
Intermittency and chaos for a non-linear

stochastic wave equation in dimension 1

Daniel Conus∗ Mathew Joseph† Davar Khoshnevisan‡

Shang-Yuan Shiu§

July 12, 2012

This paper is dedicated to Professor David Nualart, whose scientific
innovations have influenced us greatly.

Abstract
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1 Introduction

Let us consider the following hyperbolic stochastic PDE of the wave type

(�u)(t , x) = σ(u(t , x))Ẇ (t , x) (t > 0, x ∈ R). (1.1)

Here, � denotes the [massless] wave operator

� :=
∂2

∂t2
− κ2 ∂

2

∂x2
,

σ : R→ R is a globally Lipschitz function with Lipschitz constant

Lipσ := sup
−∞<x<y<∞

|σ(y)− σ(x)|
y − x

,

Ẇ denotes space-time white noise, and κ > 0 is a fixed constant. The initial
function and the initial velocity are denoted respectively by u0 : R → R and
v0 : R → R, and we might refer to the pair (u0 , v0) as the “initial conditions”
of the stochastic wave equation (1.1). [The terminology is standard in PDEs,
and so we use it freely.] When the initial value x 7→ u0(x) is assumed to be a
constant, we write the constant as u0; similar remarks apply to v0. In those
cases, we state quite clearly that u0 and v0 are constants in order to avoid
ambiguities.

The stochastic wave equation (1.1) has been studied extensively by Carmona
and Nualart [9] and Walsh [31]. Among other things, these references contain the
theorem that the random wave equation (1.1) has a unique continuous solution
u as long as

u0 and v0 are bounded and measurable functions,

an assumption that is made tacitly throughout this paper. All of this is about
the wave equation in dimension 1 + 1 (that is one-dimensional time and one-
dimensional space). There are also some existence theorems in the more delicate
dimensions 1+d (that is one-dimensional time and d-dimensional space), where
d > 1 and the 1-D wave operator � is replaced by the d-dimensional wave
operator ∂2

tt − κ2∆, where ∆ denotes the Laplacian on Rd; see Conus and
Dalang [11], Dalang [16], Dalang and Frangos [17], and Dalang and Mueller
[19].

Parabolic counterparts to the random hyperbolic equation (1.1) are well-
studied stochastic PDEs. For example, when σ(u) = u and the wave operator
� is replaced by the heat operator ∂t − κ2∂2

xx, the resulting stochastic PDE
becomes a continuous parabolic Anderson model [8] and has connections to the
study of random polymer measures and the KPZ equation [1, 2, 22, 25, 26, 28],
and numerous other problems of mathematical physics and theoretical chemistry
[8, Introduction]. The mentioned references contain a great deal of further
information about these sorts of parabolic SPDEs.
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From a purely-mathematical point of view, (1.1) is the hyperbolic counter-
part to the stochastic heat equation, and in particular σ(u) = const · u ought
to be a hyperbolic counterpart to the parabolic Anderson model. From a more
pragmatic point of view, we believe that the analysis of the present hyper-
bolic equations might one day also lead to a better understanding of numerical-
analysis problems that arise when trying to solve families of chaotic hyperbolic
stochastic PDEs.

It is well-known, and easy to verify directly, that the Green function for the
wave operator � is

Γt(x) := 1
21[−κt,κt](x) for t > 0 and x ∈ R. (1.2)

According to general theory [9, 16, 31], the stochastic wave equation (1.1) has
an a.s.-unique continuous solution {u(t , x)}t>0,x∈R which has the following mild
formulation:

u(t , x) = U0(t , x) + V0(t , x) +

∫
(0,t)×R

Γt−s(y − x)σ(u(s , y))W (dsdy). (1.3)

The integral is understood to be a stochastic integral in the sense of Walsh [31,
Chapter 2], and:

U0(t , x) :=
u0(x+ κt) + u0(x− κt)

2
; V0(t , x) :=

1

2

∫ x+κt

x−κt
v0(y) dy. (1.4)

In the special case that u0 and v0 are constants, the preceding simplifies to

u(t , x) = u0 + v0κt+ 1
2

∫
(0,t)×(x−κt,x+κt)

σ(u(s , y))W (dsdy). (1.5)

Recall [8, 22] that the process {u(t , x)}t>0,x∈R is said to be weakly inter-
mittent if the upper moment Lyapunov exponents,

γ̄(p) := lim sup
t→∞

1

t
sup
x∈R

log E (|u(t , x)|p) (1 6 p <∞), (1.6)

have the property that

γ̄(2) > 0 and γ̄(p) <∞ for every p ∈ [2 ,∞). (1.7)

Various questions from theoretical physics [28] have motivated the study
of intermittency for the stochastic heat equation. A paper [22] by Foondun
and Khoshnevisan introduces methods for the intermittency analysis of fully-
nonlinear parabolic stochastic PDEs. That paper also contains an extensive
bibliography, with pointers to the large literature on the subject.

As far as we know, far less is known about the intermittent structure of
the stochastic wave equation. In fact, we are aware only of two bodies of re-
search: There is the recent work of Dalang and Mueller [20] that establishes
intermittency for (1.1) in dimension 1 + 3 (1 for time and 3 for space), where:
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(1) σ(u) = λu (the hyperbolic Anderson model) for some λ > 0; (2) Ẇ is
replaced by a generalized Gaussian field that is white in its time and has cor-
relations in its space variable; and (iii) The 1-D wave operator in dimension is
replaced by the 3-D wave operator. We are aware also of a recent paper by two
of the present authors [15], where the solution to (1.1) is shown to be intermit-
tent in the case that the initial function u0 and the initial velocity v0 are both
sufficiently-smooth functions of compact support and Ẇ is a space-time white
noise. The latter paper contains also detailed results on the geometry of the
peaks of the solution.

The purpose of the present paper is to study intermittency and chaotic prop-
erties of the fully-nonlinear stochastic wave equation (1.1). We follow mainly
the exposition style of Foondun and Khoshnevisan [22] for our results on weak
intermittency: We will show that (1.7) holds provided that σ is a function of
truly-linear growth (Theorems 3.1 and 3.3). We will also illustrate that this con-
dition is somehow necessary by proving that weak intermittency fails to hold
when σ is bounded (Theorem 3.4).

Regarding the chaotic properties of the solution u to (1.1), we follow mainly
the exposition style of Conus, Joseph, and Khoshnevisan [12] who establish
precise estimates on the asymptotic behavior of sup|x|6R u(t , x), as R→∞ for
fixed t > 0, for the parabolic counterpart to (1.1). In the present hyperbolic case,
we first prove that the solution to (1.1) satisfies supx∈R |u(t , x)| <∞ a.s. for all
t > 0, if that the initial function and the initial velocity are functions of compact
support (Theorem 4.1). Then we return to the case of central importance to
this paper, and prove that supx∈R |u(t , x)| = ∞ a.s. for all t > 0 when u0

and v0 are positive constants. Also, we obtain some quantitative estimates on
the behavior of the supremum under varying assumptions on the nonlinearity σ
(Theorems 7.1 and 7.2).

When consider in conjunction, the results of this paper imply that the solu-
tion to (1.1) is chaotic in the sense that slightly-different initial conditions can
lead to drastically-different qualitative behaviors for the solution. This phe-
nomenon is entirely due to the presence of noise in the system (1.1), and does
not arise in typical deterministic wave equations.

This paper might be of interest for two main reasons: First of all, we obtain
estimates on the supremum of the solution to hyperbolic stochastic PDEs, and
use them to show that the solution can be chaotic. We believe that these
estimates might have other uses and are worthy of record in their own right.
Secondly, we shall see that the analysis of the 1-D wave equation is simplified
by the fact that fundamental solution Γ of the wave operator �—see (1.2)—is
a bounded function of compact support. As such, one can also view the present
paper, in part, as a gentle introduction to the methods of the more-or-less
companion paper [12].

