤ r

}
. Evidently, we can choose κ to be

its optimal value,

(2.10) κ := sup
r>0

sup
x∈Rk

µ
(
B(x ; r)

)
µ
(
B(0 ; r)

) < ∞,

where 0/0 := 1.
According to Corollary 3.1 of Khoshnevisan and Xiao (2003), for all t ∈

(0 ,∞)N , the distribution of X(t) is weakly unimodal with constant 16d.
Equivalently, the growth of the function Φr of (2.6) is controlled as follows:

(2.11) sup
x∈Rd

Φr(x ; t) ≤ 16dΦr(t) for all t ∈ RN .
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This and Lemma 2.8(i) of Khoshnevisan and Xiao (2002) together imply the
following “doubling property”:

(2.12) Φ2r(t) ≤ 32dΦr(t) for all t ∈ RN .

Another important consequence of weak unimodality is that t 7→ Φr(t) is
“quasi-monotone.” This means that if s ≺ t and both are in (0 ,∞)N , then

(2.13) Φr(t) ≤ 16dΦr(s) for all r > 0.

See Lemma 2.8(ii) of Khoshnevisan and Xiao (2002).

3. Some Key Results and Examples

Khoshnevisan and Xiao (2002, Theorem 2.9) have proven that

(3.1) Φ ∈ L1
loc(R

N ) iff P
{
X−1({0}) 6= ∅

}
> 0.

They proved also that the same is true for X−1({0}) ∩ (0 ,∞)N . This was
mentioned earlier in the Introduction of the present paper; see (1.8). In ad-
dition, Khoshnevisan and Xiao (2002) have computed bounds for the Haus-
dorff dimension of X−1({0}) in the case that Φ is locally integrable. The
said bounds are in terms of γ and γ̄, where

γ := sup

{
q > 0 :

∫
[0,1]N

Φ(t)
‖t‖q

dt < ∞

}
,

γ̄ := inf
{

q > 0 : lim inf
‖t‖→0

Φ(t)
‖t‖q−N

> 0
}

.

(3.2)

First, we offer the following.

Lemma 3.1. It is always the case that

(3.3) 0 ≤ γ ≤ γ̄ ≤ N − d

2
.

If, in addition, (1.10) holds, then also,

(3.4) γ = inf

{
q > 0 : lim sup

‖t‖→0

Φ(t)
‖t‖q−N

> 0

}
.

Thus, in light of (1.15), we arrive at the following consequence:

(3.5) γ̄ = N − ind(Φ) whereas γ = N − ind(Φ) if (1.10) holds.
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Proof of Lemma 3.1. By definition, 0 ≤ γ. Also, if q > γ̄ then there exists
a positive and finite A such that Φ(t) ≥ A|t|q−N

∞ for all t ∈ [0 , 1]N . Conse-
quently,

∫
[0,1]N Φ(t)|t|−q

∞ dt ≥ A
∫
[0,1]N |t|

−N
∞ dt = ∞. It follows that q ≥ γ.

Let q ↓ γ̄ to deduce that γ̄ ≥ γ.
In order to prove that γ̄ ≤ N−(d/2), we first recall that Ψj(ξ) = O(‖ξ‖2)

as ‖ξ‖ → ∞ (Bochner, 1955, eq. (3.4.14), p. 67). Therefore, there exists a
positive and finite constant A such that |s · Ψ(ξ)| ≤ A|s|(1 + ‖ξ‖2) for all
ξ ∈ Rd and s ∈ RN . Consequently, for all s ∈ RN ,

(3.6) Φ(s) ≥
∫
Rd

e−A|s|(1+‖ξ‖2) dξ =
A′e−A|s|

|s|d/2
,

where A′ depends only on d and A. This yields γ̄ ≤ N − (d/2) readily.
It remains to verify (3.4) under condition (1.10). From now on, it is

convenient to define temporarily,

(3.7) θ := inf

{
q > 0 : lim sup

‖t‖→0

Φ(t)
‖t‖q−N

> 0

}
.

If 0 < q < θ, then Φ(t) = o(|t|q−N
∞ ), and for all ε > 0 and for all sufficiently

large n,

(3.8)
∫
{2−n−1<|t|∞≤2−n}

Φ(t)
|t|q−ε
∞

dt = O(2−nε) as n →∞.

Consequently, the left-most terms form a summable sequence indexed by n.
In other words, for all ε > 0, t 7→ |t|ε−q

∞ Φ(t) is integrable on neighborhoods
of the origin in RN . We have proved that q ≤ γ + ε. Let ε ↓ 0 and q ↑ θ to
find that θ ≤ γ. [This does not require (1.10).]

If 0 < q < γ and (1.10) holds, then

(3.9) ∞ >

∫
{|t|∞≤1}

Φ(t)
|t|q∞

dt =
∑

1≤n<∞

∫
{2−n−1<|t|∞≤2−n}

Φ(t)
|t|q∞

dt.

Thus,

(3.10) lim
n→∞

∫
{2−n−1<|t|∞≤2−n}

Φ(t)
|t|q∞

dt = 0.

But the preceding integral is at least 2nqΦ(2−n, . . . , 2−n) times the volume
of {t ∈ RN

+ : 2−n−1 < |t|∞ ≤ 2−n}. This follows from the coordinate-wise
monotonicity of Φ, and proves that

(3.11) Φ(2−n, . . . , 2−n) = o
(
2−n(q−N)

)
as n →∞.
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From this we conclude also that for the constant K > 0 in (1.10),

(3.12) Φ(K2−n, . . . ,K2−n) = o
(
2−n(q−N)

)
as n →∞.

We appeal to (1.10) to deduce that

(3.13)
Φ(K2−n, . . . ,K2−n)

2−(n−1)(q−N)
≥ A sup

2−n−1<|t|∞≤2−n

Φ(t)

|t|q−N
∞

,

where A is positive and finite, and depends only on N . This and (3.12)
prove that q < θ, whence it follows that γ ≤ θ. The converse bounds has
already been proved. �

We are ready to present the main theorem of this section.

Theorem 3.2. Let X denote an N -parameter symmetric, absolutely con-
tinuous additive Lévy process on Rd. Choose and fix a compact set F ⊂
(0 ,∞)N . Then, almost surely on {X−1({0}) ∩ F 6= ∅},

dimH

(
X−1({0}) ∩ F

)
= sup

{
0 < q < N : I

(q)
Φ (µ) < ∞ for some µ ∈ P(F )

}
.

(3.14)

Remark 3.3. From the proof of Theorem 3.2, it can be seen that (3.14) holds
for X−1({0}) ∩ F , almost surely on {X−1({0}) ∩ F 6= ∅}.

In order to have a complete picture it remains to know when X−1({0})∩F

is nonempty with positive probability. This issue is addressed by Corollary
2.13 of Khoshnevisan and Xiao (2002) as follows:

P
{
X−1({0}) ∩ F 6= ∅

}
> 0 ⇐⇒

P
{

X−1({0}) ∩ F 6= ∅
}

> 0 ⇐⇒

there exists µ ∈ P(F ) such that I
(0)
Φ (µ) < ∞.

(3.15)

[The weak unimodality assumption of Khoshnevisan and Xiao (2002, Corol-
lary 2.13) is redundant in the present setting; see Corollary 3.1 of Khosh-
nevisan and Xiao (2003).]

The following is an immediate consequence of Theorem 3.2, used in con-
junction with Frostman’s theorem (Khoshnevisan, 2002, Theorem 2.2.1, p.
521).

Corollary 3.4. If the conditions of Theorem 3.2 are met, then for all non-
random compact sets F ⊂ (0 ,∞)N ,

(3.16) dimH F − ind(Φ) ≤ dimH

(
X−1({0}) ∩ F

)
≤ dimH F − ind(Φ),
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almost surely on {X−1({0}) ∩ F 6= ∅}.

Khoshnevisan and Xiao (2002, Theorem 2.10) have proved the following
under the assumption that X is absolutely continuous and symmetric:

(1) For all C > c > 0,

(3.17) P
{
γ ≤ dimH

(
X−1({0}) ∩ [c , C]N

)
≤ γ̄

}
> 0.

(2) If there is a K > 0 such that Φ(t) ≤ Φ(K‖t‖ , . . . ,K‖t‖), then

(3.18) P
{
dimH

(
X−1({0}) ∩ [c , C]N

)
= γ

}
> 0.

Thus, Corollary 3.4 improves (3.17) and (3.18) in several ways.
We end this section with some examples showing applications of Theorems

1.1 and 3.2.

Example 3.5. Let X1, . . . , XN be N independent, identically distributed
symmetric Lévy processes with stable components (Pruitt and Taylor, 1969).
More precisely, let X1(t) = (X1,1(t) , . . . , X1,d(t)) for all t ≥ 0, where the
processes X1,1, . . . , X1,d are assumed to be independent, symmetric stable
processes in R with respective indices α1 , . . . , αd ∈ (0 , 2]. Let X be the
associated additive Lévy process in Rd. Then X is anisotropic in the space-
variable unless α1 = · · · = αd.

