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Abstract

Consider the stochastic heat equation ∂tu = (κ/2)∆u+ σ(u)Ḟ , where
the solution u := ut(x) is indexed by (t , x) ∈ (0 ,∞) × Rd, and Ḟ is a
centered Gaussian noise that is white in time and has spatially-correlated
coordinates. We analyze the large-‖x‖ fixed-t behavior of the solution u
in different regimes, thereby study the effect of noise on the solution in
various cases. Among other things, we show that if the spatial correla-
tion function f of the noise is of Riesz type, that is f(x) ∝ ‖x‖−α, then
the “fluctuation exponents” of the solution are ψ for the spatial variable
and 2ψ − 1 for the time variable, where ψ := 2/(4− α). Moreover, these
exponent relations hold as long as α ∈ (0 , d ∧ 2); that is precisely when
Dalang’s theory [12] implies the existence of a solution to our stochastic
PDE. These findings bolster earlier physical predictions [22, 23].

Keywords: The stochastic heat equation, chaos, intermittency, the parabolic
Anderson model, the KPZ equation, critical exponents.
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1 Introduction

Consider the nonlinear stochastic heat equation,

∂

∂t
ut(x) =

κ
2

(∆ut)(x) + σ(ut(x))Ḟt(x), (SHE)

where κ > 0 is a viscosity constant, σ : R → R is globally Lipschitz continu-
ous, and {Ḟt(x)}t>0,x∈Rd is a centered generalized Gaussian random field [20,

∗Research supported in part by the NSFs grant DMS-0747758 (M.J.) and DMS-1006903
(D.K.).
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Chapter 2, §2.7] with covariance measure

Cov
(
Ḟt(x) , Ḟs(y)

)
= δ0(t− s)f(x− y) (1.1)

of the convolution type. We also assume, mostly for the sake of technical sim-
plicity, that the initial function u0 : Rd → R is nonrandom, essentially bounded,
and measurable. In particular, we assume the following once and for all:

Throughout this paper, we assume that ‖u0‖L∞(Rd) <∞, (1.2)

and that the correlation function f is sufficiently nice that there exists a unique
strong solution to (SHE); see the next section for the technical details.

Our first result (Theorem 2.1) tells us that if the initial function u0 decays
at infinity faster than exponentially, then the solution x 7→ ut(x) is typically
globally bounded at all nonrandom times t > 0. The remainder of this paper is
concerned with showing that if by contrast u0 remains uniformly away from zero,
then the typical structure of the random function x 7→ ut(x) is quite different
from the behavior outlined in Theorem 2.1. In particular, our results show that
the solution to (SHE) depends in a very sensitive way on the structure of the
initial function u0. [This property explains the appearance of “chaos” in the
title of the paper.]

Hereforth, we assume tacitly that u0 is bounded uniformly away from zero
and infinity. We now describe the remaining contributions of this paper [valid
for such choices of u0].

Loosely speaking, Ḟt(x) is nothing but white noise in the time variable t, and
has a homogenous spatial correlation function f for its space variable x. In a
companion paper [10] we study (SHE) in the case that Ḟ is replaced with space-
time white noise; that is the case where we replace the covariance measure with
δ0(t− s)δ0(x− y). In that case, the solution exists only when d = 1 [12, 26, 28].
Before we describe the results of [10], let us introduce some notation.

Let h, g : Rd → R+ be two functions. We write: (a) “h(x) � g(x)” when
lim sup‖x‖→∞[h(x)/g(x)] is bounded below by a constant; (b) “h(x) � g(x)”

when h(x) � g(x) and g(x) � h(x) both hold; and finally (c) “h(x)
(log)
≈ g(x)”

means that log h(x) � log g(x).
Armed with this notation, we can describe some of the findings of [10] as

follows:

1. If σ is bounded uniformly away from zero, then ut(x) � κ−1/12(log ‖x‖)1/6

a.s. for all times t > 0, where the constant in “�” does not depend on κ;

2. If σ is bounded uniformly away from zero and infinity, then ut(x) �
κ−1/4(log ‖x‖)1/2 a.s. for all t > 0, where the constant in “�” holds uni-
formly for all κ > κ0 for every fixed κ0 > 0; and

3. If σ(z) = cz for some c > 0—and (SHE) is in that case called the
“parabolic Anderson model” [7]—then

ut(x)
(log)
≈ exp

(
(log ‖x‖)ψ

κ2ψ−1

)
, (1.3)
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for ψ = 2/3 and 2ψ − 1 = 1/3, valid a.s. for all t > 0.1

Coupled with the results of [18], the preceding facts show that the solution to
the stochastic heat equation (SHE), driven by space-time white noise, depends
sensitively on the choice of the initial data.

Let us emphasize that these findings [and the subsequent ones of the present
paper] are remarks about the effect of the noise on the solution to the PDE
(SHE). Indeed, it is easy to see that if u0(x) is identically equal to one—this is
permissible in the present setup—then the distribution of ut(x) is independent
of x. Therefore, the limiting behaviors described above cannot be detected
by looking at the distribution of ut(x) alone for a fixed x. Rather it is the
correlation between ut(x) and ut(y) that plays an important role.

The goal of the present paper is to study the effect of disorder on the “inter-
mittent” behavior of the solution to (SHE); specifically, we consider spatially-
homogeneous correlation functions of the form f(x − y) that are fairly nice,
and think of the viscosity coefficient κ as small, but positive. Dalang’s theory
[12] can be used to show that the stochastic PDE (SHE) has a solution in all
dimensions if f(0) <∞; and it turns out that typically the following are valid,
as ‖x‖ → ∞:

1′. If σ is bounded uniformly away from zero, then ut(x) � (log ‖x‖)1/4 for all
times t > 0, uniformly for all κ > 0 small;

2′. If σ is bounded uniformly away from zero and infinity, then ut(x) �
(log ‖x‖)1/2 for all t > 0, uniformly for all κ > 0 small; and

3′. If σ(z) = cz for some c > 0 [the parabolic Anderson model] then (1.3)
holds with ψ = 1/2 and 2ψ − 1 = 0, for all t > 0 and uniformly for all
κ > 0 small.

Thus, we find that for nice bounded correlation functions, the level of disorder
[as measured by 1/κ] does not play a role in determining the asymptotic large-
‖x‖ behavior of the solution, whereas it does for f(x− y) = δ0(x− y). In other
words, 1′, 2′, and 3′ are in sharp contrast to 1, 2, and 3 respectively. This
contrast can be explained loosely as saying that when f is nice, the model is
“mean field”; see in particular the application of the typically-crude inequality
(4.29), which is shown to be sharp in this context.

One can think of the viscosity coefficient κ as “inverse time” by making
analogies with finite-dimensional diffusions. As such, (1.3) suggests a kind of
space-time scaling that is valid universally for many choices of initial data u0;
interestingly enough this very scaling law [ψ versus 2ψ−1] has been predicted in
the physics literature [23, 22], and several parts of it have been proved rigorously
in recent works by Balázs, Quastel, and Seppäläinen [2] and Amir, Corwin, and
Quastel [1] in a large-t fixed-x regime.

1Even though the variable x is one-dimensional here, we write “‖x‖” in place of “|x|”
because we revisit (1.3) in the next few paragraphs and consider the case that x ∈ Rd for
d > 1.
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We mentioned that (1.3) holds for ψ = 2/3 [space-time white noise] and ψ =
1/2 [f nice and bounded]. In the last portion of this paper we prove that there are
models—for the correlation function f of the noise Ḟ—that satisfy (1.3) for every
ψ ∈ (1/2 , 2/3) in dimension d = 1 and for every ψ ∈ (1/2 , 1) in dimension d > 2.
It is possible that these results reinforce the “superuniversality” predictions of
Kardar and Zhang [23].

We conclude the introduction by setting forth some notation that will be
used throughout, and consistently.

Let pt(z) denote the heat kernel for (κ/2)∆ on Rd; that is,

pt(z) :=
1

(2πκt)d/2
exp

(
−‖z‖

2

2κt

)
(t > 0, z ∈ Rd). (1.4)

We will use the Banach norms on random fields as defined in [19]. Specifi-
cally, we define, for all k > 1, δ > 0, and random fields Z,

M(k)
δ (Z) := sup

t>0

x∈Rd

[
e−δt‖Zt(x)‖k

]
, (1.5)

where we write

‖Z‖k :=
(
E
(
|Z|k

))1/k
whenever Z ∈ Lk(P) for some k ∈ [1 ,∞). (1.6)

Throughout, S denotes the collection of all rapidly-decreasing Schwarz test
functions from Rd to R, and our Fourier transform is normalized so that

ĝ(ξ) =
∫
Rd

eix·ξg(x) dx for all g ∈ L1(Rd). (1.7)

On several occasions, we apply the Burkholder–Davis–Gundy inequality
[4, 5, 6] for continuous L2(P) martingales: If {Xt}t>0 is a continuous L2(P)
martingale with running maximum X∗t := sups∈[0,t] |Xs| and quadratic varia-
tion process 〈X〉, then for all real numbers k > 2 and t > 0,

‖X∗t ‖k 6 ‖4k〈X〉t‖
1/2
k/2 . (BDG)

The factor 4k is the asymptotically-optimal bound of Carlen and Kree [8] for
the sharp constant in the Burkholder–Davis–Gundy inequality that is due to
Davis [14]. We will also sometimes use the notation

u0 := inf
x∈Rd

u0(x), u0 := sup
x∈Rd

u0(x). (1.8)

2 Main results

Throughout, we assume tacitly that f̂ is a measurable function [which then is
necessarily nonnegative] and∫

Rd

f̂(ξ)
1 + ‖ξ‖2

dξ <∞. (2.1)
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Condition (2.1) ensures the existence of an a.s.-unique predictable random field
u = {ut(x)}t>0,x∈Rd that solves (SHE) in the mild form [12].2 That is, u solves
the following random integral equation for all t > 0 and x ∈ Rd:

ut(x) = (pt ∗ u0)(x) +
∫

(0,t)×Rd

pt−s(y − x)σ(us(y))F (dsdy) a.s. (2.2)

We note that, because f is positive definite, Condition (2.1) is verified auto-
matically [for all d > 1] when f is a bounded function. In fact, it has been shown
in Foondun and Khoshnevisan [17] that Dalang’s condition (2.1) is equivalent
to the condition that the correlation function f has a bounded potential in the
sense of classical potential theory. Let us recall what this means next: Define
Rβ to be the β-potential corresponding to the convolution semigroup defined
by {pt}t>0; that is, Rβ is the linear operator that is defined via setting

(Rβφ)(x) :=
∫ ∞

0

e−βt(pt ∗ φ)(x) dt (t > 0, x ∈ Rd), (2.3)

for all measurable φ : Rd → R+. Then, Dalang’s condition (2.1) is equivalent
to the condition that Rβf is a bounded function for one, hence all, β > 0; and
another equivalent statement [the maximum principle] is that

(Rβf)(0) <∞ for one, hence all, β > 0. (2.4)

See [17, Theorem 1.2] for details.
Our first main result states that if u0 decays at infinity faster than exponen-

tially, then a mild condition on f ensures that the solution to (SHE) is bounded
at all times.

Theorem 2.1. Suppose lim sup‖x‖→∞ ‖x‖−1 log |u0(x)| = −∞ and
∫ 1

0
s−a(ps ∗

f)(0) ds <∞ for some a ∈ (0, 1/2). Also assume σ(0) = 0. Then supx∈Rd |ut(x)| <
∞ a.s. for all t > 0. In fact, supx∈Rd |ut(x)| ∈ Lk(P) for all t > 0 and
k ∈ [2 ,∞).

Our condition on f is indeed mild, as the following remark shows.