Let us conclude the Introduction with an outline of the paper. Section 3
below mainly recalls intermittency results for (1.1). These facts are mostly
known in the folklore, but we document them here, in a systematic manner,
for what appears to be the first time. The reader who is familiar with [22] will
undoubtedly recognize some of the arguments of §3.
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Section 4 is devoted to the study of the case where the initial value and
velocity have compact support [and hence are not constants]. We will show
that in such cases, supx∈R |u(t , x)| < ∞ a.s. for all t > 0. Sections 5 and
6 contain novel tail-probability estimates that depend on various forms of the
nonlinearity σ. These estimates are of independent interest. Here, we use
them in order to establish various localization properties. Finally, in Section
7, we combine our earlier estimates and use them to state and prove the main
results of the present paper about the asymptotic behavior of sup|x|6R |u(t , x)|
as R→∞. More specifically, we prove that if u0 is a positive constant, v0 is a
non-negative constant, and infz∈R |σ(z)| > 0, then the peaks of the solution in
x ∈ [−R ,R] grow at least as (κ logR)1/3. More precisely, we prove that there
exists an almost-surely finite random random variable R0 > 0 and a positive
and finite constant a such that

sup
|x|6R

|u(t , x)|3 > aκ logR for all R > R0.

Furthermore, we will prove that a does not depend on κ, as long as κ is suffi-
ciently small; this assertion measures the effect of the noise on the intermittency
properties of u. If 0 < inf σ 6 supσ < ∞, then we prove that the preceding
can be improved to the existence of an a.s.-finite R1 together with positive and
finite constants b and c such that

bκ logR 6 sup
|x|6R

|u(t , x)|2 6 cκ logR for all R > R1.

Acknowledgements. An anonymous referee read this paper quite carefully
and made a number of critical suggestions and corrections that have improved
the paper. We thank him or her wholeheartedly.

2 Preliminaries

In this section we introduce some notation and preliminary results that are
used throughout the paper. For a random variable Z, we denote by ‖Z‖p :=
{E(|Z|p)}1/p the standard norm on Lp(Ω) (1 6 p <∞).

On several occasions we apply the following form of the Burkholder–Davis–
Gundy inequality [4, 5, 6] for continuous L2(Ω) martingales: If {Xt}t>0 is a
continuous L2(Ω) martingale with running maximum X∗t := sups∈[0,t] |Xs| and
quadratic variation process 〈X〉, then for all p ∈ [2 ,∞) and t ∈ (0 ,∞),

‖X∗t ‖p 6 (4p)1/2 · ‖〈X〉t‖1/2p/2 . (2.1)

The multiplicative prefactor 4p is the asymptotically-optimal bound, due to
Carlen and Kree [7], for the sharp constant in the Burkholder–Davis–Gundy
inequality that was discovered by Davis [21].
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Given numbers p ∈ [1 ,∞) and β ∈ (0 ,∞), and given a space-time random
field {Z(t , x)}t>0,x∈R, let us recall the following norm [22]:

‖Z‖p,β :=

{
sup
t>0

sup
x∈R

e−βtE (|Z(t , x)|p)
}1/p

. (2.2)

We also use the following norm [12]:

Np,β(Z) :=

(
sup
t>0

sup
x∈R

e−βt‖Z‖2p
)1/2

. (2.3)

Clearly, the two norms are related via the elementary relations,

Np,β(Z) = ‖Z‖p,pβ/2 and ‖Z‖p,β = Np,2β/p(Z). (2.4)

However, the difference between the norms becomes relevant to us when we need
to keep track of some constants.

Finally, we mention the following elementary formulas about the fundamen-
tal solution Γ to the wave operator �: For all t, β > 0;

‖Γt‖2L2(R) =
κt

2
,

∫ t

0

‖Γs‖2L2(R) ds =
κt2

4
,

∫ ∞
0

e−βs‖Γs‖2L2(R) ds =
κ

2β2
. (2.5)

3 Intermittency

We are ready to state and prove the intermittency of the solution to (1.1). Our
methods follow closely those of Foondun and Khoshnevisan [22], for the heat
equation, and Conus and Khoshnevisan [15], for the wave equation.

In order to establish weak intermittency for the solution to (1.1) we need to
obtain two different results: (1) We need to derive a finite upper bound for γ̄(p)
for every p > 2; and (2) We need to establish a positive lower bound for γ̄(2).
It might help to recall that the Lyapunov exponents γ̄(p) were defined in (1.6).

Theorem 3.1. If u0 and v0 are both bounded and measurable functions, then

γ̄(p) 6 p3/2Lipσ
√
κ/2 for all p ∈ [2 ,∞).

Remark 3.2. Since the optimal constant in the Burkholder-Davis-Gundy L2

inequality is 1, an inspection of the proof of Theorem 3.1 yields the improved
bound γ̄(2) 6 Lipσ

√
κ/2 in the case that p = 2.

For our next result we define

Lσ := inf
x 6=0
|σ(x)/x| . (3.1)

Theorem 3.3. If u0 and v0 are bounded and measurable, infx∈R u0(x) > 0,
v0 > 0 pointwise, and Lσ > 0, then γ̄(2) > Lσ

√
κ/2.
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Theorems 3.1 and 3.3 are similar to Theorems 2.1 and 2.7 of [22] for the
heat equation. Together, they prove that the solution u is weakly intermittent
provided that u0 is bounded away from 0, v0 > 0 and σ has linear growth.
Intermittency in the case where u0 and v0 have compact support has been
proved in [15] (see also Section 4). Theorems 3.1 and 3.3 illustrate that the wave
equation exhibits a similar qualitative behavior as the heat equation. However,
the quantitative behavior is different: Here, γ̄(p) is of order p3/2, whereas it is
of order p3 for the stochastic heat equation.

The linear growth of σ is somehow necessary for intermittency as the follow-
ing result suggests.

Theorem 3.4. If u0, v0, and σ are all bounded and measurable functions, then

E (|u(t , x)|p) = O(tp) as t→∞, for all p ∈ [2 ,∞).

This estimate is sharp when u0(x) > 0 for all x ∈ R, and infz∈R v0(z) > 0.

The preceding should be compared to Theorem 2.3 of [22]. There it was
shown that if u were replaced by the solution to the stochastic heat equation,
then there is the much smaller bound E(|u(t , x)|p) = o(tp/2), valid under bound-
edness assumptions on u0 and σ.

Analogues of the preceding three theorems above are known in the parabolic
setting [22, 15]. Therefore, we will describe only outlines of their proof.

We will use a stochastic Young-type inequality for stochastic convolutions
(Proposition 3.5 below), which is a ready consequence of [15, Proposition 2.5].

For a random-field {Z(t , x)}t>0,x∈R, we denote by Γ∗ZẆ the random-field
defined by

(Γ ∗ ZẆ )(t , x) =

∫
(0,t)×R

Γt−s(y − x)Z(s , y)W (dsdy),

provided that the stochastic integral is well-defined in the sense of Walsh [31].

Proposition 3.5. For all β > 0 and p ∈ (2 ,∞),

‖Γ ∗ ZẆ‖2,β 6
κ1/2

β
√

2
‖Z‖2,β and ‖Γ ∗ ZẆ‖p,β 6

p3/2κ1/2

β
√

2
‖Z‖p,β .