It can be verified that X satisfies the conditions of Theorem 3.2 and for
all t ∈ (0 , 1]N ,

Φ(t) =
∫
Rd

exp

− ∑
1≤j≤N

tj
∑

1≤k≤d

|ξk|αk

 dξ

� ‖t‖−
P

1≤k≤d(1/αk).

(3.19)

In the above and sequel, “f(t) � g(t) for all t ∈ T” means that f(t)/g(t) is
bounded from below and above by constants that do not depend on t ∈ T .
It follows from Corollary 3.4 that for every compact set F ⊂ (0 ,∞)N ,

(3.20) dimH

(
X−1({0}) ∩ F

)
=

(
dimH F −

d∑
k=1

1
αk

)
+

,

almost surely on {X−1({0}) ∩ F 6= ∅}, where x+ = max{0, x} for x ∈ R.
The same reasoning implies that if X is an additive stable process in Rd

[i.e., if X1, . . . , XN are symmetric stable Lévy processes in Rd], then for
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every compact set F ⊂ (0 ,∞)N ,

(3.21) dimH

(
X−1({0}) ∩ F

)
=
(

dimH F − d

α

)
+

,

almost surely on {X−1({0}) ∩ F 6= ∅}.

Next we consider additive Lévy processes which are anisotropic in the
time-variable.

Example 3.6. Suppose X1, . . . , XN are N independent symmetric stable
Lévy processes in Rd with indices α1, . . . , αN ∈ (0 , 2]. Let X be the additive
Lévy process in Rd defined by X(t) = X1(t1) + · · · + XN (tN ). Because
R+ 3 tj 7→ X(t) is [up to an independent random variable] an αj-stable
Lévy process in Rd, X = {X(t)}t∈RN

+
is anisotropic in the time-variable.

The following result is concerned with the Hausdorff dimension of the zero
set X−1({0}). For convenience, we assume

(3.22) 2 ≥ α1 ≥ · · · ≥ αN > 0.

Define

(3.23) k(α) := min

` = 1 , . . . , N :
∑

1≤j≤`

αj > d

 ,

where min ∅ := ∞. In particular, k(α) = ∞ if and only if
∑

1≤j≤N αj ≤ d.

Theorem 3.7. Let X = {X(t)}t∈RN
+

be the additive Lévy process defined
above. Then, P{X−1({0}) 6= ∅} > 0 if and only if k(α) is finite. Moreover,
if k(α) < ∞, then almost surely on {X−1({0}) 6= ∅},

(3.24) dimH X−1({0}) = N − k(α) +

∑
1≤j≤k(α) αj − d

αk(α)
.

First, we derive a few technical lemmas. The first is a pointwise estimate
for Φ.

Lemma 3.8. Under the preceding conditions, for all t ∈ (0 , 1]N ,

(3.25) Φ(t) � 1∑
1≤j≤N |tj |d/αj

.
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Proof. For any fixed t ∈ (0 , 1]N we let i ∈ {1 , . . . , N} satisfy |ti|1/αi =
max1≤j≤N |tj |1/αj . Then,

Φ(t) =
∫
Rd

e−
P

1≤j≤N |tj |·‖ξ‖αj
dξ ≤

∫
Rd

e−|ti|·‖ξ‖
αi dξ

:=
A

|ti|d/αi
≤ A′∑

1≤j≤N |tj |d/αj
,

(3.26)

where A and A′ < ∞ do not depend on t ∈ (0 , 1]N .
For the other bound we use (3.22) to deduce the following:

Φ(t) =
∫
Rd

exp

− ∑
1≤j≤N

(
|tj |1/αj‖ξ‖

)αj

 dξ

≥
∫
Rd

exp

− ∑
1≤j≤N

(
|ti|1/αi‖ξ‖

)αj

 dξ

≥
∫
{‖ξ‖≥|ti|−1/αi}

exp
(
−N |ti|α1/αi‖ξ‖α1

)
dξ

:=
A′′

|ti|d/αi
≥ A′′∑

1≤j≤N |tj |d/αj
,

(3.27)

where A′′ > 0 does not depend on t ∈ (0 , 1]N . The lemma follows from
(3.26) and (3.27). �

Our second technical lemma follows directly from Lemma 10 of Ayache
and Xiao (2005) and its proof.

Lemma 3.9. Let a, b, c ≥ 0 be fixed. Define for all u, v > 0,

(3.28) Ja,b,c(u , v) :=
∫ 1

0

dt

(u + ta)b(v + t)c
.

Define for all u, v > 0,

(3.29) J̄a,b,c(u , v) :=


u−b+(1/a)v−c, if ab > 1,

v−c log
(
1 + vu−1/a

)
, if ab = 1,

1 + v−ab−c+1, if ab < 1 and ab + c 6= 1.

Then, as long as u ≤ va, we have Ja,b,c(u , v) � J̄a,b,c(u , v).

Proof of Theorem 3.7. It can be verified that the additive process X satisfies
the symmetry and absolute continuity conditions of Theorem 1.1.
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According to Lemma 3.8, we have that for all q ≥ 0,∫
[0,1]N

Φ(t)
‖t‖q

dt

�
∫

[0,1]N

1(∑
1≤j≤N t

d/αj

j

)
|t|q

dt

=
∫

[0,1]N−1

J(d/α1),1,q

 ∑
1≤j≤N−1

t
d/αj+1

j ,
∑

1≤j≤N−1

tj

 dt.

(3.30)

This means that the left-most term converges if and only if the right-most
one does. We apply induction on N , several times in conjunction with
Lemma 3.9, to find that

∫
[0,1]N Φ(t) dt = ∞ if and only if k(α) = ∞. There-

fore, in accord with Khoshnevisan and Xiao (2002), k(α) < ∞ if and only
if P{X−1({0}) 6= ∅} > 0. This proves the first part of Theorem 3.7

It remains to prove that γ equals to the right-hand side of (3.24). This is
proved by appealing, once again, to (3.30), Lemma 3.9, and induction [on
N ]. The details are tedious but otherwise elementary. So we omit them. �

4. Proof of Theorem 3.2

Our proof of Theorem 3.2 is technical and long. We will carry it out in
several parts.

Throughout the remainder of this section we enlarge the probability space
enough that we can introduce symmetric, stable-α processes {Sj}∞j=1—all
taking values in RN—such that S1, S2, . . . are i.i.d., and totally independent
of X1, . . . , XN . We choose and fix an integer M ≥ 1, and define S to be the
additive stable process S1⊕· · ·⊕SM . That is, S(t) = S1(t1)+ · · ·+SM (tM )
for all t = (t1, . . . , tM ) ∈ RM

+ . The parameters 0 < α < 2 and M ≥ 1
will be determined at the end of the proof of Theorem 3.2. For the sake of
concreteness we normalize each Sj as follows:

(4.1) E
[
eiξ·Sj(u)

]
= exp (−u‖ξ‖α) for ξ ∈ RN and u ≥ 0.

For all Borel probability measures µ on RN
+ , and for every ε > 0, define

(4.2) Jε(µ) :=
1

(2ε)d+N

∫
RM

+

(∫
1{|X(s)|≤ε , |S(t)−s|≤ε} µ(ds)

)
e−|t| dt.

4.1. Some Moment Estimates. For all x ∈ Rd, we let Px denote the law
of x + X. Similarly, for all y ∈ RN , we define Qy to be the law of y + S.
These are actually measures on canonical “path spaces” defined in the usual
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way; see Khoshnevisan and Xiao (2002, Section 5.2) for details. Without
loss of much generality, we can think of the underlying probability measure
P as P0 ×Q0.

On our enlarged probability space, we view Px × Qy as the joint law of
(x+X , y +S). Define Lk to be the Lebesgue measure on Rk for all integers
k ≥ 1. Then we can construct σ-finite measures,

(4.3) PLd(•) :=
∫
Rd

Px(•) dx and QLN (•) :=
∫
RN

Qy(•) dy,

together with corresponding expectation operators,

(4.4) EP[f ] :=
∫

f dPLd and EQ[f ] :=
∫

f dQLN .

We are particularly interested in the σ-finite measure PLd × QLN and its
corresponding expectation operator EP×Q.

It is an elementary computation that for all s ∈ RN
+ and t ∈ RM

+ , the
distribution of (X(s) ,S(t)) under PLd ×QLN is Ld × LN . In particular,

(4.5) (PLd ×QLN ) {|X(s)| ≤ ε , |S(t)− s| ≤ ε} = (2ε)d+N .

Thus, we are led to the following formula: For all Borel probability measures
µ on RN

+ and every ε > 0,

(4.6) EP×Q [Jε(µ)] = 1.

Next we bound the second moment of Jε(µ).