Remark 2.2. Suppose that there exist constants A ∈ (0 ,∞) and α ∈ (0 , d∧2)
such that sup‖x‖>z f(x) 6 Az−α for all z > 0. [Just about every correlation
function that one would like to consider has this property.] Then we can deduce
from the form of the heat kernel that for all r, s > 0,

(ps ∗ f)(0) 6 (2πκs)−d/2 ·
∫
‖x‖6r

f(x) dx+ sup
‖x‖>r

f(x)

6 (2πκs)−d/2 ·
∞∑
k=0

∫
2−k−1r<‖x‖62−kr

f(x) dx+
A

rα
(2.5)

6
const
sd/2

·
∞∑
k=0

(
2−k−1r

)d−α
+
A

rα
6 const ·

[
rd−α

sd/2
+ r−α

]
.

2Dalang’s theory assumes that f is continuous away from the origin; this continuity con-
dition can be removed [17, 26].
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We optimize over r > 0 to find that (ps ∗ f)(0) 6 const · s−α/2. In particular,
(Rβf)(0) < ∞ for all β > 0, and

∫ 1

0
s−a(ps ∗ f)(0) ds < ∞ for some a ∈

(0, 1/2).

Recall that the initial function u0 is assumed to be bounded throughout.
For the remainder of our analysis we study only bounded initial functions that
also satisfy infx∈Rd u0(x) > 0. And we study only correlation functions f that
have the form f = h ∗ h̃ for some nonnegative function h ∈ W 1,2

loc (Rd), where
h̃(x) := h(−x) denotes the reflection of h, and W 1,2

loc (Rd) denotes the vector
space of all locally integrable functions g : Rd → R whose Fourier transform is
a function that satisfies∫

‖x‖<r
‖x‖2 |ĝ(x)|2 dx <∞ for all r > 0. (2.6)

Because L2(Rd) ⊂ W 1,2
loc (Rd), Young’s inequality tells us that f := h ∗ h̃ is

positive definite and continuous, provided that h ∈ L2(Rd); in that case, we
have also that supx∈Rd |f(x)| = f(0) <∞. And the condition that h ∈ L2(Rd)
cannot be relaxed, as there exist many choices of nonnegative h ∈ W 1,2

loc (Rd) \
L2(Rd) for which f(0) =∞; see Example 3.2 below. We remark also that (2.1)
holds automatically when h ∈ L2(Rd).

First, let us consider the case that h ∈ L2(Rd) is nonnegative [so that f is
nonnegative, bounded and continuous, and (2.1) is valid automatically]. Accord-
ing to the theory of Walsh [28], (SHE) has a mild solution u = {ut(x)}t>0,x∈Rd—
for all d > 1—that has continuous trajectories and is unique up to evanescence
among all predictable random fields that satisfy supt∈(0,T ) supx∈Rd E(|ut(x)|2) <
∞ for all T > 0. In particular, u solves (2.2) almost surely for all t > 0 and
x ∈ Rd, where the stochastic integral is the one defined by Walsh [28] and
Dalang [12].

Our next result describes the behavior of that solution, for nice choices of
h ∈ L2(Rd), when viewed very far away from the origin.

Theorem 2.3. Consider (SHE) where infx∈Rd u0(x) > 0, and suppose f = h∗h̃
for a nonnegative h ∈ L2(Rd) that satisfies the following for some a > 0:∫
‖z‖>n[h(z)]2 dz = O(n−a) as n → ∞. If σ is bounded uniformly away from

zero, then

lim sup
‖x‖→∞

|ut(x)|
(log ‖x‖)1/4

> 0 a.s. for all t > 0. (2.7)

If σ is bounded uniformly away from zero and infinity, then

0 < lim sup
‖x‖→∞

|ut(x)|
(log ‖x‖)1/2

<∞ a.s. for all t > 0. (2.8)

Remark 2.4. Our derivation of Theorem 2.3 will in fact yield a little more
information. Namely, that the limsups in (2.7) and (2.8) are both bounded
below by a constant c(κ) := c(t ,κ , f , d) which satisfies infκ∈(0,κ0) c(κ) > 0 for
all κ0 > 0; and the limsup in (2.8) is bounded above by a constant that does
not depend on the viscosity coefficient κ.
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If g1, g2, . . . is a sequence of independent standard normal random variables,
then it is well known that lim supn→∞(2 log n)−1/2gn = 1 a.s. Now choose and
fix some t > 0. Because {ut(x)}x∈Rd is a centered Gaussian process when σ
is a constant, the preceding theorem suggests that the asymptotic behavior of
x 7→ ut(x) is the same as in the case that σ is a constant; and that behavior
is “Gaussian.” This “Gaussian” property continues to hold if we replace Ḟ by
space-time white noise—that is formally when f = δ0; see [10]. Next we exhibit
“non Gaussian” behavior by considering the following special case of (SHE):

∂

∂t
ut(x) =

κ
2

(∆ut)(x) + ut(x)Ḟt(x). (PAM)

This is the socalled “parabolic Anderson model,” and arises in many different
contexts in mathematics and theoretical physics [7, Introduction].

Theorem 2.5. Consider (PAM) when infx∈Rd u0(x) > 0 and f = h ∗ h̃ for
some nonnegative function h ∈ L2(Rd) that satisfies the following for some
a > 0:

∫
‖z‖>n[h(z)]2 dz = O(n−a) as n → ∞, Then for every t > 0 there exist

positive and finite constants At(κ) := A(t ,κ , d , f , a) and At = A(t , d , f(0) , a)
such that with probability one

At(κ) 6 lim sup
‖x‖→∞

log ut(x)
(log ‖x‖)1/2

6 At. (2.9)

Moreover: (i) There exists κ0 := κ0(f , d) ∈ (0 ,∞) such that infκ∈(0,κ0)At(κ) >
0 for all t > 0; and (ii) If f(x) > 0 for all x ∈ Rd, then infκ∈(0,κ1)At(κ) > 0
for all κ1 > 0.

The conclusion of Theorem 2.5 is that, under the condition of that theorem,
and if the viscosity coefficient κ is sufficiently small, then for all t > 0,

B

κ2ψ−1
6 lim sup
‖x‖→∞

log ut(x)
(log ‖x‖)ψ

6
B

κ2ψ−1
a.s., (2.10)

with nontrivial constants B and B that depend on (t , d , f)—but not on κ—and
ψ = 1/2. Loosely speaking, the preceding and its proof together imply that

sup
‖x‖<R

ut(x)
(log)
≈ econst·(logR)

1/2
, (2.11)

for all κ small and R large. This informal assertion was mentioned earlier in
Introduction.

In [10] we have proved that if Ḟ is replaced with space-time white noise—
that is, loosely speaking, when f = δ0—then (2.10) holds with ψ = 2/3. That
is,

sup
‖x‖<R

ut(x)
(log)
≈ econst·(logR)

2/3/κ1/3
, (2.12)
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for all κ > 0 and R large.
In some sense these two examples signify the extremes among all choices of

possible correlations. One might wonder if there are other correlation models
that interpolate between the mentioned cases of ψ = 1/2 and ψ = 2/3. Our
next theorem shows that the answer is “yes for every ψ ∈ (1/2 , 2/3) when d = 1
and every ψ ∈ (1/2 , 1) when d > 2.” However, our construction requires us
to consider certain correlation functions f that have the form h ∗ h̃ for some
h ∈W 1,2

loc (Rd) \ L2(Rd).
In fact, we choose and fix some number α ∈ (0 , d), and consider correlation

functions of the Riesz type; namely,

f(x) := const · ‖x‖−α for all x ∈ Rd. (2.13)

It is not hard to check that f is a correlation function that has the form h ∗ h̃
for some h ∈ W 1,2

loc (Rd), and h 6∈ L2(Rd); see also Example 3.2 below. Because
the Fourier transform of f is proportional to ‖ξ‖−(d−α), (2.1) is equivalent to
the condition that 0 < α < min(d , 2), and Dalang’s theory [12] tells us that if
u0 : Rd → R is bounded and measurable, then (SHE) has a solution [that is
also unique up to evanescence], provided that 0 < α < min(d , 2). Moreover,
when σ is a constant, (SHE) has a solution if and only if 0 < α < min(d , 2).

Our next result describes the “non Gaussian” asymptotic behavior of the
solution to the parabolic Anderson model (PAM) under these conditions.

Theorem 2.6. Consider (PAM) when infx∈Rd u0(x) > 0. If f(x) = const ·
‖x‖−α for some α ∈ (0 , d ∧ 2), then for every t > 0 there exist positive and
finite constants B and B—both depending only on (t , d , α)—such that (2.10)
holds with ψ := 2/(4− α); that is, for all t > 0,

B

κα/(4−α)
6 lim sup
‖x‖→∞

log ut(x)
(log ‖x‖)2/(4−α)

6
B

κα/(4−α)
a.s. (2.14)

Remark 2.7. We mention here that the constants in the above theorems might
depend on u0 but only through infx∈Rd u0(x) and supx∈Rd u0(x). We will not
keep track of this dependence. Our primary interest is the dependence on κ.

An important step in our arguments is to show that if x1, . . . , xN are suf-
ficiently spread out then typically ut(x1), . . . , ut(xN ) are sufficiently close to
being independent. This amounts to a sharp estimate for the socalled “correla-
tion length.” We estimate that, roughly using the arguments of [10], devised for
the space-time white noise. Those arguments are in turn using several couplings
[16, 24], which might be of some interest. We add that the presence of spatial
correlations adds a number of subtle [but quite serious] technical problems to
this program.
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3 A coupling of the noise

3.1 A construction of the noise

Let W := {Wt(x)}t>0,x∈Rd denote (d+ 1)-parameter Brownian sheet. That is,
W is a centered Gaussian random field with the following covariance structure:
For all s, t > 0 and x, y ∈ Rd,

Cov (Wt(x) ,Ws(y)) = (s ∧ t) ·
d∏
j=1

(|xj | ∧ |yj |)1(0,∞)(xjyj). (3.1)

Define Ft to be the sigma-algebra generated by all random variables of the
form Ws(x), as s ranges over [0 , t] and x over Rd. As is standard in stochastic
analysis, we may assume without loss of generality that {Ft}t>0 satisfy the
“usual conditions” of the general theory of stochastic processes [15, Chapter 4].

If h ∈ L2(Rd), then we may consider the mean-zero Gaussian random field
{(h ∗Wt)(x)}t>0,x∈Rd that is defined as the following Wiener integral:

(h ∗Wt)(x) :=
∫
Rd

h(x− z)Wt(dz). (3.2)

It is easy to see that the covariance function of this process is given by

Cov ((h ∗Wt)(x) , (h ∗Ws)(y)) = (s ∧ t)f(x− y), (3.3)

where we recall, from the introduction, that f := h ∗ h̃. In this way we can
define an isonormal noise F (h) via the following: For every φ ∈ S [the usual
space of all test functions of rapid decrease],

F
(h)
t (φ) :=

∫
(0,t)×Rd

φ(x)(h ∗ dWs)(x) dx (t > 0). (3.4)

It is easy to see that the following form of the stochastic Fubini theorem
holds:

F
(h)
t (φ) =

∫
(0,t)×Rd

(φ ∗ h̃)(x)W (dsdx). (3.5)

[Compute the L2(P)-norm of the difference.] In particular, {F (h)
t (φ)}t>0 is a

Brownian motion [for each fixed φ ∈ S], normalized so that

Var
(
F

(h)
1 (φ)

)
=
∫
Rd

∣∣∣(φ ∗ h̃)(x)
∣∣∣2 dx =

1
(2π)d

∫
Rd

|φ̂(ξ)|2f̂(ξ) dξ. (3.6)

[The second identity is a consequence of Plancherel’s theorem, together with
the fact that |ĥ(ξ)|2 = f̂(ξ).]