Proof. We appeal to (2.1) in order to deduce that

E
(
|(Γ ∗ ZẆ )(t , x)|p

)
(3.2)

6 (4p)p/2E

[(∫ t

0

ds

∫ ∞
−∞

dy Γ2
t−s(y − x)|Z(s , y)|2

)p/2]

6 (4p)p/2
(∫ t

0

ds

∫ ∞
−∞

dy Γ2
t−s(y − x) {E (|Z(s , y)|p)}2/p

)p/2
;
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the last inequality is justified by Minkowski’s inequality. Next we raise both
sides of the preceding inequality to the power 2/p, and then multiply both sides
by e−βt in order to obtain[
Np,β(Γ ∗ ZẆ )

]2
6 4p

∫ ∞
0

ds

∫ ∞
−∞

dy e−β(t−s)Γ2
t−s(y − x)e−βs {E (|Z(s , y)|p)}2/p

6 4p [Np,β(Z)]
2
∫ ∞

0

ds

∫ ∞
−∞

dy e−βs[Γs(y)]2

=
2pκ

β2
[Np,β(Z)]

2
,

thanks to (2.5). The relation (2.4) concludes the proof in the case that p > 2.
When p = 2 is handled the same way, but the prefactor (4p)p/2 = 8 of (3.2) can
be improved to one, owing to the L2(Ω) isometry of Walsh integrals.

We are now ready to prove the main results of this section.

Proof of Theorem 3.1. Since u0 and v0 are bounded, we clearly have

sup
x∈R
|U0(t , x) + V0(t , x)| 6 const · (1 + t) (t > 0),

whence

‖U0 + V0‖p,β =

(
sup
t>0

e−βt sup
x∈R
|U0(t , x) + V0(t , x)|p

)1/p

6 K, (3.3)

where K := Kp,β is a positive and finite constant that depends only on p and
β.

We apply (1.3), (3.3), and Proposition 3.5, together with the fact that
|σ(u)| 6 |σ(0)| + Lipσ|u|, in order to conclude that for all β ∈ (0 ,∞) and
p ∈ [2 ,∞),

‖u‖p,β 6 K +
p3/2κ1/2

β
√

2
(|σ(0)|+ Lipσ‖u‖p,β) . (3.4)

This inequality implies that ‖u‖p,β <∞, provided that β > p3/2Lipσ
√
κ/2, and

Theorem 3.1 follows.

Proof of Theorem 3.3. We need to follow the proof of Theorem 2.7 of [22] closely,
and so merely recall the necessary steps. It suffices to prove that∫ ∞

0

e−βtE
(
|u(t , x)|2

)
dt =∞ when β 6 Lσ

√
κ/2. (3.5)

Theorem 3.3 will follow from this. This can be seen as follows: By the very
definition of γ̄(2), we know that for all fixed ε > 0 there exists a finite constant
tε > 1 such that E(|u(t , x)|2) 6 tε exp((γ̄(2) + ε)t) whenever t > tε. Conse-
quently, ∫ ∞

tε

e−βtE(|u(t , x)|2) dt 6 tε

∫ ∞
tε

e−(β−γ̄(2)−ε)t dt.
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We may conclude from this and (3.5) that γ̄(2) > Lσ
√
κ/2 − ε, and this com-

pletes the proof because ε > 0 were arbitrary. It remains to verify (3.5).
A direct computation, using the L2 isometry that defines Walsh’s stochastic

integrals, shows us that

E
(
|u(t , x)|2

)
= |U0(t , x) + V0(t , x)|2 +

∫ t

0

ds

∫ ∞
−∞

dy Γ2
t−s(y − x)E

(
|σ(u(s , y)|2

)
>
C

β
+ L2

σ ·
∫ t

0

ds

∫ ∞
−∞

dy Γ2
t−s(y − x)E

(
|u(s , y)|2

)
,

(3.6)

with C := infz∈R[u0(z)]2. Define

Mβ(x) :=

∫ ∞
0

e−βtE
(
|u(t , x)|2

)
dt, Hβ(x) :=

∫ ∞
0

e−βt[Γt(x)]2 dt.

We can rewrite (3.6) in terms of Mβ and Hβ as follows:

Mβ(t) >
C

β
+ L2

σ(Mβ ∗Hβ)(x);

where ∗ denotes spatial convolution. The preceding is a renewal inequation, and
can be solved directly: We set

(Hf)(x) := L2
σ(Hβ ∗ f)(x) (x ∈ R),

for every non-negative measurable function f : R→ R+, and deduce the func-
tional recursion Mβ > C/β + (H ∗Mβ), whence

Mβ(x) > β−1
∞∑
n=0

(HnC)(x),

where we have identified the constant C with the function C(x) := C, as usual.
Now (HC)(x) = CL2

σ

∫∞
0

e−βt‖Γt‖2L2(R) dt = C[L2
σκ/(2β

2)]; see (2.5). We can

iterate this computation to see that (HnC)(x) = C[L2
σκ/(2β

2)]n for all n > 0,
and hence

Mβ(x) > Cβ−1
∞∑
n=0

(
L2
σκ

2β2

)n
.

The preceding infinite series is equal to +∞ if and only if β 6 Lσ
√
κ/2. This

establishes (3.5), and concludes the proof of Theorem 3.3.

Proof of Theorem 3.4. Because u0 and v0 are bounded, |U0(t , x) + V0(t , x)| =
O(t) as t → ∞, uniformly in x ∈ R. Therefore, the boundedness of σ, (1.3),
(2.1), (2.5), and (3.3) together imply that

‖u(t , x)‖p 6 O(t) + sup
x∈R
|σ(x)|

(
4p

∫ t

0

‖Γs‖2L2(R) ds

)1/2

6 O(t) +
√
pκ sup

x∈R
|σ(x)|t = O(t) (t→∞). (3.7)
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The main assertion of Theorem 3.4 follows. In order to establish the remaining
claim about the sharpness of the estimator, suppose u0(x) > 0 and infz∈R v0(y) >
0, and consider p = 2. Thanks to (3.6), ‖u(t , x)‖2 > V0(t , x) > infz∈R v0(z) ·κt.
The claim follows from this and Jensen’s inequality.

There are many variations of the sharpness portion of Theorem 3.4. Let us
conclude this section with one such variation.

Lemma 3.6. If σ(u) = λ is a constant, and u0 and v0 are both constants, then

lim
t→∞

1

t2
E
(
|u(t , x)|2

)
= (v0κ)2 +

λ2κ

4
for all x ∈ R.

Proof. In accord with (2.5), the second moment of
∫

(0,t)×R Γt−s(y−x)W (dsdy)

is κt2/4. Therefore, (1.5) implies that

E
(
|u(t , x)|2

)
= (u0 + v0κt)

2 +
λ2κt2

4
=

{
(v0κ)2 +

λ2κ

4
+ o(1)

}
t2,

as t→∞.

4 Compact-support initial data

This section is devoted to the study of the behavior of the [spatial] supremum
supx∈R |u(t , x)| of the solution to (1.1) when t is fixed. Throughout this section
we assume the following:

The initial function u0 and initial velocity v0 have compact support. (4.1)

We follow the ideas of Foondun and Khoshnevisan [23]. However, the present
hyperbolic setting lends itself to significant simplifications that arise mainly
because the Green’s function has the property that Γt has compact support at
every fixed time t > 0.

Throughout this section, we assume also that

σ(0) = 0 and Lσ > 0, (4.2)

where Lσ was defined in (3.1). Since (1.1) has a unique solution, the preceding
conditions imply that if u0(x) ≡ 0, then ut(x) ≡ 0 for all t > 0.

The idea, borrowed from [23], is to compare supx∈R |u(t , x)| with the L2(R)-
norm of the infinite-dimensional stochastic process {u(t , ·)}t>0. This compari-
son will lead to the result, since it turns out that the compact-support property
of u0 and v0 will lead us to show that u(t , ·) also has compact support. This
compact-support property does not hold for parabolic variants of (1.1); see
Mueller [29].