Proposition 4.1. If N > αM then there exists a finite and positive con-
stant A—depending only on (α, d, N,M)—such that for all Borel probability
measures µ on RN

+ and all ε > 0,

(4.7) EP×Q

[
(Jε(µ))2

]
≤ A

∫∫
Φ(s′ − s) µ(ds′) µ(ds)

max (|s′ − s|N−αM , εN−αM )
.

Proof. Combine Lemma 5.6 of Khoshnevisan and Xiao (2002) with (2.11) of
the present paper to find that for all s, s′ ∈ RN

+ and ε > 0,

PLd

{
|X(s)| ≤ ε , |X(s′)| ≤ ε

}
≤ (64ε)dP

{
|X(s)− X(s′)| ≤ ε

}
= 128dε2dΦε(s′ − s).

(4.8)

The last line follows from symmetry; i.e., from the fact that X(s) − X(s′)
has the same distribution as X(r), where the jth coordinate of r is |sj − s′j |.
Thanks to (2.7) we obtain the following:

(4.9) PLd

{
|X(s)| ≤ ε , |X(s′)| ≤ ε

}
≤ 128d ε2d Φ(s− s′).
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We follow the implicit portion of the proof of the preceding to find that
for all x, y ∈ RN , t, t′ ∈ RM

+ and ε > 0,

QLN

{
|S(t)− x| ≤ ε , |S(t′)− y| ≤ ε

}
= E

[∫
RN

1{|z+S(t)−x|≤ε , |z+S(t′)−y|≤ε} dz

]
.

(4.10)

We change the variables to find that

QLN

{
|S(t)− x| ≤ ε , |S(t′)− y| ≤ ε

}
=
∫
|z|≤ε

P
{
|z + S(t′)−S(t)− (y − x)| ≤ ε

}
dz

≤ (2ε)NP
{
|S(t′)−S(t)− (y − x)| ≤ 2ε

}
.

(4.11)

Thus,

(4.12) EP×Q

[
(Jε(µ))2

]
≤ 32d

(2ε)N

∫ ∫
Φ(s− s′)Fε(s− s′) µ(ds) µ(ds′),

where

(4.13) Fε(x) :=
∫
RM

+

∫
RM

+

P
{
|S(t′)−S(t)− x| ≤ 2ε

}
e−|t|−|t

′| dt,

for all x ∈ RN and ε > 0. Next, we observe that

(4.14) |t|+ |t′| = |t− t′|+ 2|t ∧ t′|,

for all t, t′ ∈ RM
+ . Therefore,

Fε(x) =
∫
|z−x|≤2ε

∫
RM

+

∫
RM

+

ft−t′(z)e−|t−t′|−2|t∧t′| dt dt′ dz,(4.15)

where f is the generalized “transition function,”

fu(z) :=
P {S(|u1| , . . . , |uN |) ∈ dz}

dz
for u ∈ RM and z ∈ RN .(4.16)

A computation based on symmetry yields

(4.17)
∫
RM

+

∫
RM

+

ft−t′(z)e−|t−t′|−2|t∧t′| dt dt′ =
∫
RM

+

fu(z)e−|u| du := υ(z).

In order to see the first equality, we write the double integral as a sum of
integrals over the 2M regions:

(4.18) Dπ =
{
(t , t′) ∈ RM

+ ×RM
+ : ti ≤ t′i if i ∈ π and ti > t′i if i /∈ π

}
,
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where π ranges over all subset sets of {1, 2, . . . ,M} including the empty set.It
can been verified that the integral over Dπ equals 2−M

∫
RM

+
fu(z)e−|u| du.

Hence (4.17) follows.
The function υ(z) in (4.17) is the one-potential density of S (Khosh-

nevisan, 2002, pp. 397 and 406). We cite two facts about υ:

(1) υ(z) > 0 for all z ∈ RN , and is continuous away from 0 ∈ RN .
This is a consequence of eq. (3) of Khoshnevisan (2002, p. 406) and
Bochner’s subordination (Khoshnevisan, 2002, p. 378).

(2) For all R > 0 there exists a finite constants A′ > A > 0 such that

(4.19)
A

|z|N−αM
≤ υ(z) ≤ A′

|z|N−αM
whenever |z| ≤ R.

Moreover, A′ can be chosen to be independent of R > 0. This fol-
lows from (1), together used with Proposition 4.1.1 of Khoshnevisan
(2002, p. 420).

It follows from (4.15), (4.17) and (4.19) that for all x ∈ RN and ε > 0,

Fε(x) ≤ A′
∫

z∈RN :
|z−x|≤2ε

dz

|z|N−αM

≤ A′′(2ε)N min
(

1
|x|N−αM

,
1

εN−αM

)
.

(4.20)

Here, A′′ is positive and finite, and depends only on (N,M,α). The propo-
sition is a ready consequence of this and symmetry; see (4.12). �

We mention the following variant of Proposition 4.1. It is proved by the
same argument.

Proposition 4.2. If N > αM then there exists a finite and positive con-
stant A—depending only on (α, d, N,M)—such that for all Borel probability
measures µ on RN

+ and all ε > 0,

EP×Q

[
(Jε(µ))2

]
≤ A

∫∫
Φε(s′ − s)

max (|s′ − s|N−αM , εN−αM )
µ(ds′) µ(ds).

(4.21)

Next we define two multi-parameter filtrations (Khoshnevisan, 2002, p.
233). First, define Xj to be the filtration of the Lévy process Xj , augmented
in the usual way. Also, define Sk to be the corresponding filtration for Sk.
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Then, we consider

(4.22) X (s) :=
∨

1≤j≤N

Xj(sj) and S (t) :=
∨

1≤k≤M

Sk(tk),

as s and t range respectively over RN
+ and RM

+ . It follows from Theorem
2.1.1 of Khoshnevisan (2002, p. 233) that X is an N -parameter commuting
filtration (Khoshnevisan, 2002, p. 233). Similarly, S is an M -parameter
commuting filtration. Theorem 2.1.1 of Khoshnevisan (2002, p. 233) can
be invoked, yet again, to help deduce that F is an (N + M)-parameter
commuting filtration, where

(4.23) F (s⊗ t) := X (s) ∨S (t) for s ∈ RN
+ and t ∈ RM

+ .

We need only the following consequence of commutation; it is known
as Cairoli’s strong (2, 2)-inequality (Khoshnevisan, 2002, Theorem 2.3.2, p.
235): For all f ∈ L2(P),

(4.24) E

[
sup

s∈QN
+ , t∈QM

+

|E [f |F (s⊗ t) ]|2
]
≤ 4N+ME

[
f2
]
.

[Qk
+ denotes the collection of all x ∈ Rk

+ such that xj is rational for all
1 ≤ j ≤ k.] Moreover, and this is significant, the same is true if we replace
E by EP×Q; i.e., for all f ∈ L2(PLd ×QLN ),

(4.25) EP×Q

[
sup

s∈QN
+ , t∈QM

+

∣∣∣E [f |F (s⊗ t) ]
∣∣∣2] ≤ 4N+MEP×Q

[
f2
]
.

A proof is hashed out very briefly in Khoshnevisan and Xiao (2002, p. 90).

Proposition 4.3. Suppose R > 0 is fixed. Choose and fix s ∈ [0 , R]N and
t ∈ RM

+ . Then, there exists a positive finite constant A = A(α, d, N,M,R)
such that for all Borel probability measures µ that are supported on [0 , R]N ,

EP×Q [Jε(µ) | F (s⊗ t)]

≥ A

∫
s′�s

Φε(s′ − s)
max (|s′ − s|N−αM , εN−αM )

µ(ds′),
(4.26)

(PLd ×QLN )-almost everywhere on {|X(s)| ≤ ε/2 , |S(t)− s| ≤ ε/2}.
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Proof. Owing to the Markov random-field property of Khoshnevisan and
Xiao (2002, Proposition 5.8), whenever s′ � s and t′ � t, we have

(PLd ×QLN )
(
|X(s′)| ≤ ε , |S(t′)− s′| ≤ ε

∣∣∣F (s⊗ t)
)

= (PLd ×QLN )
(
|X(s′)| ≤ ε , |S(t′)− s′| ≤ ε

∣∣∣X(s), S(t)
)

= PLd

(
|X(s′)| ≤ ε

∣∣∣X(s)
)
·QLN

(
|S(t′)− s′| ≤ ε

∣∣∣S(t)
)

.

(4.27)

We apply Lemma 5.5 of Khoshnevisan and Xiao (2002) to each term above
to find that (PLd ×QLN )-almost everywhere,

(PLd ×QLN )
(
|X(s′)| ≤ ε , |S(t′)− s′| ≤ ε

∣∣∣F (s⊗ t)
)

= P
{
|X(s′)− X(s) + z| ≤ ε

} ⌋
z=X(s)

× P
{
|S(t′)−S(t)− s′ + w| ≤ ε

} ⌋
w=S(t)

.