9



3.2 An extension

Suppose h ∈ L2(Rd), and that the underlying correlation function is described
by f := h ∗ h̃. Consider the following probability density function on Rd:

%(x) :=
d∏
j=1

(
1− cosxj
πx2

j

)
for x ∈ Rd. (3.7)

We may build an approximation {%n}n>1 to the identity as follows: For all real
numbers n > 1 and for every x ∈ Rd,

%n(x) := nd%(nx), so that %̂n(ξ) =
d∏
j=1

(
1− |ξj |

n

)+

, (3.8)

for all ξ ∈ Rd.

Lemma 3.1. If h ∈ L2(Rd), then for all φ ∈ S and integers n,m > 1,

E

(
sup

t∈(0,T )

∣∣∣F (h∗%n+m)
t (φ)− F (h∗%n)

t (φ)
∣∣∣2)

6
16d2T

(2π)d

∫
Rd

|φ̂(ξ)|2
(

1 ∧ ‖ξ‖
2

n2

)
f̂(ξ) dξ.

(3.9)

Proof. By the Wiener isometry and Doob’s maximal inequality, the left-hand
side of the preceding display is bounded above by 4TQ, where

Q :=
∫
Rd

∣∣∣(φ ∗ h̃ ∗ %n+m

)
(x)−

(
φ ∗ h̃ ∗ %n

)
(x)
∣∣∣2 dx

=
1

(2π)d

∫
Rd

|φ̂(ξ)|2 |%̂n+m(ξ)− %̂n(ξ)|2 f̂(ξ) dξ;
(3.10)

we have appealed to the Plancherel’s theorem, together with the fact that f̂(ξ) =
|ĥ(ξ)|2. Because

0 6 1− %̂n(ξ) 6 1−

((
1− 1

n
max

16j6d
|ξj |
)+
)d

6
d‖ξ‖
n

, (3.11)

it follows from the triangle inequality that |%̂n+m(ξ) − %̂n(ξ)| 6 2d‖ξ‖/n. This
implies the lemma, because we also have |%̂n+m(ξ) − %̂n(ξ)| 6 ‖%n+m‖L1(Rd) +
‖%n‖L1(Rd) = 2 6 2d.

Lemma 3.1 has the following consequence: Suppose h ∈ W 1,2
loc (Rd), and

f := h ∗ h̃ in the sense of generalized functions. Because h ∈ W 1,2
loc (Rd), the

dominated convergence theorem tells us that

lim
n→∞

∫
Rd

|φ̂(ξ)|2
(

1 ∧ ‖ξ‖
2

n2

)
f̂(ξ) dξ = 0 for all φ ∈ S. (3.12)

10



Consequently, F (h)
t (φ) := limn→∞ F

(h∗%n)
t (φ) exists in L2(P), locally uniformly

in t. Because L2(P)-limits of centered Gaussian random fields are themselves
Gaussian, it follows that F (h) := {F (h)

t (φ)}t>0,φ∈S is a centered Gaussian ran-
dom field, and {F (h)

t }t>0 is a Brownian motion scaled in order to satisfy (3.6).
We mention also that, for these very reasons, F (h) satisfies (3.5) a.s. for all t > 0
and φ ∈ S. The following example shows that one can construct the Gaussian
random field F (h) even when h ∈W 1,2

loc (Rd) is not in L2(Rd).

Example 3.2 (Riesz kernels). We are interested in correlation functions of the
Riesz type: f(x) = c0 ·‖x‖−α, where x ∈ Rd [and of course α ∈ (0 , d) so that f is
locally integrable]. If is well known that f̂(ξ) = c1 · ‖ξ‖−(d−α) for a positive and
finite constant c1 that depends only on (d , α , c0). We may define h ∈ L1

loc(Rd)
via ĥ(ξ) := c

1/2
1 · ‖ξ‖−(d−α)/2. It then follows that f = h ∗ h̃; and it is clear from

the fact that f̂ = |ĥ|2 that h ∈W 1,2
loc (Rd) if and only if

∫
‖ξ‖<1

‖ξ‖2f̂(ξ) dξ <∞,
which is satisfied automatically because α ∈ (0 , d).

Of course, even more general Gaussian random fields can be constructed
using only general theory. What is important for the sequel is that here we
have constructed a random-field-valued stochastic process (t , h) 7→ F

(h)
t ; i.e.,

the random fields {F (h)
t (φ)}φ∈S are all coupled together as (t , h) ranges over

the index set (0 ,∞)×W 1,2
loc (Rd).

3.3 A coupling of stochastic convolutions

Suppose Z := {Zt(x)}t>0,x∈Rd is a random field that is predictable with respect
to the filtration F , and satisfies the following for all t > 0 and x ∈ Rd:∫ t

0

ds
∫∫

Rd×Rd

dy dz pt−s(y−x)pt−s(z−x) |E (Zs(y)Zs(z))| f(y−z) <∞. (3.13)

Then we may apply the theories of Walsh [28, Chapter 2] and Dalang [12] to the
martingale measure (t , A) 7→ F

(h)
t (1A), and construct the stochastic convolution

p ∗ ZḞ (h) as the random field(
p ∗ ZḞ (h)

)
t
(x) :=

∫
(0,t)×Rd

pt−s(y − x)Zs(y)F (h)(dsdy). (3.14)

Also, we have the following Itô-type isometry:

E

∣∣∣∣∣
∫

(0,t)×Rd

pt−s(y − x)Zs(y)F (h)(dsdy)

∣∣∣∣∣
2
 (3.15)

=
∫ t

0

ds
∫
Rd

dy
∫
Rd

dz pt−s(y − x)pt−s(z − x)E [Zs(y)Zs(z)] f(y − z).

11



If h : Rd → R+ is nonnegative and measurable, then we define, for all real
numbers n > 1,

hn(x) := h(x)%̂n(x) for every x ∈ Rd. (3.16)

Some important features of this construction are that: (a) 0 6 hn 6 h pointwise;
(b) hn → h as n→∞, pointwise; (c) every hn has compact support; and (d) if
h ∈W 1,2

loc (Rd), then hn ∈W 1,2
loc (Rd) for all n > 1.

For the final results of this section we consider only nonnegative functions
h ∈ L2(Rd) that satisfy the following [relatively mild] condition:

sup
r>0

[
ra ·

∫
‖x‖>r

[h(x)]2 dx

]
<∞ for some a > 0. (3.17)

Lemma 3.3. If h ∈ L2(Rd) satisfies (3.17), then there exists b ∈ (0 , 2) such
that

sup
n>1

[
nb ·

∫
Rd

(
1 ∧ ‖x‖

2

n2

)
[h(x)]2 dx

]
<∞. (3.18)

Proof. We may—and will—assume, without loss of generality, that (3.17) holds
for some a ∈ (0 , 2). Then, thanks to (3.17),∫

‖x‖6n

‖x‖2

n2
[h(x)]2 dx 6

∞∑
k=0

4−k
∫

2−k−1n<‖x‖62−kn

[h(x)]2 dx

6 const ·
∞∑
k=0

4−k
(
2−k−1n

)−a
,

(3.19)

and this is O(n−a) since a ∈ (0 , 2). The lemma follows readily from this.

Proposition 3.4. If h ∈ L2(Rd) is nonnegative and satisfies (3.17), then for
all predictable random fields that satisfy (3.13), and for all δ > 1, x ∈ Rd,
n > 1, and k > 2,

M(k)
δ

(
p ∗ ZḞ (h) − p ∗ ZḞ (hn)

)
6 C

√
k

nb
M(k)

δ (Z) (3.20)

for some positive constant C which does not depend on κ, where b is the constant
introduced in Lemma 3.3 and M(k)

δ is defined in (1.5).

Remark 3.5. This proposition has a similar appearance as Lemma 3.1. How-
ever, note that here we are concerned with correlations functions of the form
q ∗ q̃ where q := h%̂n, whereas in Lemma 3.1 we were interested in q = h ∗ %n.
The methods of proof are quite different.

Proof. The present proof follows closely renewal-theoretic ideas that were de-
veloped in [19]. Because we wish to appeal to the same method several more
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times in the sequel, we describe nearly all the details once, and then refer to the
present discussion for details in later applications of this method.

Eq. (3.5) implies that p ∗ ZḞ (h) − p ∗ ZḞ (hn) = p ∗ ZḞ (D) a.s., where D :=
h− hn = h(1− %̂n) > 0. According to (BDG),

E

∣∣∣∣∣
∫

(0,t)×Rd

pt−s(y − x)Zs(y)F (D)(dsdy)

∣∣∣∣∣
k
 (3.21)

6 E


∣∣∣∣∣∣∣4k
∫ t

0

ds
∫∫

Rd×Rd

dy dz pt−s(y − x)pt−s(z − x)Zf (D)(y − z)

∣∣∣∣∣∣∣
k/2
 ,

where Z := |Zs(y)Zs(z)| and f (D) := D∗D̃; we observe that f (D) > 0. The clas-
sical Minkowski inequality for integrals implies that ‖

∫
(0,t)×Rd×Rd( · · · )‖k/2 6∫

(0,t)×Rd×Rd ‖ · · · ‖k/2. Therefore, it follows that

E

∣∣∣∣∣
∫

(0,t)×Rd

pt−s(y − x)Zs(y)F (D)(dsdy)

∣∣∣∣∣
k
 (3.22)

6

∣∣∣∣∣∣∣4k
∫ t

0

ds
∫∫

Rd×Rd

dy dz pt−s(y − x)pt−s(z − x)f (D)(z − y)‖Zs(y)Zs(z)‖k/2

∣∣∣∣∣∣∣
k/2

.

Young’s inequality shows that the function f (D) = D ∗ D̃ is bounded uniformly
from above by

‖D‖2L2(Rd) = ‖h(1− %̂n)‖2L2(Rd) (3.23)

6

(
d

n

)2 ∫
|z|∞6n

[‖z‖h(z)]2dz +
∫
|z|∞>n

[h(z)]2dz = O(n−b),

where |z|∞ := max16j6n |zj |; see also Lemma 3.3. Therefore

E

∣∣∣∣∣
∫

(0,t)×Rd

pt−s(y − x)Zs(y)F (D)(dsdy)

∣∣∣∣∣
k
 (3.24)

= O(n−bk/2)

∣∣∣∣∣∣∣k
∫ t

0

ds
∫∫

Rd×Rd

dy dz pt−s(y − x)pt−s(z − x)‖Zs(y)Zs(z)‖k/2

∣∣∣∣∣∣∣
k/2

.

According to the Cauchy–Schwarz inequality, ‖Zs(y)Zs(z)‖
1/2
k/2 is bounded above

by supw∈Rd ‖Zs(w)‖k 6 eδsM(k)
δ (Z), and the proposition follows.
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4 Moment and tail estimates

In this section we state and prove a number of inequalities that will be needed
subsequently. Our estimates are developed in different subsections for the dif-
ferent cases of interest [e.g., σ bounded, σ(u) ∝ u, f = h ∗ h̃ for h ∈ L2(Rd),
f(x) ∝ ‖x‖−α, etc.]. Although the techniques vary from one subsection to the
next, the common theme of this section is that all bounds are ultimately derived
by establishing moment inequalities of one sort or another.