Next is the main result of this section.
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Theorem 4.1. Suppose Lσ > 0, σ(0) = 0, and u0 is Hölder-continuous with
Hölder index > 1/2. Suppose also that u0 and v0 are non-negative functions,
both supported compactly in [−K ,K] for some K > 0. Then, u(t , ·) ∈ L2(R)
a.s. for all t > 0 and

Lσ

√
κ

2
6 lim sup

t→∞

1

t
sup
x∈R

log E
(
|u(t , x)|2

)
6 lim sup

t→∞

1

t
log E

(
sup
x∈R
|u(t , x)|2

)
6 Lipσ

√
κ

2
.

(4.3)

Remark 4.2. Theorem 4.1 implies that supx∈R |u(t , x)| <∞ a.s. for all t > 0
provided that the initial function and the initial velocity both have compact sup-
port [and are mildly smooth]. We are going to show in §7 that supx∈R |u(t , x)| =
∞ a.s. if the initial function and velocity are non-zero constants, even if those
constants are quite close to zero. This discrepancy suggests strongly that the
stochastic wave equation (1.1) is chaotic [two mildly-different initial conditions
can lead to a drastically-different solutions]. This form of chaos is due entirely
to the presence of the noise Ẇ in (1.1).

Before we turn to the proof of Theorem 4.1, we will need a few intermediary
results.

Proposition 4.3. Suppose that Lσ > 0, σ(0) = 0, and that u0 6≡ 0 and v0 are
non-negative functions in L2(R). Then, u(t , ·) ∈ L2(R) a.s for all t > 0, and

Lσ

√
κ

2
6 lim sup

t→∞

1

t
log E

(
‖u(t , ·)‖2L2(R)

)
6 Lipσ

√
κ

2
(4.4)

Proof. The proof resembles that of Theorem 2.1 of [22]. The latter is valid for
parabolic equations; therefore, we show how one can adapt that argument to
the present hyperbolic setting.

Since u0 > 0, it follows that

1

2
‖u0‖2L2(R) 6 ‖U0(t , ·)‖2L2(R) 6 ‖u0‖2L2(R).

Moreover, since v0 > 0, we have

0 6 ‖V0(t , ·)‖2L2(R) =

∫ ∞
−∞

dx

(∫ κt

−κt
dy v0(y + x)

)2

6 4κ2t2 ‖v0‖2L2(R),

thanks to the Cauchy–Schwarz inequality.
Now, we deduce from (1.3) that

E
(
‖u(t , ·)‖2L2(R)

)
> ‖U0(t , ·)‖2L2(R) + ‖V0(t , ·)‖2L2(R) + L2

σ

∫ t

0

ds E
(
‖u(s , ·)‖2L2(R)

)
‖Γt−s‖2L2(R)

>
1

2
‖u0‖2L2(R) + L2

σ

∫ t

0

ds E
(
‖u(s , ·)‖2L2(R)

)
‖Γt−s‖2L2(R). (4.5)

11



Define

U(λ) :=

∫ ∞
0

e−λtE
(
‖u(t , ·)‖2L2(R)

)
dt. (4.6)

In this way, we can conclude from (2.5) and (4.5) that the non-negative function
U that was just defined satisfies the recursive inequality,

U(λ) >
‖u0‖2L2(R)

2λ
+
κL2

σ

2λ2
U(λ). (4.7)

Since u0 6≡ 0, the first term on the right-hand side of (4.7) is strictly positive,
whence it follows that whenever λ 6 Lσ

√
κ/2 , we have U(λ) =∞. This proves

the first asserted inequality in Proposition 4.3.
As regards the other bound, we consider the Picard iteration scheme that

defines u from (1.3). Namely, we set u0(t , x) := 0 and then define iteratively

un+1(t , x)

= U0(t , x) + V0(t , x) +

∫
(0,t)×R

Γt−s(y − x)σ(un(s , y))W (dsdy).
(4.8)

Next we may proceed, as we did for (4.5) but develop upper bounds in place of
lower bounds, in order to deduce the following:

E
(
‖un+1(t , ·)‖2L2(R)

)
(4.9)

6 2‖U0(t , ·)‖2L2(R) + 2‖V0(t , ·)‖2L2(R) + Lip2
σ

∫ t

0

ds E
(
‖un(s , ·)‖2L2(R)

)
‖Γt−s‖2L2(R)

6 2‖u0‖2L2(R) + 8κ2t2 ‖v0‖2L2(R) + Lip2
σ

∫ t

0

ds E
(
‖un(s , ·)‖2L2(R)

)
‖Γt−s‖2L2(R).

In order to analyze this inequality let us define

Mn(λ) := sup
t>0

[
e−λtE

(
‖un(t , ·)‖2L2(R)

)]
(λ > 0, n = 1, 1, . . .).

In accord with (4.9) and (2.5), the Mj(λ)’s satisfy the recursive inequality

Mn+1(λ) 6 2‖u0‖2L2(R) +
8κ2

λ2
‖v0‖2L2(R) +

κLip2
σ

2λ2
Mn(λ).

It follows readily from this recursion that if λ > Lipσ
√
κ/2, then supn>0Mn(λ) <

∞. Finally, we take the limit as n→∞ in order to deduce the lower bound in
Proposition 4.3.

Among other things, Proposition 4.3 proves the first claim, made in Theorem
4.1, that u(t , ·) ∈ L2(R) almost surely for every t > 0.

We plan to deduce Theorem 4.1 from Proposition 4.3 by showing that
‖u(t , ·)‖L2(R) and supx∈R |u(t , x)| are “comparable.”

We start by a “compact-support property” of the solution u, which is as-
sociated strictly to the hyperbolicity of the wave operator. As such, our next
result should be contrasted with Lemma 3.3 of [23], valid for parabolic stochastic
partial differential equations.

12



Proposition 4.4. Under the assumptions of Theorem 4.1, the random function
x 7→ u(t , x) is a.s. supported in [−K − κt ,K + κt] for every t > 0.

Proof. Let u0(t , x) := 0 and define iteratively un+1, in terms of un, as Picard
iterates; see (4.8). Note that Γt−s is supported in [−κ(t − s) , κ(t − s)] for
all s ∈ (0 , t). Because U0(t , ·) and V0(t , ·) are both supported in the interval
[−K − κt ,K + κt], it follows from (4.8), the fact that σ(0) = 0, and induction
[on n > 0] that un(s , ·) is a.s. supported in [−K − κs ,K + κs] for all s > 0 and
n > 0. Now we know from Dalang’s theory [16] that limn→∞ un(t , x) = u(t , x)
in probability. Therefore, the result follows.

Remark 4.5. Proposition 4.4 improves some of the estimates that were ob-
tained previously in [15]. Namely that, u(t , ·) does not have large peaks more
than a distance κt+ o(t) away from the origin as t→∞.

In order to be able to prove Theorem 4.1, we need some continuity estimates
for the solution u. The continuity of the solution itself has been known for a
long time; see [16, 31] for instance. We merely state the results in the form that
we need.

Lemma 4.6. If u0 is Hölder-continuous of order > 1/2, then for all integers
p > 1 and for every β > γ̄(2p), there exists a constant Cp,β ∈ (0,∞) such that,
for all t > 0,

sup
j∈Z

sup
j6x<x′6j+1

∥∥∥∥u(t , x)− u(t , x′)

|x− x′|1/2

∥∥∥∥
2p

6 Cp,βeβt/2p. (4.10)

Proof. We may observe that |U0(t , x) − U0(t , x′)| 6 const · |x − x′|1/2 and
|V0(t , x)− V0(t , x′)| 6 2 supz∈R |v0(z)| · |x− x′| 6 2 supz∈R |v0(z)| · |x− x′|1/2,
as long as |x − x′| 6 1. Therefore, we apply (1.3) and (2.1) to deduce that
uniformly for all x, x′ ∈ R such that |x− x′| 6 1,

‖u(t , x)− u(t , x′)‖2p 6 const · |x− x′|1/2 (4.11)

+ Lipσ

(
4p

∫ t

0

ds

∫ ∞
−∞

dy ‖u(s , y)‖22p|Γt−s(y − x)− Γt−s(y − x′)|2
)1/2

.