(4.28)

Because s′ � s and t′ � t, the distributions of X(s′)−X(s) and S(t′)−S(t)
are the same as those of X(s′ − s) and S(t′ − t), respectively. Therefore,
(PLd ×QLN )-a.e. on {|X(s)| ≤ ε/2 , |S(t)− s| ≤ ε/2},

(PLd ×QLN )
(
|X(s′)| ≤ ε , |S(t′)− s′| ≤ ε

∣∣∣F (s⊗ t)
)

≥ P
{
|X(s′)− X(s)| ≤ ε/2

}
· P
{
|S(t′ − t)− (s′ − s)| ≤ ε/2

}
≥ 1

32d+N
Pε(s′ − s ; t′ − t),

(4.29)

where

Pε(s′ − s ; t′ − t)

:= P
{
|X(s′)− X(s)| ≤ ε

}
· P
{
|S(t′ − t)− (s′ − s)| ≤ ε

}
.

(4.30)

For the last inequality in (4.29), we have applied (2.12) to both processes
X and S. This implies that (PLd × QLN )-almost everywhere on {|X(s)| ≤
ε/2 , |S(t)− s| ≤ ε/2},

EP×Q [Jε(µ) | F (s⊗ t)]

≥ 1
32d+N (2ε)d+N

∫
t′∈RM

+ :

t′�t

(∫
s′�s

Pε(s′ − s ; t′ − t) µ(ds′)
)

e−|t
′| dt′.

(4.31)
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Recall from (4.17) the one-potential density υ of S. According to the Fubini–
Tonelli theorem, for all x ∈ RN ,∫

t′∈RM
+ :

t′�t

P
{
|S(t′ − t)− x| ≤ ε

}
e−|t

′| dt′

≥ e−|t|
∫
RM

+

P {|S(u)− x| ≤ ε} e−|u| du

= e−|t|
∫

z∈RN :
|z−x|≤ε

υ(z) dx.

(4.32)

Thanks to (1) and (2) [confer with the paragraph following (4.17)], we can
find a finite constant a > 0—not depending on (ε , t)—such that as long as
|x| ≤ R, ∫

t′∈RM
+ :

t′�t

P
{
|S(t′ − t)− x| ≤ ε

}
e−|t

′| dt′

≥ ae−|t|(2ε)N min
(

1
|x|N−αM

,
1

εN−αM

)
.

(4.33)

[Compare with (4.20).] The proposition follows from (4.31) and (4.33) after
a few lines of direct computation. �

We can use the earlier results of Khoshnevisan and Xiao (2002) to extend
Proposition 4.3 further. In light of the existing proof of Proposition 4.3, the
said extension does not require any new ideas. Therefore, we will not offer
a proof. However, we need to introduce a fair amount of notation in order
to state the extension in its proper form.

Any subset π of {1, . . . , N} induces a partial order on RN
+ as follows: For

all s, t ∈ RN
+ ,

(4.34) s ≺π t means that

si ≤ ti for all i ∈ π, and

si > ti for all i 6∈ π.

We identify each and every π ⊆ {1, . . . , N} with the partial order ≺π.
For every π ⊆ {1, . . . , N}, 1 ≤ j ≤ N , and u ≥ 0, define

(4.35) X π
j (u) :=

σ
(
{Xj(v)}0≤v≤u

)
if j ∈ π,

σ
(
{Xj(v)}v≥0

)
if j 6∈ π.
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As is customary, σ(· · · ) denotes the σ-algebra generated by the parenthe-
sized quantities. For all π ⊆ {1, . . . , N} and t ∈ RN

+ define

(4.36) X π(t) :=
∨

1≤j≤N

X π
j (tj).

It is not hard to check that X π is an N -parameter filtration in the partial
order ≺π. That is, X π(s) ⊆ X π(t) whenever s ≺π t.

For all π ⊆ {1, . . . , N}, s ∈ RN
+ , and t ∈ RM

+ , define

(4.37) F π(s⊗ t) := X π(s) ∨S (t).

By Lemma 5.7 in Khoshnevisan and Xiao (2002), F π is an (N + M)-
parameter commuting filtration. It follows that, for all f ∈ L2(P) and
π ⊆ {1, . . . , N},

(4.38) E

[
sup

s∈QN
+ , t∈QM

+

|E [f |F π(s⊗ t) ]|2
]
≤ 4N+ME

[
f2
]
.

Also, for all f ∈ L2(PLd ×QLN ) and π ⊆ {1, . . . , N},

(4.39) EP×Q

[
sup

s∈QN
+ , t∈QM

+

∣∣∣E [f |F π(s⊗ t) ]
∣∣∣2] ≤ 4N+MEP×Q

[
f2
]
.

Note that when π = {1, . . . , N}, (4.38) and (4.39) are the same as (4.24)
and (4.25), respectively. However, the more general forms above has more
content, as can be seen by considering other partial orders π than {1, . . . , N}
[or ∅].

We are ready to present the asserted refinement of Proposition 4.3.

Proposition 4.4. Suppose R > 0 is fixed. Choose and fix s ∈ [0 , R]N and
t ∈ RM

+ . Then, there exists a positive finite constant A = A(α, d, N,M,R)
such that for all Borel probability measures µ that are supported on [0 , R]N ,
and for all π ⊆ {1, . . . , N},

EP×Q [Jε(µ) | F π(s⊗ t)]

≥ Ae−|t|
∫

s′�πs

Φε(s′ − s)
max (|s′ − s|N−αM , εN−αM )

µ(ds′),
(4.40)

(PLd ×QLN )-almost everywhere on {|X(s)| ≤ ε/2 , |S(t)− s| ≤ ε/2}.

4.2. More Moment Estimates. Consider a compact set B ⊂ (0,∞)M

with nonempty interior. For any Borel probability measure µ on RN
+ and a
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real number ε > 0, we define a random measure on RN
+ by

(4.41) JB,µ
ε (C) :=

1
(2ε)d+N

∫
B

(∫
C

1{|X(s)|≤ε , |S(t)−s|≤ε} µ(ds),
)

dt

where C ⊆ RN
+ denotes an arbitrary Borel set.

The following is the analogue of (4.6) under the probability measure P.

Lemma 4.5. Choose and fix a compact set B ⊂ (0,∞)M with nonempty
interior and a real number R > 1. Then , there exists a positive and finite
number A such that for all Borel probability measures µ on T := [R−1, R]N ,

(4.42) lim inf
ε→0+

E
[
JB,µ

ε (T )
]

> 0.

Proof. Thanks to the inversion formula, the density function of X(s) is con-
tinuous for every s ∈ (0 ,∞)N . Also, the density of S(t) is uniformly con-
tinuous for each t ∈ (0 ,∞)M . By Fatou’s lemma,

lim inf
ε→0+

E
[
JB,µ

ε (T )
]
≥
∫

B

(∫
T

Φ(s)ft(s) µ(ds)
)

dt

≥ LN (B) inf
s∈T

Φ(s) · inf
s∈T

inf
t∈B

ft(s).
(4.43)

It remains to prove that the two infima are strictly positive. The first fact
follows from the monotonicity bound,

(4.44) inf
s∈T

Φ(s) = Φ(1/R , . . . , 1/R) =
∫
Rd

e−(1/R)
P

1≤j≤N Ψj(ξ) dξ,

and this is positive. The second fact follows from Bochner’s subordination
(Khoshnevisan, 2002, p. 378) and the fact that the cube T is a positive
distance away from the axes of RN

+ . �

The analogue of Proposition 4.1 follows next.

Proposition 4.6. Choose and fix R > 1 and a compact set B ⊂ (0,∞)M

with nonempty interior. Let K : RN
+ ×RN

+ → R+ be a measurable function.
If N > αM , then there exists a finite and positive constant A—depending
only on (α, d, N,M,B,R)—such that for all Borel probability measures µ on
T = [R−1, R]N and all ε > 0,

E
[∫

T

∫
T

K(s , s′) JB,µ
ε (ds)JB,µ

ε (ds′)
]

≤ A

∫
T

∫
T

Φ(s− s′)K(s , s′)
|s− s′|N−αM

µ(ds) µ(ds′).
(4.45)
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In particular, we have

(4.46) sup
ε>0

E
[(

JB,µ
ε (T )

)2] ≤ A I
(N−αM)
Φ (µ).

Proof. We use an argument that is similar to that of Khoshnevisan and Xiao
(2002, Lemma 3.4). For all s, s′ ∈ RN

+ define s∧s′ to be the N -vector whose
jth coordinate is min(sj , s′j). Write Z1 := X(s∧s′), Z2 := X(s′)−X(s∧s′),
and Z3 := X(s)− X(s ∧ s′). Then, it is easy to check that (Z1 , Z2 , Z3) are
independent. Therefrom we find that P{|X(s′)| ≤ ε , |X(s)| ≤ ε} is equal to

P {|Z1 + Z2| ≤ ε , |Z1 + Z3| ≤ ε}

=
∫
Rd

P {|z + Z2| ≤ ε , |z + Z3| ≤ ε} ps∧s′(z) dz

≤ Φ(s′ ∧ s)
∫
Rd

P {|z + Z2| ≤ ε , |z + Z3| ≤ ε} dz.