4.1 An upper bound in the general h ∈ L2(Rd) case

Proposition 4.1. Let u denote the solution to (SHE), where f := h ∗ h̃ for
some nonnegative h ∈ L2(Rd). Then, for all t > 0 there exists a positive and
finite constant γ = γ(d , f(0) , t)—independent of κ—such that for all λ > e,

sup
x∈Rd

P {ut(x) > λ} 6 γ−1e−γ(log λ)2 . (4.1)

Proof. Because |(pt ∗u0)(x)| 6 ‖u0‖L∞(Rd) uniformly in x ∈ Rd, we can appeal
to (BDG) and (2.2) in order to obtain

‖ut(x)‖k 6 ‖u0‖L∞(Rd) +

∥∥∥∥∥
∫

(0,t)×Rd

pt−s(y − s)σ(us(y))F (h)(dsdy)

∥∥∥∥∥
k

6 ‖u0‖L∞(Rd) + 2
√
k

E


∫ t

0

ds
∫∫

Rd×Rd

dy dz Q


k/2



1/k

,

(4.2)

where Q := f(y − z)pt−s(y − x)pt−s(z − x)σ(us(y))σ(us(z)); see the proof of
Proposition 3.4 for more details on this method. Since |Q| is bounded above by
W := f(0)pt−s(y − x)pt−s(z − x)|σ(us(y)) · σ(us(z))| we find that

‖ut(x)‖k 6 ‖u0‖L∞(Rd) +

4k
∫ t

0

ds
∫∫

Rd×Rd

dy dz ‖W‖k/2


1/2

, (4.3)

Because |σ(z)| 6 |σ(0)| + Lipσ|z| for all z ∈ R, we may apply the Cauchy–
Schwarz inequality to find that ‖ut(x)‖k is bounded above by

‖u0‖L∞(Rd) +
(

4k · f(0)
∫ t

0

ds
∫
Rd

dy pt−s(y − x)‖σ(us(y))‖2k
)1/2

(4.4)

6 ‖u0‖L∞(Rd) +
(

4k · f(0)
∫ t

0

ds
∫
Rd

dy pt−s(y − x) [|σ(0)|+ Lipσ‖us(y)‖k]2
)1/2

.

We introduce a parameter δ > 0 whose value will be chosen later on. It follows
from the preceding and some algebra that

‖ut(x)‖2k 6 2‖u0‖2L∞(Rd) + 16kf(0)
(
|σ(0)|2t+ Lip2

σe2δtA
)
, (4.5)
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where A :=
∫ t

0
ds e−2δ(t−s) ∫

Rd dy pt−s(y − x)e−2δs‖us(y)‖2k. Note that

A 6
∫ t

0

ds e−2δ(t−s)
∫
Rd

dy pt−s(y − x)
[
M(k)

δ (u)
]2

6
1
2δ

[
M(k)

δ (u)
]2
. (4.6)

Therefore, for all δ > 0 and k > 2, [M(k)
δ (u)]2 is bounded above by

2‖u0‖2L∞(Rd) + 16kf(0)
(
|σ(0)|2 sup

t>0

[
te−2δt

]
+

Lip2
σ

2δ

[
M(k)

δ (u)
]2)

. (4.7)

Let us choose δ :=
(
1 ∨ 16f(0)Lip2

σ

)
k to find thatM(k)

δ (u)2 6 (4 supx∈Rd u0(x)2+
Ck) for some constant C > 0 that does not depend on k, and hence,

sup
x∈Rd

‖ut(x)‖k 6 const ·
√
k e(1∨16f(0)Lip2

σ)kt. (4.8)

Lemma 3.4 of [10] then tells us that there exists γ := γ(t) > 0 sufficiently small
[how small depends on t but not on (κ , x)] such that E[exp(γ(log+ ut(x))2)] <
∞. Therefore, the proposition follows from Chebyshev’s inequality.

4.2 Lower bounds for h ∈ L2(Rd) when σ is bounded

Lemma 4.2. Let u denote the solution to (SHE), where σ is assumed to be
bounded uniformly away from zero and infinity and infx∈Rd u0(x) > 0. If f =
h ∗ h̃ for some nonnegative h ∈ L2(Rd), then for all t > 0 there exist positive
and finite constants c1 = c1(κ , t , d , f) and c2 = c2(t , d , f)—independent of
κ—such that uniformly for all λ > e,

c−1
1 e−c1λ

2
6 inf
x∈Rd

P {|ut(x)| > λ} 6 sup
x∈Rd

P {|ut(x)| > λ} 6 c−1
2 e−c2λ

2
. (4.9)

Furthermore, supκ∈(0,κ0) c1(κ) <∞ for all κ0 <∞.

Proof. Choose and fix an arbitrary τ > 0, and consider the continuous L2(P)
martingale {Mt}t∈[0,τ ] defined by

Mt := (pτ ∗ u0)(x) +
∫

(0,t)×Rd

pτ−s(y − x)σ(us(y))F (h)(dsdy), (4.10)

as t ranges within (0 , τ). By Itô’s formula, for all even integers k > 2,

Mk
t = (pτ ∗ u0)(x)k + k

∫ t

0

Mk−1
s dMs +

(
k

2

)∫ t

0

Mk−2
s d〈M〉s. (4.11)

The final integral that involves quadratic variation can be written as∫ t

0

Mk−2
s

[∫
Rd

dy
∫
Rd

dz pτ−s(y − x)pτ−s(z − x)f(z − y)Z
]

ds, (4.12)
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where Z := σ(us(y))σ(us(z)) > ε20 for some ε0 > 0. This is because σ is
uniformly bounded away from 0. Thus, the last integral in (4.11) is bounded
below by

ε20

∫ t

0

Mk−2
s

[∫
Rd

dy
∫
Rd

dz pτ−s(y − x)pτ−s(z − x)f(z − y)
]

ds

= ε20

∫ t

0

Mk−2
s (pτ−s , pτ−s ∗ f)L2(Rd) ds,

(4.13)

where 〈a , b〉L2(Rd) :=
∫
Rd a(x)b(x) dx denotes the usual inner product on L2(Rd).

This leads us to the recursive inequality,

E(Mk
t ) >

(
inf
x∈Rd

u0(x)
)k

+
(
k

2

)
ε20 ·
∫ t

0

E(Mk−2
s )〈pτ−s , pτ−s ∗ f〉L2(Rd) ds.

(4.14)
Next, consider the Gaussian process {ζt}t>0 defined by

ζt := ε0

∫
(0,t)×Rd

pτ−s(y − x)F (h)(dsdy) (0 < t < τ). (4.15)

We may iterate, as was done in [10, proof of Proposition 3.6], in order to find
that

E(Mk
t ) > E

([
inf
x∈Rd

u0(x) + ζt

]k)
> E

(
ζkt
)

>
(
const · kE

[
ζ2
t

])k/2
. (4.16)

Now E(ζ2
t ) = ε20

∫ t
0
〈pτ−s , pτ−s ∗ f〉L2(Rd)ds. Since pτ−s ∈ S for all s ∈ (0 , τ),

Parseval’s identity applies, and it follows that

〈pτ−s , pτ−s ∗ f〉L2(Rd) =
1

(2π)d

∫
Rd

f̂(ξ)e−κ(τ−s)‖ξ‖2 dξ. (4.17)

Therefore,

E(ζ2
τ ) =

ε20
(2π)d

∫
Rd

f̂(ξ)

[
1− e−κτ‖ξ‖2

κ‖ξ‖2

]
dξ

>
ε20

2(2π)d

∫
Rd

f̂(ξ)
τ−1 + κ‖ξ‖2

dξ.

(4.18)

This requires only the elementary bound (1 − e−z)/z > (2(1 + z))−1, valid for
all z > 0. Since Mt = ut(x) when t = τ , it follows that

c(κ)
√
k 6 inf

x∈Rd
‖ut(x)‖k, (4.19)

for all k > 2, where c(κ) = c(t ,κ , f , d) is positive and finite, and has the
additional property that

inf
κ∈(0,κ0)

c(κ) > 0 for all κ0 > 0. (4.20)
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Similar arguments reveal that

sup
x∈Rd

‖ut(x)‖k 6 c′
√
k, (4.21)

for all k > 2, where c′ is a positive and finite constant that depends only on
(t , f , d). The result follows from the preceding two moment estimates (see [10]
for details).

Lemma 4.3. Let u denote the solution to (SHE), where σ is assumed to be
bounded uniformly away from zero and infx∈Rd u0(x) > 0. If f = h∗ h̃ for some
nonnegative h ∈ L2(Rd), then for all t > 0 there exists a positive and finite
constant a(κ) := a(κ , t , d , f) such that uniformly for every λ > e,

P{|ut(x)| > λ} >
exp

(
−a(κ)λ4

)√
a(κ)

. (4.22)

Furthermore, supκ∈(0,κ0) a(κ) <∞ for all κ0 > 0.

Proof. The proof of this proposition is similar to the proof of Proposition 3.7
in the companion paper [10], and uses the following elementary fact [called the
“Paley–Zygmund inequality”]: If Z ∈ L2(P) is nonnegative and ε ∈ (0 , 1), then

P {Z > (1− ε)EZ} >
(εEZ)2

E(Z2)
. (4.23)

This is a ready consequence of the Cauchy–Schwarz inequality.
Note, first, that the moment bound (4.19) continues to hold for a constant

c(κ) = c(t ,κ , f , d) that satisfies (4.20). We can no longer apply (4.21), how-
ever, since that inequality used the condition that σ is bounded above; a prop-
erty that need not hold in the present setting. Fortunately, the general estimate
(4.8) is valid with “const” not depending on κ. Therefore, we appeal to the
Paley–Zygmund inequality (4.23) to see that

P
{
|ut(x)| > 1

2
‖ut(x)‖2k

}
>

[
E
(
|ut(x)|2k

)]2
4E (|ut(x)|4k)

> const · [c(κ)]2e−Ck
2
, (4.24)

as k → ∞, where C ∈ (0 ,∞) does not depend on (k ,κ). Since ‖ut(x)‖2k >
c(κ) ·

√
2k, it follows that P{|ut(x)| > c(κ) ·

√
k/2} > exp(−C ′k2) as k → ∞

for some C ′ which depends only on t. We obtain the proposition by considering
λ between c(κ) ·

√
k/2 and c(κ) ·

√
(k + 1)/2.

4.3 A lower bound for the parabolic Anderson model for
h ∈ L2(Rd)

Throughout this subsection we consider u to be the solution to the parabolic
Anderson model (PAM) in the case that infx∈Rd u0(x) > 0.
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Proposition 4.4. There exists a constant Λd ∈ (0 ,∞)—depending only on
d—such that for all t,κ > 0 and k > 2,[

inf
x∈Rd

u0(x)
]k

eΛdatk
2

6 E
(
|ut(x)|k

)
6
[

sup
x∈Rd

u0(x)
]k

etf(0)k2
, (4.25)

where at = at(f ,κ) > 0 for all t,κ > 0, and is defined by

at := sup
δ>0

[
δ2

4κ

(
1 ∧ 4κt

δ2

)
inf

x∈B(0,δ)
f(x)

]
. (4.26)

This proves, in particular, that the exponent estimate
(
1 ∨ 16f(0)Lip2

σ

)
k2t,

derived more generally in (4.8), is sharp—up to a constant—as a function of k.
The proof of Proposition 4.4 hinges on the following, which by itself is a

ready consequence of a moment formula of Conus [9]; see also [3, 21] for related
results and special cases.

Lemma 4.5 ([9]). For all t > 0, and x ∈ Rd, we have the following inequalities

E
(
|ut(x)|k

)
>

[
inf
x∈Rd

u0(x)
]k
· E exp

∑∑
16i 6=j6k

∫ t

0

f
(√

κ
[
b(i)r − b(j)r

])
dr

 ,

E
(
|ut(x)|k

)
6

[
sup
x∈Rd

u0(x)
]k
· E exp

∑∑
16i 6=j6k

∫ t

0

f
(√

κ
[
b(i)r − b(j)r

])
dr

 ,

(4.27)

where b(1), b(2), . . . denote independent standard Brownian motions in Rd.