Theorem 3.1 shows that ‖u‖2p,β <∞ provided β > γ̄(2p), and a direct calcula-
tion shows that ∫ ∞

−∞
dy |Γs(y − x)− Γs(y − x′)|2 6 2|x− x′| (4.12)

13



for all s > 0. As a consequence,∫ t

0

ds

∫ ∞
−∞

dy ‖u(s , y)‖22p|Γt−s(y − x)− Γt−s(y − x′)|2 (4.13)

6 eβt/p
∫ t

0

ds

∫ ∞
−∞

dy e−βs/p‖u(s, y)‖22p e−β(t−s)/p|Γt−s(y − x)− Γt−s(y − x′)|2

6 ‖u‖22p,β eβt/p
∫ ∞

0

ds e−βs/p
∫ ∞
−∞

dy |Γs(y − x)− Γs(y − x′)|2

6 ‖u‖22p,β
2p

β
eβt/p|x− x′|, (4.14)

by (4.12). The theorem follows from (4.11) and (4.14).

By analogy with Lemmas 3.5 and 3.6 of [23], we can extend the preceding
result to all real numbers p ∈ (1 , 2) and to a uniform modulus of continuity
estimate.

Lemma 4.7. Suppose the conditions of Lemma 4.6 are satisfied. Then, for all
p ∈ (1 , 2) and ε, δ ∈ (0 , 1), there exists a constant Cp,ε,δ ∈ (0 ,∞) such that for
all t > 0,

sup
j∈Z

∥∥∥∥ sup
j6x<x′6j+1

|u(t , x)− u(t , x′)|2

|x− x′|1−ε

∥∥∥∥
p

6 Cp,ε,δ e(1+δ)λpt, (4.15)

where λp := (2− p)γ̄(2) + (p− 1)γ̄(4).

Proof. The proof works exactly as in [23, Lemmas 3.5 and 3.6]. First, one proves
that

E
(
|u(t , x)− u(t , x′)|2p

)
6 Cp,δ|x− x′|p exp((1 + δ)λ(p)), (4.16)

for all δ ∈ (0 , 1), |x − x′| 6 1 and p ∈ [1 , 2]. This is a direct application
of convexity of Lp norms and Lemma 4.6. We refer to [23, Lemma 3.5] for a
detailed argument. As a second step, it is possible to use a suitable form of
the Kolomogorov continuity theorem in order to obtain an estimate that holds
uniformly for j 6 x < x′ 6 j+1, as stated. We refer to [18] for a detailed proof;
see in particular, the proof of Theorem 4.3 therein.

We are ready to prove Theorem 4.1. This is similar to the proof of Theorem
1.1 in [23], but because of Proposition 4.4, some of the technical issues of [23]
do not arise.

Proof of Theorem 4.1. We have already proved that u(t , ·) ∈ L2(R) for every
t > 0; see Proposition 4.3. Therefore, it remains to prove (4.3).
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The lower bound is a direct consequence of Propositions 4.3 and 4.4. Indeed,
Proposition 4.3 implies that

exp

([
Lσ

√
κ

2
+ o(1)

]
t

)
6 E

(∫ ∞
−∞
|u(t , x)|2 dx

)
= E

(∫ K+κt

−K−κt
|u(t , x)|2 dx

)
6 2(K + κt) sup

x∈R
E
(
|u(t , x)|2

)
.

(4.17)

The first inequality in (4.3) follows.
As regards the second inequality in (4.3), we may observe that for all p ∈

(1 , 2), ε ∈ (0 , 1), j ∈ Z, and t > 0,

sup
j6x6j+1

|u(t , x)|2p 6 22p−1

(
|u(t , j)|2p + sup

j6x6j+1
|u(t , x)− u(t , j)|2p

)
6 22p−1

(
|u(t , j)|2p + Ωpj

)
,

where

Ωpj := sup
j6x6x′6j+1

|u(t , x)− u(t , x′)|2

|x− x′|1−ε
. (4.18)

Consequently,

E

(
sup

j6x6j+1
|u(t , x)|2p

)
6 22p−1

{
E
(
|u(t , j)|2p

)
+ E

(
Ωpj
)}
. (4.19)

Lemma 4.7 implies that E(Ωpj ) 6 Cp,ε,δ ep(1+δ)λpt. Moreover, u(t , j) = 0 a.s. for

|j| > K+κt [Proposition 4.4], and E(|u(t , j)|2p) 6 const ·e(γ̄(2p)+o(1))t whenever
|j| 6 K + κt [Theorem 3.1]. It follows that for all large t,

E

(
sup
x∈R
|u(t , x)|2p

)
= E

(
sup

|x|6dK+κte
|u(t , x)|2p

)
(4.20)

6 const · dK + κte
(

e(γ̄(2p)+o(1))t + Cp,ε,δe
p(1+δ)λpt

)
,

whence

lim sup
t→∞

1

t
log E

(
sup
x∈R
|u(t , x)|2p

)
6 max{p(1 + δ)λp ; γ̄(2p)}. (4.21)

We let δ → 0, then use Jensen’s inequality and finally take p → 1. Since,
λp → γ(2) as p→ 1, this will lead us to the bounds

lim sup
t→∞

1

t
log E

(
sup
x∈R
|u(t , x)|2

)
6 γ̄(2) 6 Lipσ

√
κ

2
, (4.22)

by Theorem 3.1 and Remark 3.2. The last inequality in (4.3) follows. This
completes our proof.
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5 Moment and tail probability estimates

In this section, we will first present technical estimates on the Lp moments of
the solution u, and then use those estimates in order to establish estimates on
tail probabilities of the solution. We will use the efforts of this section later
in §7 in order to deduce the main results of this paper. This section contains
the hyperbolic analogues of the results of [12], valid for parabolic equations.
Some of the arguments of [12] can be simplified greatly, because we are in a
hyperbolic setting. But in several cases, one uses arguments similar to those in
[12]. Therefore, we skip some of the details.
Convention. Throughout §5, we will consider only the case that u0 and v0 are
constants.

Without loss of much generality, we will assume that u0 ≡ 1. The general
case follows from this by scaling. However, we will have to keep track of the
numerical value of v0. Hence, (1.3) becomes

u(t , x) = 1 + v0κt+

∫
(0,t)×R

Γt−s(y − x)σ(u(s , y))W (dsdy), (5.1)

for t > 0, x ∈ R. In accord with the results of Dalang [16], the law of ut(x) is
independent of x, since the initial velocity v0 and position u0 ≡ 1 are constants.

We start our presentation by stating a general upper bound for the moments
of the solution.

Proposition 5.1. Suppose u0 ≡ 1 and v0 is a constant. Choose and fix T > 0
and define a := TLipσ

√
κ. Then there exists a finite constant C > 0 such that

sup
06t6T

sup
x∈R

E (|u(t , x)|p) 6 Cp exp
(
ap3/2

)
for all p ∈ [1 ,∞). (5.2)

The preceding is a direct consequence of our proof of Theorem 3.1. Indeed,
we proved there that ‖u‖p,β <∞ provided that β > p3/2Lipσ

√
κ/2. Proposition

5.1 follows upon unscrambling this assertion.
Let us recall the following “stretched-exponential” bound for logX:

Lemma 5.2 (Lemma 3.4 of [12]). Suppose X is a non-negative random variable
that satisfies the following: There exists finite numbers a,C > 0 and b > 1 such
that E(Xp) 6 Cp exp(apb) for all p ∈ [1 ,∞). Then,

E exp
(
α
[
log+X

]b/(b−1)
)
<∞,

where log+ u := log(u ∨ e), provided that 0 < α < (1− b−1)/(ab)1/(b−1).