(4.47)

See also (2.7). After we apply Fubini’s theorem and then change variables
[w := z + Z2], we find that P{|X(s′)| ≤ ε , |X(s)| ≤ ε} is at most

Φ(s′ ∧ s)
∫
{|w|≤ε}

P {|w + Z3 − Z2| ≤ ε} dw

≤ (2ε)dΦ(s′ ∧ s)P {|Z3 − Z2| ≤ 2ε}

≤ 32d(2ε)2dΦ(s′ ∧ s)Φ(s′ − s).

(4.48)

The last inequality is a consequence of (2.11), because Z3−Z2 = X(s′)−X(s)
has the same distribution as X(r), where the jth coordinate of r is rj :=
|s′j − sj |. In other words, for all ε > 0 and s, s′ ∈ [1/R ,R]N ,

(4.49)
P {|X(s′)| ≤ ε , |X(s)| ≤ ε}

(2ε)2d
≤ A1 Φ(s′ − s),

where A1 := 32d Φ(1/R , . . . , 1/R).
Now consider t, t′ ∈ B and s, s′ ∈ [1/R ,R]N . For all ε > 0,

P
{
|S(t′)− s′| ≤ ε , |S(t)− s| ≤ ε

}
= P

{
|W1 + W2 − s′| ≤ ε , |W1 + W3 − s| ≤ ε

}
,

(4.50)

where W1 := S(t′ ∧ t), W2 := S(t′) −W1, and W3 := S(t) −W1. A little
thought shows that (W1 ,W2 ,W3) are independent. Moreover, the density
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function of W1 is ft′∧t. Therefore,

P
{
|S(t′)− s′| ≤ ε , |S(t)− s| ≤ ε

}
=
∫
RN

P
{
|z + W2 − s′| ≤ ε , |z + W3 − s| ≤ ε

}
ft′∧t(z) dz

≤ ft′∧t(0)
∫
RN

P
{
|z + W2 − s′| ≤ ε , |z + W3 − s| ≤ ε

}
dz.

(4.51)

This is because the density function ft′∧t is maximized at the origin. We
estimate further, using Fubini–Tonelli, as follows:

P
{
|S(t′)− s′| ≤ ε , |S(t)− s| ≤ ε

}
≤ ft′∧t(0)

∫
{|x|≤ε}

P
{
|x + W2 −W3 − (s′ − s)| ≤ ε

}
dx

≤ (2ε)Nft′∧t(0)P
{
|W2 −W3 − (s′ − s)| ≤ 2ε

}
= (2ε)Nft′∧t(0)P

{
|S(t′)−S(t)− (s′ − s)| ≤ 2ε

}
= (2ε)Nft′∧t(0)

∫
{|z−(s′−s)|≤2ε}

ft′−t(z) dz.

(4.52)

[It might help to confer with (4.16) at this point.]
Now,

ft′∧t(0) =
∫
RN

e−|t
′∧t|·‖ξ‖α

dξ =
A

|t′ ∧ t|M/α
,(4.53)

where A :=
∫
RN exp(−‖x‖α) dx is positive and finite. Since t, t′ ∈ B and

B is strictly away from the axes of RM
+ . Therefore, there exists a finite

constant A1—depending only on the distance between B and the axes of
RM

+ —such that∫
B

∫
B

P
{
|S(t′)− s′| ≤ ε , |S(t)− s| ≤ ε

}
dt′ dt

≤ A1(2ε)N

∫
{|z−(s′−s)|≤2ε}

∫
B

∫
B

ft′−t(z) dt′ dt dz

≤ A2(2ε)N

∫
{|z−(s′−s)|≤2ε}

(∫
B

ft(z) dt

)
dz,

(4.54)

where A2 is another finite constant that depends only on: (a) the distance
between B and the axes of RM

+ ; and (b) the distance between B and in-
finity; i.e., sup{|x| : x ∈ B}. We can find a constant A3—with the same
dependencies as A2—such that exp(−|t|) ≥ A−1

3 for all t ∈ B. This proves
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that
∫
B ft(z) dt ≤ A3υ(z) for all z ∈ RN . It follows that∫

B

∫
B

P
{
|S(t′)− s′| ≤ ε , |S(t)− s| ≤ ε

}
dt′ dt

≤ A2A3(2ε)N

∫
{|z−(s′−s)|≤2ε}

dz

|z|N−αM
.

(4.55)

See (4.19). From this and (4.20) we deduce that∫
B

∫
B

P
{
|S(t′)− s′| ≤ ε , |S(t)− s| ≤ ε

}
dt′ dt

≤ A′′A2A3(2ε)2N min
(

1
|s′ − s|N−αM

,
1

εN−αM

)
.

(4.56)

This and (4.49) together imply that

E
[∫

T

∫
T

K(s , s′) JB,µ
ε (ds)JB,µ

ε (ds′)
]

≤ A′′′
∫

T

∫
T

Φ(s− s′)K(s , s′)
max (|s′ − s|N−αM , εN−αM )

µ(ds) µ(ds′).
(4.57)

where A′′′ depends only on (α, d, N,M,R, B). This proposition follows. �

4.3. Proof of Theorem 3.2. Our proof of Theorem 3.2 rests on two further
results. Both are contributions to the potential theory of random fields, and
determine when a given time set F ⊂ RN

+ is “polar” simultaneously for the
range of S and for the level-sets of X.

Proposition 4.7. Choose and fix a compact set F ⊂ (0 ,∞)N . If N > αM

and I
(N−αM)
Φ (µ) < ∞ for some µ ∈ P(F ), then X−1({0})∩F ∩S(RM

+ ) 6= ∅
with positive probability.

Proof. Since F ⊂ (0 ,∞)N is compact, there exists R > 1 such that F ⊆ T =
[R−1, R]N . Suppose I

(N−αM)
Φ (µ) < ∞ for some Borel probability measure µ

on F . Then there exists a continuous function ρ : RN → [1,∞) such that
lims→s0 ρ(s) = ∞ for every s0 ∈ RN with at least one coordinate equals 0
and

(4.58)
∫∫

Φ(s− s′)ρ(s− s′)
|s− s′|N−αM

µ(dx) µ(dy) < ∞.

See Khoshnevisan and Xiao (2002, p. 73) for a construction of ρ.
For a fixed compact set B ⊂ (0 ,∞)M with non-empty interior, consider

the random measures {JB,µ
ε }ε>0 defined by (4.41). If JB,µ

ε (T ) > 0 then
certainly X−1(Uε) ∩ F ∩S(B) 6= ∅, where Uε := {x ∈ Rd : |x| ≤ ε}.
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It follows from Lemma 4.5, Proposition 4.6 and a second moment argu-
ment (Kahane, 1985, pp. 204–206) that there exists a subsequence {JB,µ

εn }
which converges weakly to a random measure ν such that

(4.59) P {ν(T ) > 0} ≥ a2
1

a2
> 0,

where

(4.60) a1 := inf
0<ε<1

E
[
JB,µ

ε (T )
]

> 0 and a2 := sup
ε>0

E
[(

JB,µ
ε (T )

)2]
< ∞.

Moreover,

E
[∫∫

ρ(s− s′) ν(ds) ν(ds′)
]

≤ A

∫∫
Φ(s− s′)ρ(s− s′)
|s− s′|N−αM

µ(dx) µ(dy).
(4.61)

This and (4.58) together imply that almost surely

(4.62) ν{s ∈ T : sj = a for some j } = 0 for all a ∈ R+.

Therefore, we have shown

inf
µ∈P(F )

I
(N−αM)
Φ (µ) < ∞

=⇒ P
{

X−1({0}) ∩ F ∩S(B) 6= ∅
}

> 0

=⇒ P
{

X−1({0}) ∩ F ∩S(RM
+ ) 6= ∅

}
> 0.

(4.63)

Now we need to make use of some earlier results of Khoshnevisan and
Xiao (2002; 2005) and Khoshnevisan et al. (2003) to remove the closure
signs in (4.63). First, since the density function of S(t) (t ∈ (0,∞)M ) is
strictly positive everywhere, a slight modification of the proof of Lemma 4.1
in Khoshnevisan and Xiao (2005, eq.’s 4.9–4.11) implies that for every Borel
set F̃ ⊆ RN ,

(4.64) F̃ ∩S(RM
+ ) = ∅ a.s. ⇐⇒ LN

(
F̃ 	S(RM

+ )
)

= 0 a.s.