Proof of Proposition 4.4. The upper bound for E(|ut(x)|k) follows readily from
Lemma 4.5 and the basic fact that f is maximized at the origin.

In order to establish the lower bound recall that f is continuous and f(0) > 0.
Because f(x) > q1B(0,δ)(x) for all δ > 0, with q = q(δ) := infx∈B(0,δ) f(x), it
follows that if b(1), . . . , b(k) are independent d-dimensional Brownian motions,
then∑∑

16i 6=j6k

∫ t

0

f
(√

κ
[
b(i)r − b(j)r

])
dr

> q
∑∑
16i6=j6k

∫ t

0

1B(0,δ/
√

κ)

(
b(i)r − b(j)r

)
dr

> q
∑∑
16 6=j6k

∫ t

0

1B(0,δ/(2
√

κ))(b
(i)
r )1B(0,δ/2

√
κ)(b

(j)
r ) dr.

(4.28)

Recall Jensen’s inequality,
E(eZ) > eEZ , (4.29)
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valid for all nonnegative random variables Z. Because of (4.29), Lemma 4.5 and
the preceding, we can conclude that

E
(
|ut(x)|k

)
> Ik · E exp

q∑∑
16i 6=j6k

∫ t

0

1B(0,δ/(2
√

κ))(b
(i)
r )1B(0,δ/2

√
κ)(b

(j)
r ) dr


= Ik · exp

(
qk(k − 1) ·

∫ t

0

[
G

(
δ

2
√

κ
√
r

)]2

dr

)
,

(4.30)

where I := inf u0 and G(z) := (2π)−d/2
∫
‖x‖6z e−‖x‖

2/2 dx for all z > 0. Because
k(k − 1) > k2/4 for all k > 2, and we find that E(|ut(x)|k) > Ik · exp(Aδk2),
where Aδ is defined as

q

4

∫ t

0

[
G

(
δ

2
√

κ
√
r

)]2

dr = inf
x∈B(0,δ)

f(x) ·
∫ t

0

[
1
2
G

(
δ

2
√

κ
√
r

)]2

dr. (4.31)

Finally, we observe that

0 < Λ̃d := inf
z>0

[ 1
2G(z)
1 ∧ zd

]1/2

<∞. (4.32)

A few lines of computation yield the bound, supδ>0Aδ > Λ̃dat. The lemma
follows from this by readjusting and relabeling the constants.

5 Localization when h ∈ L2(Rd) satisfies (3.17)

Throughout this section we assume that h ∈ L2(Rd) is nonnegative and satisfies
condition (3.17). Moreover, we let u denote the solution to (SHE).

In order to simplify the notation we define, for every x := (x1, x2, . . . , xd) ∈
Rd and a ∈ R+,

[x− a , x+ a] := [x1 − a , x1 + a]× · · · × [xd − a , xd + a]. (5.1)

That is, [x− a , x+ a] denotes the `∞ ball of radius a around x.
Given an arbitrary β > 0, define U (β) to be the solution to the random

integral equation

U
(β)
t (x) (5.2)

= (pt ∗ u0)(x) +
∫

(0,t)×[x−β
√
t,x+β

√
t]

pt−s(y − x)σ
(
U (β)
s (y)

)
F (hβ)(dsdy),

where hβ is defined in (3.16). A comparison with the mild form (2.2) of the
solution to (SHE) shows that U (β) is a kind of “localized” version of u. Our
goal is to prove that if β is sufficiently large, then U

(β)
t (x) ≈ ut(x).
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The method of Dalang [12] can be used to prove that the predictable ran-
dom field U (β) exists, is unique up to a modification, and satisfies the estimate
supt∈[0,T ] supx∈Rd E(|U (β)

t (x)|k) < ∞ for every T > 0 and k > 2. Further-
more, the method of Foondun and Khoshnevisan [19] shows that, in fact U (β)

satisfies a similar bound as does u in (4.8). Namely, there exists a constant
D1 ∈ (0 ,∞)—depending on σ and t—such that for all t > 0 and k > 2,

sup
β>0

sup
x∈Rd

E
(
|U (β)
t (x)|k

)
6 D1eD1k

2t. (5.3)

We skip the details of the proofs of these facts, as they require only simple
modifications to the methods of [12, 19].

Remark 5.1. We emphasize that D1 depends only on (t , f(0) , d, σ). In par-
ticular, it can be chosen to be independent of κ. In fact, D1 has exactly the
same parameter dependencies as the upper bound for the moment estimate in
(4.8); and the two assertions holds for very much the same reasons.

Lemma 5.2. For every T > 0 there exists finite and positive constants G∗
and F∗—depending only on (T , f(0) , d ,κ , b , σ)—such that for sufficiently large
β > 0 and k > 1,

sup
t∈[0,T ]

sup
x∈Rd

E
(∣∣∣ut(x)− U (β)

t (x)
∣∣∣k) 6

Gk∗k
k/2 exp(F∗k2)
βkb/2

, (5.4)

where b ∈ (0 , 2) was introduced in Lemma 3.3.

Proof. By the triangle inequality,∥∥∥ut(x)− U (β)
t (x)

∥∥∥
k

(5.5)

6
∥∥∥ut(x)− V (β)

t (x)
∥∥∥
k

+
∥∥∥V (β)

t (x)− Y (β)
t (x)

∥∥∥
k

+
∥∥∥Y (β)

t (x)− U (β)
t (x)

∥∥∥
k
,

where

V
(β)
t (x) := (pt ∗ u0)(x) +

∫
(0,t)×Rd

pt−s(y − x)σ
(
U (β)
s (y)

)
F (h)(dsdy), (5.6)

and

Y
(β)
t (x) := (pt ∗ u0)(x) +

∫
(0,t)×Rd

pt−s(y − x)σ
(
U (β)
s (y)

)
F (hβ)(dsdy). (5.7)

In accord with (3.24) and (5.3),

‖V (β) − Y (β)‖k 6 const ·

√
kt

βb
eD1tk (5.8)
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where we remind that D1 is a constant that does not depend on κ. Next
we bound the quantity ‖Y (β) − U (β)‖k, using the Burkholder–Davis–Gundy
inequality, (BDG) and obtain the following:∥∥∥Y (β)

t (x)− U (β)
t (x)

∥∥∥
k

=

∥∥∥∥∥
∫

(0,t)×[x−β
√
t,x+β

√
t]c
pt−s(y − x)σ

(
U (β)
s (y)

)
F (hβ)(dsdy)

∥∥∥∥∥
k

6 const ·
√
kf(0)

(∫ t

0

ds
∫

[x−β
√
t,x+β

√
t]c

dy
∫

[x−β
√
t,x+β

√
t]c

dz W

)1/2

,

(5.9)

where

W := pt−s(y − x)pt−s(z − x)
(

1 +
∥∥∥U (β)

s (y)
∥∥∥
k

)(
1 +

∥∥∥U (β)
s (z)

∥∥∥
k

)
. (5.10)

Therefore, (5.3) implies that∥∥∥Y (β)
t (x)− U (β)

t (x)
∥∥∥
k

6 D2eD2tk

√
kf(0) · W̃, (5.11)

where D2 ∈ (0 ,∞) depends only on d, f(0), and t, and

W̃ :=
∫ t

0

ds

(∫
[x−β

√
t, x+β

√
t]c

dy pt−s(y − x)

)2

. (5.12)

Before we proceed further, let us note that∫
z∈R:
|z|>β

√
t

e−z
2/(2κ(t−s))√

2πκ(t− s)
dz 6 2 · exp

(
− β2t

4κ(t− s)

)
. (5.13)

Using the above in (5.11), we obtain∥∥∥Y (β)
t (x)− U (β)

t (x)
∥∥∥
k

6 2D2eD2tk
√
ktf(0) exp

(
−dβ

2

4κ

)
. (5.14)

Next we estimate ‖ut(x)− V (β)
t (x)‖k. An application of (BDG) yields∥∥∥ut(x)− V (β)

t (x)
∥∥∥
k

(5.15)

6

∥∥∥∥∥
∫

(0,t)×Rd

pt−s(y − x)
{
σ(us(y))− σ(U (β)

s (y))
}
F (h)(dsdy)

∥∥∥∥∥
k

6 2
√
k

∥∥∥∥∫ t

0

ds
∫
Rd

dy
∫
Rd

dz f(y − z)pt−s(y − x)pt−s(z − x)Q
∥∥∥∥
k/2

,
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where Q := |σ(us(y))−σ(U (β)
s (y))| · |σ(us(z))−σ(U (β)

s (z))|. Since σ is Lipschitz
continuous, it follows from Minkowski’s inequality that∥∥∥ut(x)− V (β)

t (x)
∥∥∥2

k
6 4Lip2

σkf(0)
∫ t

0

Q∗s ds, (5.16)

where Q∗s := supy∈Rd ‖us(y) − U
(β)
s (y)‖2k. Equations (5.5), (5.8) and (5.14)

together imply thatQ∗t 6 const·ktβ−beconst·kt+const·kf(0)·
∫ t

0
Q∗s ds. Therefore,

Q∗t 6 const ·
(
tkeconst·kt

βb

)
for all t > 0, (5.17)

owing to Gronwall’s inequality. Because “const” does not depend on (k , t), we
take both sides to the power k/2 in order to finish the proof.

Now, let us define U (β,n)
t to be the nth Picard-iteration approximation of

U
(β)
t (x). That is , U (β,0)

t (x) := u0(x) , and for all l > 0,

U
(β,l+1)
t (x)

:= (pt ∗ u0) (x) +
∫

(0,t)×[x−β
√
t,x+β

√
t]

pt−s(y − x)σ
(
U (β,l)
s (y)

)
F (hβ)(dsdy).

(5.18)

Lemma 5.3. For every T > 0 there exists finite and positive constants G
and F—depending only on (T , f(0) , d ,κ , b , σ)—such that for sufficiently large
β > 0 and k > 1,

sup
t∈[0,T ]

sup
x∈Rd

E
(∣∣∣ut(x)− U (β,[log β]+1)

t (x)
∣∣∣k) 6

Gkkk/2 exp(Fk2)
βkb/2

, (5.19)

where b ∈ (0 , 2) was introduced in Lemma 3.3.

Proof. The method of Foondun and Khoshnevisan [17] can be used to show that
if δ := D′k for a sufficiently-large positive and finite constant D′, then

M(k)
δ

(
U (β) − U (β,n)

)
6 const · e−n for all n > 0 and k ∈ [2 ,∞). (5.20)

To elaborate, we replace the un of Ref. [17, (5.36)] by our U (β,n) and obtain

‖U (β,n+1) − U (β,n)‖k,θ 6 ‖U (β,n) − U (β,n−1)‖k,θ ·Q(k , θ), (5.21)

where ‖X‖k,θ := {supt>0 supx∈R e−θtE(|Xt(x)|k)}1/k = M(k)
θ/k(X), for all ran-

dom fields {Xt(x)}t>0,x∈Rd , and Q(k , θ) is defined in Theorem 1.3 of [17]. We
recall from [17] that Q(k , θ) satisfies the following bounds:

Q(k , θ) 6

√
4kLip2

σ ·Υ
(

2θ
k

)
6 const ·

k‖h‖L2(Rd)

θ1/2
. (5.22)
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[The function Υ is defined in [17, (1.8)].] Therefore, it follows readily from these
bounds that if θ := D′′k2 for a large enough D′′ > 0, then

‖U (β,n+1) − U (β,n)‖k,θ 6 e−1‖U (β,n) − U (β,n−1)‖k,θ. (5.23)

We obtain (5.20) from this inequality.
Finally we set n := [log β]+1 and apply the preceding together with Lemma

5.2 to finish the proof.