Thanks to the preceding lemma and Chebyshev’s inequality, Proposition
5.1 implies readily the following upper bound on the tail of the distribution of
|u(t , x)|.
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Corollary 5.3. For all T ∈ (0 ,∞) and α ∈ (0 , 4
27 (T 2(Lipσ ∨ 1)2κ)−1),

sup
06t6T

sup
x∈R

E
[
exp

{
α
(
log+ |u(t , x)|

)3}]
<∞. (5.3)

Consequently,

lim sup
λ→∞

1

(log λ)3
sup

06t6T
sup
x∈R

log P{|u(t , x)| > λ} 6 − 4

27T 2(Lipσ ∨ 1)2κ
. (5.4)

In plainer terms, Corollary 5.3 asserts that there is a finite constant A :=
AT > 1 such that for all λ sufficiently large,

sup
06t6T

sup
x∈R

P {|u(t , x)| > λ} 6 A exp
(
−A−1| log λ|3

)
.

In order to bound lower bounds on tail probabilities we need to have more
specific information on the non-linearity σ. Let us start with the case that σ is
bounded uniformly away from zero.

Proposition 5.4. If ε0 := infz∈R σ(z) > 0, then for all t ∈ (0 ,∞),

inf
x∈R

E
(
|u(t , x)|2p

)
>
(√

2 + o(1)
)

(µtp)
p as p→∞, (5.5)

where the o(1) term only depends on p and

µt := ε20κt
2/(2e). (5.6)

Proof. We follow the proof of Lemma 3.6 of [12] closely.
Since the law of u(t , x) does not depend on x, the inf in (5.5) is redundant.

From now on, we will consider only the case that x = 0.
Choose and fixed a finite t > 0, and notice that u(t , 0) = 1 + v0κt + Mt,

where (Mτ )06τ6t is the continuous mean-zero martingale that is defined by

Mτ :=

∫
(0,τ)×R

Γt−s(y)σ(u(s , y))W (dsdy). (5.7)

The quadratic variation of M is given by

〈M〉τ =

∫ τ

0

ds

∫ ∞
−∞

dy Γ2
t−s(y)σ2(u(s , y)). (5.8)

According to Itô’s formula, if p ∈ [2 ,∞) then

M2p
t = 2p

∫ t

0

M2p−1
s dMs + p(2p− 1)

∫ t

0

M2p−2
s d〈M〉s. (5.9)

We expectations of both sides and replace 〈M〉 using (5.8), in order to obtain
the following:

E
(
M2p
t

)
= p(2p− 1)

∫ t

0

ds

∫ ∞
−∞

dy E
(
M2(p−1)
s σ2(u(s , y))

)
Γ2
t−s(y)

> p(2p− 1)ε20 ·
∫ t

0

ds

∫ ∞
−∞

dy E
(
M2(p−1)
s

)
Γ2
t−s(y).
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We iterate this process, using (5.8), to obtain the following lower bound for the
moments of M :

E
(
M2p
t

)
>

p−1∑
k=0

Ck(p)

∫ t

0

ν(t ,ds1)

∫ s1

0

ν(s1 ,ds2) · · ·
∫ sk

0

ν(sk ,dsk+1), (5.10)

where

ν(t ,ds) := 1[0,t](s) ‖Γt−s‖2L2(R) ds = 1
2κ(t− s)1[0,t](s) ds [see (2.5)],

and

Ck(p) := ε
2(k+1)
0 ·

k∏
j=0

(
2p− 2j

2

)
.

For similar moment computations, also valid for hyperbolic equations, see [11].
The right-hand side of (5.10) is the exact expression for the pth moment of u if
σ were identically ε0. Therefore,

E
(
|u(t , 0)|2p

)
> E

(
M2p
t

)
> E

(
N2p
t

)
, (5.11)

where Nt := ε0 ·
∫

(0,t)×R Γt−s(y)W (dsdy) is a Gaussian random variable with

mean zero and variance E(N2
t ) = ε20 ·

∫ t
0
‖Γs‖2L2(R) ds = ε20κt

2/4. Therefore, for
every integer p > 2,

E
(
N2p
t

)
=

(2p)!

2p p!

{
E
(
N2
t

)}p
=

(2p)!

2p p!

(
ε20κt

2

4

)p
. (5.12)

Stirling’s formula, (5.11) and (5.12) together prove the result if p → ∞ along
integers. For other values of p, we use the integer case for dpe, and apply Jensen’s
inequality to bound the ‖u(t , 0)‖p by ‖u(t , 0)‖dpe.

The preceding moment bound yields the next probability estimate.

Proposition 5.5. If infz∈R σ(z) = ε0 > 0, then there exists a constant C ∈
(0 ,∞) such that for all t > 0,

lim inf
λ→∞

1

λ3
inf
x∈R

log P{|u(t , x)| > λ} > −C (Lipσ ∨ 1)

ε30t
2κ

. (5.13)

Proof. We follow the proof of [12, Proposition 3.7].
The classical Paley–Zygmund inequality implies that

P
{
|u(t , x)| > 1

2‖u(t , x)‖2p
}
>

{
E
(
|u(t , x)|2p

)}2

4E (|u(t , x)|4p)

> exp
(
−8t(Lipσ ∨ 1)κ1/2 p3/2

)
,

(5.14)
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owing to Propositions 5.1 and 5.4. Proposition 5.4 tells us that ‖u(t , x)‖2p is
bounded below by (1 + o(1)) times (µtp)

1/2 as p → ∞, where µt is given by
(5.6). Therefore,

P

{
|u(t , x)| > 1

2
(µtp)

1/2

}
> exp

(
−8t(Lipσ ∨ 1)κ1/2 p3/2

)
, (5.15)

for all sufficiently-large p. Set λ := 1
2 (µtp)

1/2 to complete the proof.

Let us write “f(x) % g(x) as x→∞” instead of “there exists a constant C ∈
(0 ,∞) such that lim infx→∞ f(x)/g(x) > C”. In this way, we may summarize
the findings of this section, so far, as follows:

Corollary 5.6. Suppose u0 ≡ 1 and v0 ≡ a constant. If infz∈R σ(z) = ε0 > 0,
then for all t > 0,

−λ
3

κ
- log P{|u(t , x)| > λ} - − (log λ)3

κ
as λ→∞. (5.16)

The implied constants do not depend on (x , κ).

Proposition 5.1 and Corollary 5.3 assumed that σ was a Lipschitz function.
If we assume, in addition, that σ is bounded above (as well as bounded away
from 0), then we can obtain a nearly-optimal improvement to Corollary 5.6. In
fact, the following shows that the lower bound of Proposition 5.4 is sharp in
such cases.

Proposition 5.7. If S0 := supz∈R σ(z) <∞, then for all t > 0 and all integers
p > 1,

sup
x∈R

E
(
|u(t , x)|2p

)
6
(

2
√

2 + o(1)
)

(µ̃tp)
p as p→∞, (5.17)

where the o(1) term only depends on p and

µ̃t := 2S2
0κt

2/e. (5.18)

Proof. We apply an argument that is similar to the one used in the proof of
Proposition 5.4. Namely, we consider the same martingale {Mτ}06τ6t, as we
did for the proof of Proposition 5.4. We apply exactly the same argument as we
did there, but reverse the inequalities using the bound σ(z) 6 S0 for all z ∈ R,
in order to deduce the following:

E
(
|u(t , 0)|2p

)
6 22p(1 + v0κt)

2p + 22pE
(
M2p
t

)
6 22p(1 + v0κt)

2p + 22pE
(
N2p
t

)
,

where Nt := S0 ·
∫

(0,t)×R Γt−s(y)W (dsdy). Similar computations as in Propo-

sition 5.4 prove the result.
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We can now turn this bound into Gaussian tail-probability estimates.