On the other hand, Proposition 5.7 and the proof of Lemma 5.5 in Khosh-
nevisan et al. (2003) show that LN

(
F̃ 	S(RM

+ )
)

= 0 a.s. is equivalent to
CN−αM (F̃ ) = 0, where Cβ denotes the β-dimensional Bessel-Riesz capacity.

By applying the preceding facts to F̃ = X−1({0}) ∩ F , we conclude that
(4.63) implies that CN−αM (X−1({0}) ∩ F ) > 0 with positive probability.
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This and Theorem 4.4 of Khoshnevisan and Xiao (2005) together yield,

(4.65) P
{

X−1({0}) ∩ F ∩S(RM
+ ) 6= ∅

}
> 0.

We have proved the following:

(4.66) inf
µ∈P(F )

I
(N−αM)
Φ (µ) < ∞ ⇒ P

{
X−1({0}) ∩ F ∩S(RM

+ ) 6= ∅
}

> 0.

It remains to prove that (4.66) still holds when X−1({0}) is replaced
by X−1({0}). This can be done by proving that the random measure ν is
supported on X−1({0})∩F∩S(RM

+ ). For this purpose, it is sufficient to prove
that for every δ > 0, ν(D(δ)) = 0 a.s., where D(δ) := {s ∈ T : |X(s)| > δ}.
However, because of (4.62), the proof of the last statement is the same as
that in Khoshnevisan and Xiao (2002, p. 76). The proof of Proposition 4.7
is finished. �

Proposition 4.8. Choose and fix a compact set F ⊂ (0 ,∞)N . If N > αM

and I
(N−αM)
Φ (µ) = ∞ for all µ ∈ P(F ), then X−1({x}) ∩ F ∩S(RM

+ ) = ∅
almost surely, for all x ∈ Rd.

Remark 4.9. It follows from this proposition and Theorem 4.4 of Khosh-
nevisan and Xiao (2005) [or Theorem 4.1.1 of Khoshnevisan (2002, p. 423)]
that, under the above conditions, CN−αM

(
X−1({x})∩F

)
= 0 a.s., for every

x ∈ Rd. Hence dimH

(
X−1({x}) ∩ F

)
≤ N − αM a.s. This is the argument

for proving the upper bound in Theorem 3.2.

Proof. By compactness, F ⊆ [1/R ,R]N for some R > 1 large enough. We
fix this R throughout the proof. Also throughout, we assume that for all
µ ∈ P(F ),

(4.67) I
(N−αM)
Φ (µ) = ∞.

Let us assume that the collection of all (x , y) ∈ Rd ×RN for which the
following holds has positive (Ld × LN )-measure:

(4.68) P
{

X−1({x}) ∩ F ∩
(
y ⊕S

(
[0 , R]M

))
6= ∅

}
> 0,

where y ⊕ E := {y + z : z ∈ E} for all singletons y and all sets E. The
major portion of this proof is concerned with proving that (4.68) contradicts
the earlier assumption (4.67).
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Note that (4.68) is equivalent to the statement that for all (x , y) in a set
of positive (Ld × LN ) measure,

(4.69) (P−x ×Qy)
{

X−1({0}) ∩ F ∩S
(
[0 , R]M

)
6= ∅

}
> 0.

For all s ∈ [0 , R]N , t ∈ RM
+ , and ε > 0 consider the event,

(4.70) G(ε ; s , t) :=
{
|X(s)| ≤ ε

2
, |S(t)− s| ≤ ε

2

}
.

According to Proposition 4.4, for all s ∈ [0 , R]N , t ∈ RM
+ , ε > 0, and

µ ∈ P(F ), ∑
π⊆{1,...,N}

EP×Q [Jε(µ) | F π(s⊗ t)]

≥ Ae−|t|

(2ε)d

∫
P {|X(s′)− X(s)| ≤ ε}

max (|s′ − s|N−αM , εN−αM )
µ(ds′) · 1G(ε ;s ,t)

= Ae−|t|
∫

Φε(s′ − s)
max (|s′ − s|N−αM , εN−αM )

µ(ds′) · 1G(ε ;s ,t),

(4.71)

(PLd ×QLN )-almost everywhere. [This uses only the fact that given s′, s ∈
RN

+ we can find π ⊆ {1, . . . , N} such that s′ �π s.]
Fix ε > 0. We can find extended random variables σ(ε) ∈ (QN

+ ∩F )∪{∞}
and τ (ε) ∈ (QM

+ ∩ [0 , R]M ) ∪ {∞} such that:

(Σ1) σ(ε) = ∞ if and only if τ (ε) = ∞. These conditions occur, in turn,
if and only if

(4.72)
⋃

s∈QN
+∩F

t∈QM
+ ∩[0 ,R]N

G(ε ; s , t) = ∅;

(Σ2) On {σ(ε) 6= ∞}, |X(σ(ε))| ≤ ε/2 and |S(τ (ε))− σ(ε)| ≤ ε/2.

We can collect countably-many (PLd ×QLN )-null sets, lump them together,
and then apply (Σ1) and (Σ2) together with (4.71) to find that∑

π⊆{1,...,N}

sup
s∈QN

+

t∈QM
+

EP×Q [Jε(µ) | F π(s⊗ t)]

≥ Ae−|τ(ε)|
∫

Φε(s′ − σ(ε))
max (|s′ − σ(ε)|N−αM , εN−αM )

µ(ds′) · 1{σ(ε) 6=∞}

≥ Ae−MR

∫
Φε(s′ − σ(ε))

max (|s′ − σ(ε)|N−αM , εN−αM )
µ(ds′) · 1{σ(ε) 6=∞}

(4.73)

(PLd×QLN )-almost everywhere. This holds for all µ ∈ P(F ). Now we make
the special choice of µ, and replace it with µε,k, which we define shortly.
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First of all, we note that for all ε > 0 and k > 1,

(4.74) 0 < PLd {|X(0)| ≤ k} = (2k)d < ∞.

At the same time, thanks to (4.69), there exists k0 > 1 large enough so that
for all k > k0,

(PLd ×QLN ) {σ(ε) 6= ∞ , |X(0)| ≤ k}

≥ (PLd ×QLN )
{

X−1({0}) ∩ F ∩S
(
[0 , R]M

)
6= ∅ , |X(0)| ≤ k

}
> 0.

(4.75)

The preceding two displays together prove that for all ε > 0 and k > k0,
µε,k ∈ P(F ), where

(4.76) µε,k(Γ) :=
(PLd ×QLN ) {σ(ε) ∈ Γ , σ(ε) 6= ∞ , |X(0)| ≤ k}

(PLd ×QLN ) {σ(ε) 6= ∞ , |X(0)| ≤ k}
,

for all Borel sets Γ ⊆ RN
+ . Apply (4.73) with µ replaced by µε,k, for k > k0

and ε > 0 fixed, to find that ∑
π⊆{1,...,N}

sup
s∈QN

+

t∈QM
+

EP×Q [Jε(µε,k) | F π(s⊗ t)]


2

≥ A′
(∫

Φε(s′ − σ(ε))
max (|s′ − s|N−αM , εN−αM )

µε,k(ds′)
)2

× 1{σ(ε) 6=∞ , |X(0)|≤k},

(4.77)

(PLd ×QLN )-almost everywhere.
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According to (4.25),

EP×Q


 ∑

π⊆{1,...,N}

sup
s∈QN

+

t∈QM
+

EP×Q [Jε(µε,k) | F π(s⊗ t)]


2

≤ 2N
∑

π⊆{1,...,N}

EP×Q


 sup

s∈QN
+

t∈QM
+

EP×Q [Jε(µε,k) | F π(s⊗ t)]


2

≤ 8N+MEP×Q

[
(Jε(µε,k))

2
]

≤ A

∫∫
Φε(s′ − s)

max (|s′ − s|N−αM , εN−αM )
µε,k(ds′) µε,k(ds).

(4.78)

The first inequality is due to the elementary fact that for any sequence
{aπ, π ⊆ {1, . . . , N}} of real numbers,

(4.79)

 ∑
π⊆{1,...,N}

aπ

2

≤ 2N
∑

π⊆{1,...,N}

a2
π.