For every x, y ∈ Rd, let us define

D(x , y) := min
16l6d

|xl − yl|. (5.24)

Lemma 5.4. Choose and fix β > 1, t > 0 and let n := [log β] + 1. Also fix
x(1), x(2), · · · ∈ Rd such that D(x(i) , x(j)) > 2nβ(1+

√
t). Then {U (β,n)

t (x(j))}j∈Z
are independent random variables.

Proof. The lemma follows from the recursive definition of the U (β,n)’s. Indeed,
U

(β,n)
t (x) depends on U (β,n−1)

s (y), y ∈ [x− β
√
t , x+ β

√
t], s ∈ [0, t]. An induc-

tion argument shows that U (β,n)
t (x) depends only on the values of U (β,1)

s (y), as
y varies in [x− (n− 1)β

√
t , x+ (n− 1)β

√
t] and s in [0 , t].

Finally, we observe that {U (β,1)
s (x)}s∈[0,t], x∈Rd is a Gaussian random field

that has the property that U (β,1)
s (x) and U

(β,1)
s (x′) are independent whenever

D(x , x′) > 2β(1 +
√
t). [This assertion follows from a direct covariance calcula-

tion in conjunction with the fact that (hβ ∗ h̃β)(z) = 0 when D(0, z) > 2β].

6 Proof of Theorem 2.1

In this section we prove our first main theorem (Theorem 2.1). It is our first
proof primarily because the following derivation is the least technical and re-
quires that we keep track of very few parameter dependencies in our inequalities.

Define for all k ∈ [2 ,∞), β > 0, and predictable random fields Z,

Y(k)
β (Z) := sup

t>0
x∈Rd

[
exp

(
−βt+

√
β

8κ
‖x‖

)
· ‖Zt(x)‖k

]
. (6.1)

Let us begin by developing a weighted Young’s inequality for stochastic
convolutions. This is similar in spirit to the results of Conus and Khoshnevisan
[11], extended to the present setting of correlated noise. However, entirely new
ideas are needed in order to develop this result; therefore, we include a complete
proof.

Proposition 6.1 (A weighted stochastic Young inequality). Let Z := {Zt(x)}t>0,x∈Rd

be a predictable random field. Then for all real numbers k ∈ [2 ,∞) and β > 0,

Y(k)
β

(
p ∗ ZḞ

)
6 Y(k)

β (Z) ·
√

2dk(Rβ/4f)(0), (6.2)

where Rβ is the resolvent operator defined in (2.3).
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Proof. For the sake of typographical ease we write c = c(β) :=
√
β/(8κ)

throughout the proof.
Our derivation of (3.22) yields the following estimate:∥∥∥(p ∗ ZḞ)

t
(x)
∥∥∥2

k

6 4k
∫ t

0

ds
∫
Rd

dy
∫
Rd

dz f(y − z)pt−s(y − x)pt−s(z − x) · Z,
(6.3)

where Z := ‖Zs(y) · Zs(z)‖k/2 6 ‖Zs(y)‖k · ‖Zs(z)‖k. Consequently, for all
β > 0,∥∥∥(p ∗ ZḞ)

t
(x)
∥∥∥2

k
(6.4)

6 4k
[
Y(k)
β (Z)

]2
·
∫ t

0

ds
∫
Rd

dy
∫
Rd

dz f(y − z)Ps(y , y − x)Ps(z , z − x),

where Ps(a , b) := eβs−c‖a‖pt−s(b) for all s > 0 and a ∈ Rd. Since ‖y‖ >
‖x‖ − ‖x− y‖ and ‖z‖ > ‖x‖ − ‖x− z‖, it follows that∥∥∥(p ∗ ZḞ)

t
(x)
∥∥∥2

k
(6.5)

6 4ke2βt−2c‖x‖
[
Y(k)
β (Z)

]2
·
∫ ∞

0

e−βs (Qs ∗Qs ∗ f) (0) ds,

where
Qs(a) := e−(βs/2)+c‖a‖ps(a) for all s > 0 and a ∈ Rd. (6.6)

Clearly,

if
βs

2
> c‖a‖, then Qs(a) 6 ps(a). (6.7)

Now consider the case that (βs/2) < c‖a‖. Then,

c‖a‖ − ‖a‖
2

2sκ
= −‖a‖

2

2sκ

(
1− 2sκc

‖a‖

)
< −‖a‖

2

2sκ

(
1− 4κc2

β

)
= −‖a‖

2

4sκ
. (6.8)

We can exponentiate the preceding to see that, in the case that (βs/2) < c‖a‖,

Qs(a) 6
e−(βs/2)−‖a‖2/(4sκ)

(2πκs)d/2
6 2d/2p2s(a). (6.9)

Since ps(a) 6 2d/2p2s(a) for all s > 0 and a ∈ Rd, we deduce from (6.7) and (6.9)
that (6.9) holds for all s > 0 and a ∈ Rd. Therefore, the Chapman–Kolmogorov
equation implies that Qs ∗Qs 6 2dp4s, and hence∫ ∞

0

e−βs (Qs ∗Qs ∗ f) (0) ds 6 2d
∫ ∞

0

e−βs (p4s ∗ f) (0) ds

= 2d−2(Rβ/4f)(0).
(6.10)

The proposition now follows from (6.5).
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Next we state and prove an elementary estimate for the heat semigroup.

Lemma 6.2. Suppose φ : Rd → R is a measurable function and L(c) :=
supx∈Rd(ec‖x‖|φ(x)|) is finite for some c > 0. Then Y(k)

8c2κ(p ∗ φ) 6 2d/2L(c) for
all k ∈ [2 ,∞).

Proof. Let us define β := 8c2κ, so that c =
√
β/(8κ). Then,

e−βt+c‖x‖ |(pt ∗ φ)(x)| =
∫
Rd

e−βt+c‖x‖pt(x− y)|φ(y)|dy

6
∫
Rd

e−βt+c‖x−y‖pt(x− y) · ec‖y‖|φ(y)|dy (6.11)

6 L(c)
∫
Rd

e−βt+c‖z‖pt(z) dz 6 L(c)
∫
Rd

Qt(z) dz,

where the function Qt(z) is defined in (6.6). We apply (6.9) to deduce from this
that e−βt+c‖x‖|(pt ∗ φ)(x)| 6 2d/2L(c)

∫
Rd p2t(z) dz = 2d/2L(c). Optimize over t

and x to finish.

We will next see how to combine the preceding results in order to establish
the rapid decay of the moments of the solution to (SHE) as ‖x‖ → ∞.

Proposition 6.3. Recall that u0 : Rd → R is a bounded and measurable func-
tion and σ(0) = 0. If, in addition, lim sup‖x‖→∞ ‖x‖−1 log |u0(x)| = −∞, then

lim sup
‖x‖→∞

log E(|ut(x)|k)
‖x‖

< 0 for all t > 0 and k ∈ [2 ,∞). (6.12)

Proof. For all t > 0 and x ∈ Rd, define u(0)
t (x) := u0(x), and

u
(l+1)
t (x) := (pt ∗ u0)(x) +

(
p ∗
(
σ ◦ u(l)

)
Ḟ
)
t
(x) for all l > 0. (6.13)

That is, u(l) is the lth level in the Picard iteration approximation to the solution
u. By the triangle inequality,

Y(k)
β

(
u(l+1)

)
6 Y(k)

β (p ∗ u0) + Y(k)
β

((
p ∗
(
σ ◦ u(l)

)
Ḟ
))

6 Y(k)
β (p ∗ u0) + Y(k)

β

(
σ ◦ u(l)

)
·
√

2dk(Rβ/4f)(0);
(6.14)

see Proposition 6.1. Because |σ(z)| 6 Lipσ|z| for all z ∈ Rd, it follows from the
triangle inequality that

Y(k)
β

(
u(l+1)

)
6 Y(k)

β (p ∗ u0) + Y(k)
β

(
u(l)
)
·
√

2dLip2
σk(Rβ/4f)(0). (6.15)

By the dominated convergence theorem, limq→∞(Rqf)(0) = 0. Therefore, we
may choose β large enough to ensure that the coefficient of Y(k)

β (u(l)) in the
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preceding is at most 1/2. The following holds for this choice of β:

sup
l>0
Y(k)
β

(
u(l+1)

)
6 2Y(k)

β (p ∗ u0) 6 2(d+2)/2 sup
x∈Rd

(
e‖x‖
√
β/(8κ)|u0(x)|

)
;

(6.16)
we have applied Lemma 6.2 in order to deduce the final inequality. According
to the theory of Dalang [12], u(l)

t (x) → ut(x) in probability as l → ∞, for all
t > 0 and x ∈ Rd. Therefore, Fatou’s lemma implies that

Y(k)
β (u) 6 2(d+2)/2 sup

x∈Rd

(
e‖x‖
√
β/(8κ)|u0(x)|

)
; (6.17)

whence follows the result [after some arithmetic].

Next we introduce a fairly crude estimate for the spatial oscillations of the
solution to (SHE), in the sense of Lk(P). We begin with an estimate of L1(Rd)-
derivatives of the heat kernel. This is without doubt a well-known result, though
we could not find an explicit reference. In any event, the proof is both elemen-
tary and short; therefore we include it for the sake of completeness.

Lemma 6.4. For all s > 0 and x ∈ Rd,∫
Rd

|ps(y − x)− ps(y)| dy 6 const ·
(
‖x‖√

κs
∧ 1
)
, (6.18)

where the implied constant does not depend on (s , x).

Proof. For s fixed, let us define

µd(r) = µd(r ; s) := sup
z∈Rd

‖z‖6r

∫
Rd

|ps(y − z)− ps(y)|dy for all r > 0. (6.19)

First consider the case that d = 1. In that case, we may use the differential
equation p′s(w) = −(w/κs)ps(w) in order to see that

µ1(|x|) = sup
z∈(0,|x|)

∫ ∞
−∞

∣∣∣∣∫ y

y−z
p′s(w) dw

∣∣∣∣ dy

6
1

κs
sup

z∈(0,|x|)

∫ ∞
−∞

dy
∫ y

y−z
dw |w|ps(w) =

|x|
κs

∫ ∞
−∞
|w|ps(w) dw

=

√
2
πκs

|x| for all x ∈ R.

(6.20)

For general d, we can integrate one coordinate at a time and then apply the
triangle inequality to see that for all x := (x1 , . . . , xd) ∈ Rd, µd(‖x‖) 6∑d
j=1 µ1(‖x‖) 6

√
2/(πκs) d‖x‖. Because |ps(y−x)−ps(y)| 6 ps(y−x)+ps(y),

we also have µd(‖x‖) 6 2.
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Proposition 6.5. Let us assume that: (i) lim sup‖x‖→∞ ‖x‖−1 log |u0(x)| =

−∞, (ii) σ(0) = 0, and (iii)
∫ 1

0
s−a(ps ∗ f)(0) ds < ∞ for some a ∈ (0 , 1/2).