Proposition 5.8. If 0 < ε0 := infz∈R σ(z) 6 supz∈R σ(z) := S0 <∞, then for
all t > 0 there exists finite constants C > c > 0 such that

c exp

(
−Cλ

2

κ

)
6 P{|u(t , x)| > λ} 6 C exp

(
−cλ

2

κ

)
, (5.19)

simultaneously for all λ large enough and x ∈ R.

Proof. The lower bound is obtained in the exact same manner as in the proof of
Proposition 5.5: We use the Paley–Zygmund inequality, though we now appeal
to Proposition 5.7 instead of Proposition 5.1.

We establish the upper bound by first applying Proposition 5.7 in order to
see that supx∈R E(|u(t , x)|2m) 6 (Aκ)mm! for all integers m > 1, for some
constant A ∈ (0,∞). This inequality implies that for al 0 < ξ < (Ak)−1,

sup
x∈R

E
(

eξ|u(t ,x)|2
)
6
∞∑
m=0

(ξAκ)m =
1

1− ξAκ
<∞. (5.20)

Therefore, Chebyshev’s inequality implies that if 0 < ξ < (Aκ)−1, then

sup
x∈R

P{|u(t , x)| > λ} 6 exp(−ξλ2)

1− ξAκ
(λ > 0). (5.21)

We choose ξ = const · κ−1, for a suitably-large constant to finish.

6 Localization

In §7 below, we will establish the chaotic behavior of the solution u to (1.1).
The analysis of §7 will rest on a series of observations; one of the central ones is
that the random function u is highly “localized.” We will make this more clear
in this section. In the mean time, let us say sketch, using only a few words,
what localization means in the present context.

Essentially, localization is the property that if x1 and x2 are chosen “suffi-
ciently” far apart, then u(t , x1) and u(t , x2) are “approximately independent.”

As we did in Section 5, we will assume throughout this section that the ini-
tial conditions are identically constant, and that u0 ≡ 1. [Recall that the latter
assumption is made without incurring any real loss in generality.] Note, in par-
ticular, that the solution u can be written in the mild form (1.5). Equivalently,

u(t , x) = 1 + v0κt+ 1
2

∫
(0,t)×(x−κt,x+κt)

σ(u(s , y))W (dsdy), (6.1)

for all t > 0, x ∈ R.
For all integers n > 0, let {un(t , x)}t>0,x∈R denote the n-th step Picard

approximation to u. Namely, we have u0 ≡ 0 and, for n > 1, t > 0 and x ∈ R,

un(t , x) = 1 + v0κt+ 1
2

∫
(0,t)×(x−κt,x+κt)

σ(un−1(s , y))W (dsdy). (6.2)
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Our next result estimates the order of convergence of the Picard iteration.

Proposition 6.1. Let u denote the solution to (1.1) with constant initial veloc-
ity v0, and constant initial function u0 ≡ 1. Let un be defined as above. Then,
for all n > 0, t > 0, and p ∈ [2 ,∞),

sup
x∈R

E (|u(t , x)− un(t , x)|p) 6 Cp exp
(
ap3/2t− np

)
, (6.3)

where the constants C, a ∈ (0 ,∞) do not depend on (n , t , p)

Proof. Recall the norms ‖ · · · ‖p,β from (2.2). In accord with Proposition 3.5
and (6.2),

‖u− un‖p,β 6 const · p
3/2κ1/2Lip2

σ

4β
√

2
‖u− un−1‖p,β .

We apply (2.5) with β := e2−5/2κ1/2Lip2
σp

3/2 in order to deduce, for this choice
of β, the inequality ‖u − un‖p,β 6 e−1‖u − un−1‖p,β , whence ‖u − un‖p,β 6
e−n‖u− u0‖p,β by iteration. In other words, we have proved that

E (|u(t , x)− un(t , x)|p) 6 e−np+βt‖u‖pp,β . (6.4)

An appeal to Proposition 5.1 concludes the proof.

We plan to use the Picard iterates {un}∞n=0 in order to establish the local-
ization of u. The following is the next natural step in this direction.

Proposition 6.2. Let t > 0 and choose and fix a positive integer n. Let {xi}i>0

denote a sequence of real numbers such that |xi − xj | > 2nκt whenever i 6= j.
Then {un(t , xi)}i>0 is a collection of i.i.d. random variables.

Proof. It is easy to verify, via induction, that the random variable un(t , x)
depends only on the value of the noise Ẇ evaluated on [0 , t]× [x−nκt , x+nκt].
Indeed, it follows from (6.2) that u1(t , x) = 1 + v0κt is deterministic, and (6.2)
does the rest by induction.

With this property in mind, we now choose and fix a sequence {xi}i>0 as
in the statement of the proposition. Without loss of too much generality, let
us consider x1 and x2. By the property that was proved above, un(t , x1) only
depends only on the noise on I1 := [0 , t]× [x1−nκt , x1 +nκt], whereas un(t , x2)
depends only on the noise on I2 := [0 , t] × [x2 − nκt , x2 + nκt]. According to
the defining property of the xi’s, |x1 − x2| > 2nκt, and hence I1 and I2 are
disjoint. Therefore, it follows from the independence properties of white noise
that u(t , x1) and u(t , x2) are independent. Moreover, the stationarity properties
of stochastic integrals imply that u(t , x1) and u(t , x2) are identically distributed
as well [here we use also the assumption of constant initial data]. This proves
the result for n = 2. The general case is proved by expanding on this case a
little bit more. We omit the remaining details.

Let us conclude by mentioning that the preceding is the sketch of a complete
argument. A fully-rigorous proof would require us to address a few technical
issues about Walsh stochastic integral. They are handled as in the proof of
Lemma 4.4 in [12], and the arguments are not particularly revealing; therefore,
we omit the details here as well.
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7 Chaotic behavior

We are now ready to state and prove the two main results of this paper. The
first one addresses the case that σ is bounded away uniformly from zero, and
shows a universal blow-up rate of (logR)1/3.

Theorem 7.1. If u0 > 0, v0 > 0, and infz∈R σ(z) = ε0 > 0, then for all t > 0
there exists a constant c := ct ∈ (0 ,∞)—independent of κ—such that

lim inf
R→∞

1

(logR)1/3
sup

x∈[−R,R]

|u(t , x)| > cκ1/3.

Proof. The basic idea is the following: Consider a sequence of spatial points
{xi}i>0, as we did in Proposition 6.2, in order to obtain an i.i.d. sequence
{un(t , xi)}i>0. The tail probability estimates of §5 will imply that every random
variable un(t , xi) has a positive probability of being “very large.” Therefore, a
Borel-Cantelli argument will imply that if we have enough spatial points, then
eventually one of the un(t , xi)’s will have a “very large” value a.s. A careful
quantitative analysis of this outline leads to the estimates of Theorem 7.1. Now
let us add a few more details.

Fix integers n,N > 0 and let {xi}Ni=1 be a sequence of points as in Proposi-
tion 6.2. According to Proposition 6.2, {un(t , xi)}Ni=1 is a sequence of indepen-
dent random variables. For every λ > 0,

P

{
max

16j6N
|u(t , xj)| < λ

}
6 P

{
max

16j6N
|un(t , xj)| < 2λ

}
+ P

{
max

16j6N
|u(t , xj)− un(t , xj)| > λ

}
.