The second inequality follows from the Cauchy–Schwarz inequality, applied
to the σ-finite measure PLd×QLN . The final inequality is due to Proposition
4.2, and the constant A does not depend on (k , ε), nor on the particular
choice of µε,k. This estimates the left-hand side of (4.77). As for the right-
hand side, let us write

(4.80) Aε,k := {σ(ε) 6= ∞ , |X(0)| ≤ k} ,

for the sake of brevity. Then, we have

EP×Q

[(∫
Φε(s′ − σ(ε))

max (|s′ − s|N−αM , εN−αM )
µε,k(ds′)

)2

; Aε,k

]

=
∫ (∫

Φε(s′ − s)
max (|s′ − s|N−αM , εN−αM )

µε,k(ds′)
)2

µε,k(ds)

× (PLd ×QLN ) {σ(ε) 6= ∞ , |X(0)| ≤ k}

≥
(∫∫

Φε(s′ − s)
max (|s′ − s|N−αM , εN−αM )

µε,k(ds′) µε,k(ds)
)2

× (PLd ×QLN ) {σ(ε) 6= ∞ , |X(0)| ≤ k} ,

(4.81)
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thanks to the Cauchy–Schwarz inequality. Thus, (4.77), (4.78), and (4.81)
together imply that

(4.82) (PLd ×QLN ) {σ(ε) 6= ∞ , |X(0)| ≤ k} ≤ A′

W (ε , k)
,

where A′ does not depend on (k , ε), nor on the particular choice of µε,k, and

(4.83) W (ε , k) :=
∫∫

Φε(s′ − s)
max (|s′ − s|N−αM , εN−αM )

µε,k(ds′) µε,k(ds).

Now, {µε,k}ε>0 ,k>k0 is a collection of probability measures on F . According
to Prohorov’s theorem we can extract a weakly convergent subsequence and
a weak limit µ0 ∈ P(F ), as k → ∞ and ε → 0+. Without loss of too much
generality we denote the implied subsequences by k and ε as well. [No great
harm will come from this, but it is notationally simpler.] We can combine
Fatou’s lemma, (2.7), and (4.67) in order to deduce that

(4.84) lim
k→∞
ε→0

(PLd ×QLN ) {σ(ε) 6= ∞ , |X(0)| ≤ k} = 0.

Thanks to the monotone convergence theorem [applied to the σ-finite mea-
sure PLd ×QLN ] the left-hand side is precisely

(4.85)
∫
Rd

∫
RN

+

(P−x ×Qy)
{

X−1({0}) ∩ F ∩S ([0 , R]M ) 6= ∅
}

dx dy,

which, we just proved, is zero. According to eq. (5.9) of Khoshnevisan et al.
(2003), this proves also that

(4.86)
∫
Rd

∫
RN

+

(P−x ×Qy)
{

X−1({0}) ∩ F ∩S
(
[0 , R]M

)
6= ∅

}
dx dy

is zero. This contradicts (4.68). That is, we have proved that the condition
(4.67) implies that (4.68) fails to hold. It is the case that if (4.68) fails for
some y ∈ RN [with x held fixed] then it fails for all y ∈ RN (Khoshnevisan
et al., 2003, Proposition 6.2). This yields the following: For all y ∈ RN ,

(4.87)
∫
Rd

(P−x ×Qy)
{

X−1({0}) ∩ F ∩S
(
[0 , R]M

)
6= ∅

}
dx = 0.

Let R ↑ ∞ to find, via the monotone convergence theorem, that for all
y ∈ RN ,

(4.88)
∫
Rd

(P−x ×Qy)
{

X−1({0}) ∩ F ∩S
(
RM

+

)
6= ∅

}
dx = 0.
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Recall that F is a compact subset of [1/R ,R]N . Fix and choose an
arbitrary y ∈ (0 , 1/R)N , and note that

(P0 ×Qy)
{

X−1({0}) ∩S(RM
+ ) ∩ (F 	 y) 6= ∅

}
= P

{
∃r ∈ F 	 y : r ∈ S(RM

+ )	 y , 0 ∈ 〈X(r)〉
}

,
(4.89)

where A− y := {a− y : a ∈ A} for all sets A and points y, and

(4.90) 〈X(r)〉 =

 ∑
1≤j≤N

Xj(rjθ) : θ ∈ {+ ,−}

 .

For example, when N = 1, X is an ordinary Lévy process, and 〈X(r)〉 has
at most two elements: X(r) and X(r−) [they could be equal]. Or, when
N = 2, then the set 〈X(r)〉 contains up to four elements: X1(r1) + X2(r2),
X1(r1−) + X2(r2), X1(r1) + X2(r2−), and X1(r1−) + X2(r2−). [Some of
them are equal a.s.] In general, 〈X(r)〉 contains up to 2N elements.

Note that s � y for all s ∈ F . This is so only because F ⊆ [1/R ,R]N

and y ∈ (0 , 1/R)N . Therefore, we can apply the Markov property of Xj at
yj to find that for all x ∈ Rd,

(P0 ×Qy)
{

X−1({x}) ∩S(RM
+ ) ∩ (F 	 y) 6= ∅

}
= P

{
∃s ∈ F : s ∈ S(RM

+ ) , x ∈ 〈X(s− y)〉
}

=
∫
Rd

P
{
∃s ∈ F : s ∈ S(RM

+ ) , x + z ∈ 〈X(s)〉
}

py(z) dz

=
∫
Rd

P
{

X−1({x + z}) ∩S(RM
+ ) ∩ F 6= ∅

}
py(z) dz

=
∫
Rd

(P−w ×Q0)
{

X−1({0}) ∩S(RM
+ ) ∩ F 6= ∅

}
py(w − x) dw.

(4.91)

[It might help to recall that py is the density function of X(y).] We have
used the fact that with probability one, Xj(yj) = Xj(yj−) for all 1 ≤ j ≤ N ,
for any fixed y ∈ (0 , 1/R)N . The preceding, together with (4.88), proves
the following: (4.67) implies that for all y ∈ (0 , 1/R)N and x ∈ Rd,

(4.92) (P0 ×Qy)
{

X−1({x}) ∩S(RM
+ ) ∩ (F 	 y) 6= ∅

}
= 0.

Note that the “energy form” µ 7→ I
(q)
Φ (µ) is translation invariant. That

is, I
(q)
Φ (µ) = I

(q)
Φ (µ ◦ τa) for all a ∈ RN , where (µ ◦ τa)(A) := µ(A 	 a).
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Therefore, for all fixed y ∈ (0 , 1/R)N , (4.67) is equivalent to the following:

(4.93) I
(N−αM)
Φ (µ) = ∞ for all µ ∈ P(F ⊕ {y}),

where A⊕ y := {a + y : a ∈ A} for all sets A and points y. Equation (4.92)
is therefore implying that for all y ∈ (0 , 1/R)N and x ∈ Rd,

(4.94) (P0 ×Qy)
{

X−1({x}) ∩S(RM
+ ) ∩ F 6= ∅

}
= 0.

Khoshnevisan et al. (2003, Proposition 6.2) implies then that the preceding
holds for all y ∈ RM

+ . Apply this with y ≡ 0 to finish. �

We are ready to prove Theorem 3.2.

Proof of Theorem 3.2. We can assume without loss in generality that

(4.95) P
{
X−1({0}) ∩ F 6= ∅

}
> 0.

For there is nothing to prove otherwise. We recall that (4.95) is equivalent
to the analytic condition that there exists µ ∈ P(F ) such that the “energy
integral”

∫∫
Φ(s′ − s) µ(ds) µ(ds′) is finite (Khoshnevisan and Xiao, 2002).

Let S1,S2, . . . be i.i.d. copies of S, and define

(4.96) K :=
⋃

1≤j<∞
Sj(RM

+ ).

On one hand, according to the Borel–Cantelli lemma, the following is valid
for every non-random Borel set G ⊂ RN :

(4.97) P{K ∩G 6= ∅} =

1 if P{S(RM
+ ) ∩G 6= ∅} > 0,

0 if P{S(RM
+ ) ∩G 6= ∅} = 0.

On the other hand, whenever G 6= ∅,

(4.98) P
{
S(RM

+ ) ∩G 6= ∅
}

> 0 iff inf
σ∈P(G)

∫∫
σ(dx) σ(dy)
‖x− y‖N−αM

< ∞.

(Khoshnevisan, 2002, Theorem 4.1.1, p. 423). Therefore,

P
(
X−1({0}) ∩ F ∩K 6= ∅

∣∣ X−1({0}) ∩ F 6= ∅
)

= P
(
Λ
∣∣ X−1({0}) ∩ F 6= ∅

)
,

(4.99)

where Λ denotes the event that there exists some σ ∈ P(cl(X−1({0})) ∩ F )
such that

(4.100)
∫∫

σ(dx) σ(dy)
‖x− y‖N−αM

< ∞.
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Therefore, it follows from Propositions 4.7 and 4.8 that a.s. on the event
{X−1({0}) ∩ F 6= ∅},

inf
σ∈P(X−1({0})∩F )

∫∫
σ(dx) σ(dy)
‖x− y‖N−αM

< ∞ ⇐⇒

inf
µ∈P(F )

I
(N−αM)
Φ (µ) < ∞.