Then for all t > 0 and k ∈ [2 ,∞) there exists a constant C ∈ (1 ,∞) such that
uniformly for all x, x′ ∈ Rd that satisfy ‖x− x′‖ 6 1,

E
(
|ut(x)− ut(x′)|k

)
6 C exp

(
−‖x‖ ∧ ‖x

′‖
C

)
· ‖x− x′‖ak/4. (6.21)

Proof. First of all, we note that

|(pt ∗ u0)(x)− (pt ∗ u0)(x′)| 6 ‖u0‖L∞(Rd) ·
∫
Rd

|pt(y − x)− pt(y − x′)| dy

6 const · ‖x− x′‖; (6.22)

see Lemma 6.4. Now we may use this estimate and the same argument that led
us to (3.22) in order to deduce that for all ` ∈ [2 ,∞),

‖ut(x)− ut(x′)‖2` 6 const · ‖x− x′‖2 (6.23)

+ const ·
∫ t

0

ds
∫
Rd

dy
∫
Rd

dz f(y − z)ABs(y)Bs(z),

where

A := As(y , z) := ‖us(y) · us(z)‖2`/2 , and

Bs(w) := |pt−s(w − x)− pt−s(w − x′)| for all w ∈ Rd.
(6.24)

According to [12], sups∈[0,T ] supy,z∈Rd A <∞. On the other hand, (Bs∗f)(z) 6
2 supw∈Rd(pt−s ∗ f)(w), and the latter quantity is equal to 2(pt−s ∗ f)(0) since
pr ∗ f is positive definite and continuous for all r > 0 [whence is maximized at
the origin]. We can summarize our efforts as follows:

‖ut(x)− ut(x′)‖2` (6.25)

6 const · ‖x− x′‖2 + const ·
∫ t

0

(ps ∗ f)(0) ds
∫
Rd

dz |ps(z − x)− ps(z − x′)|

6 const · ‖x− x′‖2 + const ·
∫ t

0

(ps ∗ f)(0)
(
‖x− x′‖√

s
∧ 1
)

ds;

see Lemma 6.4 below, for instance. We remark that the implied constants do
not depend on (x , x′). Since r ∧ 1 6 r2a for all r > 0, it follows that

‖ut(x)− ut(x′)‖` 6 const · ‖x− x′‖a/2, (6.26)

where the implied constant does not depend on (x , x′) as long as ‖x− x′‖ 6 1
[say]. Next we write

E
(
|ut(x)− ut(x′)|k

)
6 E

(
|ut(x)− ut(x′)|k/2 · {|ut(x)|+ |ut(x′)|}

k/2
)

6 const · ‖ut(x)− ut(x′)‖
k/2
k

(
‖ut(x)‖k/2k ∨ ‖ut(x′)‖k/2k

)
,

(6.27)
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by Hölder’s inequality. Proposition 6.3 and Eq. (6.26) together complete our
proof.

Proposition 6.5 and a quantitative form of Kolmogorov’s continuity lemma
[13, pp. 10–12] readily imply the following.

Corollary 6.6. Let us assume that: (i) lim sup‖x‖→∞ ‖x‖−1 log |u0(x)| = −∞,

(ii) σ(0) = 0, and (iii)
∫ 1

0
s−a(ps ∗f)(0) ds <∞ for some a ∈ (0 , 1/2). Then for

all t > 0 and k ∈ [2 ,∞) there exists a constant C ∈ (1 ,∞) such that uniformly
for all hypercubes T ⊂ Rd of sidelength 2/

√
d,

E
(

sup
x,x′∈T

|ut(x)− ut(x′)|k
)

6 C exp
(
− 1
C

inf
z∈T
‖z‖
)
. (6.28)

Finally, we are in position to establish Theorem 2.1.

Proof of Theorem 2.1. Define

T (x) :=
{
y ∈ Rd : max

16j6d
|xj − yj | 6

2√
d

}
for every x ∈ Rd. (6.29)

Then, for all t > 0 and k ∈ [2 ,∞), there exists a constant c ∈ (0 , 1) such that
uniformly for every x ∈ Rd,

E

(
sup

y∈T (x)

|ut(y)|k
)

6 2k
{

E
(
|ut(x)|k

)
+ E

(
sup

y∈T (x)

|ut(y)− ut(x)|k
)}

6
1
c
·
{

e−c‖x‖ + exp
(
−c inf

y∈T (x)
‖y‖
)}

; (6.30)

see Proposition 6.3 and Corollary 6.6. Because infy∈T (x) ‖y‖ > ‖x‖ − 1 for
all x ∈ Zd, the preceding is bounded by const · exp(−const · ‖x‖), whence
E(supz∈Rd |ut(z)|k) 6

∑
x∈Zd E(supy∈T (x) |ut(y)|k) is finite.

7 Proof of Theorem 2.3

Throughout this section, we assume that f = h∗h̃ for some nonnegative function
h ∈ L2(Rd) that satisfies (3.17). Moreover, we let u denote the solution to
(SHE).

7.1 The first part

Here and throughout we define for all R, t > 0

u∗t (R) := sup
‖x‖6R

|ut(x)|. (7.1)

As it turns out, it is easier to prove slightly stronger statements than (2.7) and
(2.8). The following is the stronger version of (2.7).

28



Proposition 7.1. If σ is bounded uniformly away from zero, then

lim inf
R→∞

u∗t (R)
(logR)1/4

> 0 a.s. (7.2)

Proof. Let us introduce a free parameter N > 1, which is an integer that we
will select carefully later on in the proof.

As before, let us denote n = [log β]+1. For all θ,R > 0 and x(1), x(2), · · · , x(N) ∈
Rd, we may write

P
{

max
16j6N

|ut(x(j))| < θ(logR)1/4

}
6 P

{
max

16j6N
|U (β,n)
t (x(j))| < 2θ(logR)1/4

}
+ P

{
max

16j6N
|ut(x(j))− U (β,n)

t (x(j))| > θ(logR)1/4

}
.

(7.3)

We bound these quantities in order.
Suppose in addition that D(x(i) , x(j)) > 2nβ(1 +

√
t) whenever i 6= j,

where D(x , y) was defined in (5.24). Because of Lemma 5.4, the collection
{U (β,n)

t (xj)}Nj=1 is comprised of independent random variables. Consequently,

P
{

max
16j6N

|U (β,n)
t (x(j))| < 2θ(logR)1/4

}
6
(

P
{∣∣∣U (β,n)

t (x(1))
∣∣∣ < 2θ(logR)1/4

})N
6 (T1 + T2)N ,

(7.4)

where

T1 := sup
x∈Rd

P
{
|ut(x)| < 3θ(logR)1/4

}
,

T2 := sup
x∈Rd

P
{
|ut(x)− U (β,n)

t (x)| > θ(logR)1/4
}
.

(7.5)

According to Lemma 4.3, T1 6 1−a(κ)−
1
2R−2(3θ)4a(κ) for all R sufficiently large;

and Lemma 5.3 implies that there exists a finite constant m > 1 such that uni-
formly for all k, β > m, T2 6 Gkkk/2eFk

2
/(θkβkb/2(logR)k/4) 6 c1(k)β−kb/2(logR)−k/4

for a finite and positive constant c1(k) := c1(k ,G , F , θ). We combine the pre-
ceding to find that

(T1 + T2)N 6

(
1− a(κ)−

1
2

R2(3θ)4a(κ)
+
c1(k)
βkb/2

)N
, (7.6)

uniformly for all k, β > m. Because the left-hand side of (7.3) is bounded above
by (T1 + T2)N +NT2, it follows that

P
{

max
16j6N

|ut(x(j))| < θ(logR)1/4

}
(7.7)

6

(
1− a(κ)−

1
2

R2(3θ)4a(κ)
+
c1(k)
βkb/2

)N
+
c1(k)N
βkb/2

,
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Now we choose the various parameters as follows: We choose N := dRqed
and β := R1−q/ logR, where q ∈ (0 , 1) is fixed, and let k > 2 be the smallest
integer so that qd − 1

2kb(1 − q) < −2 so that Nβ−kb/2 6 R−2. In a cube of
side length 2(1 +

√
t)R, there are at least N points separated by “D-distance”

2nβ(1 +
√
t) where n := [log β] + 1. Also choose θ > 0 small enough so

that (3θ)4a(κ) < q. For these choices of parameters, an application of the
Borel–Cantelli lemma [together with a monotonicity argument] implies that
lim infR→∞(logR)−1/4 u∗t (R) > 0 a.s. See [10] for more details of this kind of
argument in a similar setting.

7.2 The second part

Similarly as in the proof of Theorem 2.1, we will need a result on the modulus
of continuity of u.

Lemma 7.2. If supx∈R |σ(x)| < ∞, then there exists a constant C = C(t) ∈
(0 ,∞) such that

E
(
|ut(x)− ut(x′)|

2k
)

6

(
Ck√

κ

)k
· ‖x− x′‖k, (7.8)

uniformly for all x, x′ ∈ Rd that satisfy ‖x− x′‖ 6 (tκ)1/2.

Proof. Let S0 := supz∈R |σ(z)|. Because |f(z)| 6 f(0) for all z ∈ Rd, the opti-
mal form of the Burkholder–Davis–Gundy inequality (BDG) and (6.22) imply
that

‖ut(x)− ut(x′)‖2k 6 const · ‖x− x′‖+ 2S0

√
2kf(0)Qt(x− x′), (7.9)

where

Qt(w) :=
∫ t

0

ds
(∫

Rd

dy |pt−s(y − w)− pt−s(y)|
)2

for w ∈ Rd. (7.10)

Lemma 6.4 and a small computation implies readily that Qt(w) 6 const ·
‖w‖

√
t/κ whenever ‖w‖ 6 (tκ)1/2; and the lemma follows from these obser-

vations.

Lemma 7.3. Choose and fix t > 0, and suppose that σ is bounded. Then there
exists a constant C ∈ (0 ,∞) such that

E

 sup
x,x′∈T :
‖x−x′‖6δ

exp
(√

κ|ut(x)− ut(x′)|2

Cδ

) 6
2
δ
, (7.11)

uniformly for every δ ∈ (0 , (tκ)1/2] and every cube T ⊂ Rd of side length at
most 1.
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As the proof is quite similar to the proof of [10, Lemma 6.2], we leave the
verification to the reader. Instead we prove the following result, which readily
implies (2.8), and thereby completes our derivation of Theorem 2.3.

Proposition 7.4. If σ is bounded uniformly away from zero and infinity, then
u∗t (R) � (logR)1/2 a.s.

Proof. We may follow the proof of Proposition 7.1, but use Lemma 4.2 instead
of Lemma 4.3, in order to establish that lim infR→∞(logR)−1/2u∗t (R) > 0 a.s.
We skip the details, as they involve making only routine changes to the proof
of Proposition 7.1.

It remains to prove that

u∗t (R) = O
(

(logR)1/2
)

(R→∞) a.s. for all t > 0. (7.12)

It suffices to consider the case that R � t. Let us divide the cube [0 , R]d

into subcubes Γ1,Γ2, . . . such that the Γj ’s have common side length a := const ·
(tκ)1/2 and the distance between any two points in Γj is at most (tκ)1/2. The
total number N of such subcubes is O(Rd).

We now apply Lemmas 7.3 and 4.2 as follows:

P

{
sup

x∈[0,R]d
|ut(x)| > 2b(lnR)1/2

}
(7.13)

6 P
{

max
16j6N

|ut(xj)| > b(lnR)1/2

}
+ P

{
max

16j6N
sup
x,y∈Γj

|ut(x)− ut(y)| > b(lnR)1/2

}

6 const ·Rde−c2b
2 lnR +

const ·Rd

(tκ)1/2 exp
(
b2 ln(R)/Ct1/2

) .
Consequently,

∞∑
m=1

P

{
sup

x∈[0,m]d
|ut(x)| > 2b(lnm)1/2

}
<∞, (7.14)

provided that we choose b sufficiently large. This, the Borel–Cantelli Lemma,
and a monotonicity argument together complete the proof of (7.12).

8 Proof of Theorem 2.5

Let us first establish some point estimates for the tail probability of the solution
u to (PAM). Throughout this subsection the assumptions of Theorem 2.5 are
in force.