An inspection of the proof of Proposition 5.5 shows us that the proposition
continues to hold after u is replaced by un. Therefore,

P

{
max

16j6N
|un(t , xj)| < 2λ

}
6
(

1− c1e−c2(2λ)3
)N

, (7.1)

for some constants c1 and c2. Moreover, Chebyshev’s inequality and Proposition
6.1 together yield

P

{
max

16j6N
|u(t , xj)− un(t , xj)| > λ

}
6 NCpeap

3/2t−npλ−p, (7.2)

and hence

P

{
max

16j6N
|u(t , xj)| < λ

}
6
(

1− c1e−c2(2λ)3
)N

+NCpeap
3/2t−npλ−p. (7.3)

Now, we select the various parameters with some care. Namely, we set λ := p,
N := p exp(c2p

3), and n = %p2 for some constant % > 8c2. With these parameter
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choices, (7.3) reduces to the following:

P

{
max

16j6N
|u(t , xj)| < p

}
6 e−c1p + exp

(
c2(2p)3 + log p+ atp3/2 − %p3 − p log p

)
6 2e−c1p.

(7.4)

We may consider the special case xi = ±2iκtn in order to deduce the following:

P

{
sup

|x|62Nκtn

|u(t , x)| < p

}
6 2e−c1p. (7.5)

Note that 2Nκtn = O(ec2p
3

) as p → ∞, Let us choose R := exp(c2p
3), equiva-

lently p := (logR/c2)1/3. Then by the Borel-Cantelli lemma,

sup
|x|<R

|u(t , x)| > const ·
(

logR

c2

)1/3

. (7.6)

A monotonicity argument shows that the preceding inequality continues to hold
for non-integer R [for a slightly smaller constant, possibly]. A careful exam-
ination of the content of Proposition 5.5 shows that we can at best choose
c2 = const · κ−1. The result follows.

The second result of this section [and the second main result of the present
paper] contains an analysis of the case that σ is bounded both uniformly above
0 and below ∞. In that case, we will obtain an exact order of growth for
sup|x|<R |u(t , x)|, as R → ∞. We can deduce by examining that growth order
that the behavior of the solution u is similar to the case where σ is identically
a constant. [In the latter case, u is a Gaussian process.]

Theorem 7.2. Assume constant initial data with u0 > 0 and v0 > 0. Suppose
also that 0 < infz∈R σ(z) 6 supz∈R σ(z) < ∞. Then, for all t > 0 there exists
finite constants C := Ct > c := ct > 0 such that a.s.,

cκ1/2 6 lim inf
R→∞

supx∈[−R,R] |u(t , x)|
(logR)1/2

6 lim sup
R→∞

supx∈[−R,R] |u(t , x)|
(logR)1/2

6 Cκ1/2.

Moreover, there exists a finite constant κ0 = κ0(t) > 0 such that c and C do
not depend on κ whenever κ ∈ (0 , κ0).

We first need an estimate for the quality of the spatial continuity of the
solution u.

Lemma 7.3. Suppose 0 < ε0 := infz∈R σ(z) 6 supz∈R σ(z) := S0 <∞. Then,
for every t > 0, there exists a constant A ∈ (0 ,∞) such that

sup
−∞<x6=x′<∞

E
(
|u(t , x)− u(t , x′)|2p

)
|x− x′|p

6 (Ap)p for all p ∈ [2 ,∞). (7.7)
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Proof. We follows closely the proof of Lemma 6.1 of [12]. Fix x, x′ ∈ R and
define

Mτ :=

∫
(0,t)×R

(Γt−s(y − x)− Γt−s(y − x′))σ(u(s , y))W (dsdy). (7.8)

Then, {Mτ}06τ6t is a mean-zero continuous Lp(Ω)-martingale for every p ∈
[2 ,∞). Moreover, its quadratic variation is bounded as follows:

〈M〉τ 6 S2
0

∫ τ

0

ds

∫ ∞
−∞

dy |Γt−s(y − x)− Γt−s(y − x′)|2 6 2τS2
0 |x− x′|;

by (4.12). Because u(t , x) − u(t , x′) = Mt, the Burkholder–Davis–Gundy in-
equality (2.1) implies the result.

Next we transform the previous lemma into an estimate of sub-Gaussian
moment bounds.

Lemma 7.4. If 0 < ε0 := infz∈R σ(z) 6 supz∈R σ(z) := S0 < ∞, then for
every t > 0, there exists a constant C = Ct ∈ (0 ,∞) such that

E

 sup
x,x′∈I:
|x−x′|6δ

exp

(
|u(t , x)− u(t , x′)|2

Cδ

) 6 2

δ
, (7.9)

uniformly for every δ ∈ (0 , 1] and every interval I ⊂ R of length at most one.

Lemma 7.4 follows from Lemma 7.3 and a suitable form of Kolomogorov’s
continuity theorem. This type of technical argument appears in several places
in the literature. Hence, we merely refer to the proof of [12, Lemma 6.2], where
this sort of argument appears already in a different setting. Instead, we proceed
with the more interesting

Proof of Theorem 7.2. We obtain lower bound by adapting the method of proof
of Theorem 7.1. The only major required change is that we need to use Propo-
sition 5.8 in place of Proposition 5.5. We also need to improve Proposition 6.1
in order to consider a moment bound that applies Proposition 5.7 instead of
5.1. After all this, (7.3) will turn into the following estimate:

P

{
max

16j6N
|u(t , xj)| < λ

}
6
(

1− c1e−c2(2λ)2
)N

+NCp(µ̃tp)
pe−npλ−p. (7.10)

Next we select the parameters judiciously: We take λ := p, N := pec2p
2

, and
n = %p for a sufficiently-large constant % � c2. In this way, (7.3) will read as
follows:

P

{
max

16j6N
|u(t , xj)| < p

}
6 e−c1p + exp

(
c2(2p)2 + log(p) + p log(µ̃t)− %p2

)
6 2e−c1p.
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A Borel-Cantelli type argument leads to the lower bound.
In order to establish the upper bound, let R > 0 be an integer and xj :=

−R+ j for j = 1, . . . , 2R. Then, we can write

P

{
sup

x∈[−R,R]

|u(t , x)| > 2α(logR)1/2

}

6 P

{
max

16j62R
|u(t , xj)| > α(logR)1/2

}
(7.11)

+ P

{
max

16j62R
sup

x∈(xj ,xj+1)

|u(t , x)− u(t , xj)| > α(logR)1/2

}
.

On one hand, Proposition 5.8 can be used to show that

P

{
max

16j62R
|u(t , xj)| > α(logR)1/2

}
6 2R sup

x∈R
P
{
|u(t , x)| > α(logR)1/2

}
6 const ·R1−cα2/κ.

On the other hand, Chebyshev’s inequality and Lemma 7.4 [with δ = 1] together
imply that

P

{
max

16j62R
sup

x∈(xj ,xj+1)

|u(t , x)− u(t , xj)| > α(logR)1/2

}
6 const ·R1−α2/C .

Therefore, (7.11) has the following consequence:

∞∑
R=1

P

{
sup

x∈[−R,R]

|u(t , x)| > 2α(logR)1/2

}
6
∞∑
R=1

R1−qα2

; (7.12)

where
q := min (c/κ , 1/C) .

The infinite sum in (7.12) converges when α > (2/q)1/2. Therefore, by an
application of the Borel-Cantelli Lemma,

lim sup
R→∞:
R∈Z

supx∈[−R,R] |u(t , x)|
(logR)1/2

6 (8/q)
1/2

a.s. (7.13)

Clearly, (8/q)1/2 6 κ1/2/c for all κ > κ0 := 8c2/q. A standard montonicity
argument can be used to replace “lim supR→∞: R∈Z” by “lim supR→∞.” This
concludes the proof.

Among other things, Theorem 7.2 implies that if σ is bounded uniformly
away from 0 and infinity, then the extrema of the solution u behave as they
would for the linear stochastic wave equation; i.e., they grow as (logR)1/2. We
have shown in [12, Theorem 1.2] that the same general phenomenon holds when
the stochastic wave equation is replaced by the stochastic heat equation. We
may notice however that the behavior in κ is quite different in the hyperbolic
setting than in the parabolic case: Here, the extrema diminish as κ1/2 as κ ↓ 0;
whereas they grow as κ−1/4 in the parabolic case.
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