(4.101)

This is a statement only about the random field X, and does not concern
S. Therefore, the preceding holds for all integers M ≥ 1, and all reals
0 < α < 2. By adjusting the parameters α and M , we can ensure that
q := N − αM is any pre-described number in (0 , N). Therefore, outside a
single null set, we have the following: For all rational numbers 0 < q < N ,

(4.102) inf
σ∈P(X−1({0})∩F )

∫∫
σ(dx) σ(dy)
‖x− y‖q

< ∞ iff inf
µ∈P(F )

I
(q)
Φ (µ) < ∞,

a.s. on {X−1({0}) ∩ F 6= ∅}. By monotonicity, the preceding holds for all
0 < q < N , outside of a single null set. Frostman’s theorem (Khoshnevisan,
2002, Theorem 2.2.1, p. 521) then completes our proof. �

5. Proof of Theorem 1.1

Before commencing with our proof, we first develop a real-variable, tech-
nical lemma. We will say that Γ ⊂ Rn is an upright cube if and only if there
exist a ≺ b, both in Rn, such that

(5.1) Γ := [a1 , b1]× · · · × [an , bn].

Lemma 5.1. Let f : Rn 7→ [0 ,∞] be continuous and finite on Rn \ {0},
and assume that f is “quasi-monotone” in the following sense: There exists
0 < θ ≤ 1 such that f(x) ≥ θf(y) whenever 0 ≺ x ≺ y. Suppose, in addition,
that f(x) depends on x = (x1, . . . , xn) only through |x1| , . . . , |xn|. Then, for
all upright cubes Γ ⊂ (0 ,∞)n,

(5.2) Ln(Γ) inf
y∈Γ

∫
Γ

f(x− y) dx ≥
(

θ

2

)n ∫
Γ

∫
Γ

f(x− z) dx dz.

Remark 5.2. Lemma 5.1 is a result about symmetrization because it is equiv-
alent to the assertion that if U and V are i.i.d., both distributed uniformly
on Γ, then

(5.3) inf
y∈Γ

E [f(U − y)] ≥
(

θ

2

)n

E [f(U − V )] .
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Our proof will make it plain that the inequality is sharp in the sense that

(5.4) sup
y∈Γ

E [f(U − y)] ≤ 2nE [f(U − V )] .

This portion does not require f to be quasi-monotone.

Proof. First we suppose that n = 1, and Γ = [a , b], where 0 < a < b. For
all a ≤ y ≤ b,

(5.5)
∫ b

a
f(x− y) dx =

∫ y−a

0
f(z) dz +

∫ b−y

0
f(z) dz.

[This is so because f(x−y) = f(|x−y|).] Now we use the quasi-monotonicity
of f to find that

(5.6)
∫ b−y

0
f(z) dz ≥ θ

∫ b−y

0
f(z + y − a) dz = θ

∫ b−a

y−a
f(z) dz.

According to (5.5) then, for all a ≤ y ≤ b,

(5.7)
∫ b

a
f(x− y) dx ≥ θ

∫ b−a

0
f(z) dz.

But an argument based on symmetry shows readily that∫ b

a

∫ b

a
f(x− z) dx dz ≤ 2(b− a)

∫ b−a

0
f(z) dz

≤ 2(b− a)
θ

∫ b

a
f(x− y) dx,

(5.8)

for all a ≤ y ≤ b. Thus, the lemma follows in the case that n = 1. The
remainder follows by induction on n, using the self-evident fact that an
upright cube in Rn has the form Γ × [a , b] where Γ is an upright cube in
Rn−1. �

Proof of Theorem 1.1. We only need to prove (1.9), since (1.11) follows from
it and Lemma 3.1.

As before, we introduce S to be an M -parameter additive stable process in
RN , where N > αM . Later, we will choose α and M such that N−αM ↓ γ.

Choose and fix R > 1. According to Proposition 4.4, there exists a finite
constant A > 0 such that for all s ∈ [0 , R]N , t ∈ [0 , R]M , ε > 0, and every



36 D. KHOSHNEVISAN, N.-R. SHIEH, AND Y. XIAO

upright cube Γ ⊂ [0 , R]N ,∑
π⊆{1,...,N}

EP×Q [Jε(µΓ) | F π(s⊗ t)]

≥ A

∫
Φε(s′ − s)

max (|s′ − s|N−αM , εN−αM )
µΓ(ds′) · 1G(ε ;s ,t),

(5.9)

(PLd×QLN )-almost everywhere. [Recall that G(ε ; s , t) is defined in (4.70).]
Here, µΓ denotes the restriction of the Lebesgue measure LN to Γ, normal-
ized to have mass one. See also (4.71).

Define for all x ∈ RN ,

(5.10) f(x) :=
Φε(x)

max (|x|N−αM , εN−αM )
.

Evidently, f(x) depends on x ∈ RN only through |x1|, . . . , |xN |. Because
N > αM , (2.13) implies that f is quasi-monotone with θ = 16−d. Thus,
Lemma 5.1 can be used to deduce that there exists A′ such that

(5.11)
∑

π⊆{1,...,N}

EP×Q [Jε(µΓ) | F π(s⊗ t)] ≥ A′IΓ(ε) · 1G(ε ;s ,t),

(PLd ×QLN )-almost everywhere, where

(5.12) IΓ(ε) :=
∫∫

Φε(s′ − s′′)
max (|s′ − s′′|N−αM , εN−αM )

µΓ(ds′) µΓ(ds′′).

We emphasize that A′ does not depend on ε > 0, s ∈ [0 , R]N , or t ∈ [0 , R]M .
The regularity of the paths of X and S implies that

(5.13) sup
s∈[0,R]N∩QN

t∈[0,R]M∩QM

1G(ε ;s ,t) ≥ 1n
X−1({0})∩Γ∩S([0 ,R]M ) 6=∅

o.

Therefore, ∑
π⊆{1,...,N}

sup
s∈[0,R]N∩QN

t∈[0,R]M∩QM

EP×Q [Jε(µΓ) | F π(s⊗ t)]

≥ A′IΓ(ε) · 1n
X−1({0})∩Γ∩S([0 ,R]M ) 6=∅

o,

(5.14)

(PLd ×QLN )-almost everywhere.
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We square both sides of (5.14), and then integrate [dPLd × dQLN ]. By
way of (4.79), we arrive at the following:

∑
π⊆{1,...,N}

EP×Q

 sup
s∈[0,R]N∩QN

t∈[0,R]M∩QM

|EP×Q [Jε(µΓ) | F π(s⊗ t)]|2


≥ A′′ [IΓ(ε)]2 · (PLd ×QLN )

{
X−1({0}) ∩ Γ ∩S([0 , R]M ) 6= ∅

}
,

(5.15)

where A′′ does not depend on ε > 0. Thanks to (4.38) and Proposition 4.2,
the left-hand side is at most

(5.16) 4N+M
∑

π⊆{1,...,N}

EP×Q

[
|Jε(µΓ)|2

]
≤ A′′′IΓ(ε),

where A′′′ does not depend on ε > 0. This proves then that

(PLd ×QLN )
{

X−1({0}) ∩ Γ ∩S([0 , R]M ) 6= ∅
}
≤ A∗
IΓ(ε)

,(5.17)

where A∗ does not depend on ε > 0. According to Fatou’s lemma,

(5.18) lim inf
ε→0+

IΓ(ε) ≥ 1

(LN (Γ))2
I

(N−αM)
Φ (µΓ),

which is manifestly infinite if N −αM > γ; see (3.2). Thus, we have proved
that if N − αM > γ, then

(5.19)
∫
Rd

∫
RN

+

(P−x ×Qy)
{

X−1({0}) ∩ Γ ∩S([0 , R]M ) 6= ∅
}

dx dy

is zero. Now we argue precisely as we did in the proof of Theorem 3.2, and
find that if Γ is an upright cube in [1/R ,R]N , then for all y ∈ (0 , 1/R)N ,

(5.20) (P0 ×Qy)
{

X−1({0}) ∩ Γ ∩S(RM
+ ) 6= ∅

}
= 0,

as long as N − αM > γ. See the derivation of (4.94) from (4.85). Hence
we have CN−αM

(
X−1({0}) ∩ Γ

)
= 0 P-a.s. Since N − αM can be arbitrary

close to γ, this proves that a.s. [P],

(5.21) dimH

(
X−1({0}) ∩ Γ

)
≤ γ.

Because the preceding is valid a.s. for all R > 1 and all upright cubes
Γ ⊆ [1/R ,R]N , we find that

(5.22) dimH X−1({0}) ≤ γ a.s.
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On the other hand, according to Theorem 3.2, if R > 1 and Γ is any
upright cube in [1/R ,R]N , then a.s. on {X−1({0}) ∩ Γ 6= ∅},

(5.23) dimH

(
X−1({0}) ∩ Γ

)
≥ sup

{
0 < q < N : I

(q)
Φ (µΓ) < ∞

}
,

and we have seen already that the right-hand side coincides with γ. Let Γ
increase and exhaust RN

+ to complete the proof. �
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Benjamini, Itai, Olle Häggström, Yuval Peres, and Jeffrey E. Steif. 2003. Which properties

of a random sequence are dynamically sensitive? , Ann. Probab. 31(1), 1–34.
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