Lemma 8.1. For every t > 0,

lim sup
λ→∞

sup
x∈Rd

log P{|ut(x)| > λ}
(log λ)2

6 − 1
4tf(0)

. (8.1)
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Additionally, for every t > 0,

lim inf
λ→∞

inf
x∈Rd

log P{|ut(x)| > λ}
(log λ)2

> − 4tf(0)
(Λdat)2

, (8.2)

where Λd and at = at(f ,κ) were defined in Proposition 4.4.

Proof. Let log+(z) := log(z ∨ e) for all real numbers z. Proposition 4.4 and
Lemma 3.4 of the companion paper [10] together imply that if 0 < γ < (4tf(0))−1,
then E exp(γ| log+(ut(x))|2) is bounded uniformly in x ∈ Rd. The first estimate
of the lemma follows from this by an application of Chebyshev’s inequality.

As regards the second bound, we apply the Paley–Zygmund inequality (4.23)
in conjunction with Proposition 4.4 as follows:

P
{
|ut(x)| > 1

2
‖ut(x)‖2k

}
>

(
E
(
|ut(x)|2k

))2
4E (|ut(x)|4k)

>
1
4

ek
2[8Λdat−16tf(0)] · (u0/u0)4k

.

(8.3)
Let us denote γ = γ(κ , t) := 16tf(0) − 8Λdat > 0. A second application of
Proposition 4.4 then yields the following pointwise bound:

P
{
|ut(x)| > u0

2
e2Λdatk

}
>

1
4

e−γk
2

(u0/u0)4k
. (8.4)

The second assertion of the lemma follows from this and the trivial estimate γ 6
16tf(0), because we can consider λ between u0

2 exp(2Λdatk) and u0
2 exp(2Λdat(k−

1)).

Owing to the parameter dependencies pointed out in Proposition 4.4, The-
orem 2.5 is a direct consequence of the following result.

Proposition 8.2. For the parabolic Anderson model, the following holds: For
all t > 0, there exists a constant θt ∈ (0 ,∞)—independent of κ—such that

Λdat
(8tf(0))1/2

6 lim inf
R→∞

log u∗t (R)
(logR)1/2

6 lim sup
R→∞

log u∗t (R)
(logR)1/2

6 θt, (8.5)

where Λd and at = at(f ,κ) were defined in Proposition 4.4.

Proof. Choose and fix two positive and finite numbers a and b that satisfy the
following:

a <
1

4tf(0)
, b >

4tf(0)
(Λdat)2

. (8.6)

According to Lemma 8.1, the following holds for all λ > 0 sufficiently large:

e−b(log λ)2 6 P {|ut(x)| > λ} 6 e−a(log λ)2 . (8.7)

Our goal is twofold: First, we would like to prove that with probability one
log |u∗t (R)| � (logR)1/2 as R→∞; and next to estimate the constants in “�.”

We first derive an almost sure asymptotic lower bound for log |u∗t (R)|.
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Let us proceed as we did in our estimate of (7.3). We introduce free pa-
rameters β, k,N > 1 [to be chosen later] together with N points x(1), . . . , x(N).
We will assume that D(x(i) , x(j)) > 2nβ(1 +

√
t) where D(x , y) was defined

in (5.24) and n := [log β] + 1 as in Lemma 5.4. If ξ > 0 is an arbitrary pa-
rameter, then our localization estimate (Lemma 5.3) yields the following for all
sufficiently-large values of R [independently of N and β]:

P
{

max
16j6N

|ut(x(j))| < eξ
√

logR

}
6 P

{
max

16j6N
|U (β,n)
t (x(j))| < 2eξ

√
logR

}
+ P

{
max

16j6N

∣∣∣ut(x(j))− U (β,n)
t (x(j))

∣∣∣ > eξ
√

logR

}
6
(

1− P
{∣∣∣U (β,n)

t (x(1))
∣∣∣ > 2eξ

√
logR

})N
+
NGkkk/2eFk

2

βkb/2ekξ
√

logR
. (8.8)

And we estimate the remaining probability by similar means, viz.,

P
{∣∣∣U (β,n)

t (x(1))
∣∣∣ > 2eξ

√
logR

}
(8.9)

> P
{∣∣∣ut(x(1))

∣∣∣ > 3eξ
√

logR
}
− P

{∣∣∣ut(x(1))− U (β,n)
t (x(1))

∣∣∣ > eξ
√

logR
}

> exp
(
−b
{

log
(

3eξ
√

logR
)}2

)
− NGkkk/2eFk

2

βkb/2ekξ
√

logR
.

We now fix our parameters N and β as follows: First we choose an arbitrary
θ ∈ (0 , 1), and then select N := dRθed and β := R1−θ/ logR. For these choices,
we can apply (8.9) in (8.8) and deduce the bound

P
{

max
16j6N

|ut(xj)| < eξ
√

logR

}
(8.10)

6

(
1− const

Rbξ2
+

Gkkk/2eFk
2
(logR)k

R(kb(1−θ)−2θd)/2 eξk
√

logR

)N
+

Gkkk/2eFk
2
(logR)k

R(kb(1−θ)−2θd)/2 eξk
√

logR
.

Now we choose our remaining parameters k and ξ so that 1
2kb(1− θ)− θd > 2

and bξ2 < θ/2. In this way we obtain

P
{

max
16j6N

|ut(xj)| < eξ
√

logR

}
6 exp

(
−CRθ/2

)
+

C

R2
. (8.11)

In a cube of side length 2(1+
√
t)R, there are at least N points separated by “D-

distance” 2(1+
√
t)βn. Therefore, the Borel–Cantelli Lemma and a monotonicity

argument together imply that lim infR→∞ exp{−ξ(logR)1/2}u∗t (R) > 1 almost
surely. We can first let θ ↓ 1, then ξ ↑ (2b)−1/2, and finally b ↑ 4tf(0)/(Λdat)2—
in this order—in order to complete our derviation of the stated a.s. asymptotic
lower bound for u∗t (R).
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For the other direction, we begin by applying (6.22) and (BDG):

‖ut(x)− ut(y)‖2k 6 const · ‖x− x′‖ (8.12)

+ 2

(
4kf(0)

∫ t

0

‖us(0)‖22k ds
[∫

Rd

dw |pt−s(w − x)− pt−s(w − y)|
]2
)1/2

.

We apply Proposition 4.4 to estimate ‖us(0)‖2k, and Lemma 6.4 to estimate the
integral that involves the heat kernel. By arguments similar as in Lemma 7.2, we
find that there exists C = C(t) ∈ (0 ,∞)—independently of (x , y , k ,κ)—such
that uniformly for all x, y ∈ Rd with ‖x− y‖ 6 (tκ)1/2,

E
(
|ut(x)− ut(y)|2k

)
6 (Ck)ke4tf(0)k2 ‖x− y‖k

κk/2
. (8.13)

By arguments similar to the ones that led to (7.12) in the companion paper [10]
we can show that

E

 sup
x,y∈T :

‖x−y‖6
√
tκ

|ut(x)− ut(y)|2k

 6 Ck1 eC2k
2

(8.14)

(where C1 and C2 depend only on t), uniformly over cubes T with side lengths
at most 1. [The preceding should be compared with the result of Lemma 7.2.]
Now that we are armed with (8.14), we may proceed to complete the proof of
the theorem as follows: We split [0 , R]d into subcubes of side length a each of
which is contained in a ball of radius 1

2 (tκ)1/2 centered around its midpoint. Let
CR denotes the collection of all mentioned subcubes and MR the set of their
midpoints. For all ζ > 0, we have:

P
{
u∗t (R) > 2eζ

√
logR

}
6 P

{
max
x∈MR

|ut(x)| > eζ
√

logR

}
(8.15)

+ P
{

sup
T∈CR

sup
x,y∈T

|ut(x)− ut(y)| > eζ
√

logR

}
,

6 O(Rd) · P
{
|ut(0)| > eζ

√
logR

}
+
∑
T∈CR

P
{

sup
x,y∈T

|ut(x)− ut(y)| > eζ
√

logR

}
.

We use the notation set forth in (8.7), together with (8.14), and deduce the
following estimate:

P
{
u∗t (R) > 2eζ

√
logR

}
= O(Rd) ·

[
e−aζ

2 logR +
Ck1 eC2k

2

e2kζ
√

logR

]
, (8.16)

as R → ∞. Now choose k := [(logR)1/2] and ζ large so that the above is
summable in R, as the variable R ranges over all positive integers. The Borel-
Cantelli Lemma and a standard monotonicity argument together imply that
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with probability one, lim supR→∞(logR)−1/2 log u∗t (R) 6 ζ. [Now R is allowed
to roam over all positive reals.] From the way in which ζ is chosen, it is clear
that ζ does not depend on κ.

9 Riesz kernels

Now we turn to the case where the correlation function is of the Riesz form;
more precisely, we have f(x) = const · ‖x‖−α for some α ∈ (0 , d∧ 2). We begin
this discussion by establishing some moment estimates for the solution u to
(PAM). Before we being our analysis, let us recall some well-known facts from
harmonic analysis (see for example [25]).

For all b ∈ (0 , d) define Rb(x) := ‖x‖−b (x ∈ Rd). This is a rescaled Riesz
kernel with index b ∈ (0 , d); it is a locally integrable function whose Fourier
transform is defined, for all ξ ∈ Rd, as

R̂b(ξ) = Cd,d−bRd−b(ξ), where Cd,p :=
πd/22d−pΓ((d− p)/2)

Γ(p/2)
. (9.1)

We may note that the correlation function f considered in this section is pro-
portional to Rα. We note also that the Fourier transform of (9.1) is understood
in the sense of generalized functions. Suppose next that a, b ∈ (0 , d) satisfy
a + b < d, and note that R̂d−a(ξ)R̂d−b(ξ) = {Cd,aCd,b/Cd,a+b}R̂d−(a+b)(ξ). In
other words, whenever a, b, a+ b ∈ (0 , d),

Rd−a ∗ Rd−b =
Cd,aCd,b
Cd,a+b

Rd−(a+b), (9.2)

where the convolution is understood in the sense of generalized functions.

9.1 Riesz-kernel estimates

We now begin to develop several inequalities for the solution u to (PAM) in the
case that f(x) = const · ‖x‖−α = const · Rα(x).

Proposition 9.1. There exists positive and finite constants c = c(α , d) and
c̄ = c̄(α , d) such that

uk0 exp
(
ct
k(4−α)/(2−α)

κα/(2−α)

)
6 E

(
|ut(x)|k

)
6 uk0 exp

(
c̄t
k(4−α)/(2−α)

κα/(2−α)

)
, (9.3)

uniformly for all x ∈ Rd, t,κ > 0, and k > 2, where u0 and u0 are defined in
(1.8).

Remark 9.2. We are interested in what Proposition 9.1 has to say in the regime
in which t is fixed, κ ≈ 0, and k ≈ ∞. However, let us spend a few extra lines
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and emphasize also the following somewhat different consequence of Proposition
9.1. Define for all k > 2,

λ(k) := lim inf
t→∞

inf
x∈Rd

1
t

log E
(
|ut(x)|k

)
λ(k) := lim sup

t→∞
sup
x∈Rd

1
t

log E
(
|ut(x)|k

)
.

(9.4)

These are respectively the lower and upper uniform Lyapunov Lk(P)-exponents
of the parabolic Anderson model driven by Riesz-type correlations. Convexity
alone implies that if λ(k0) > 0 for some k0 > 0, and if λ(k) <∞ for all k > k0,
then λ(k)/k and λ(k)/k are both strictly increasing for k > k0. Proposition 9.1
implies readily that the common of these increasing sequences is ∞. In fact, we
have the following sharp growth rates, which appear to have not been known
previously:

c

κα/(2−α)
6 lim inf

k→∞

λ(k)
k2/(2−α)

6 lim sup
k→∞

λ(k)
k2/(2−α)

6
c

κα/(2−α)
. (9.5)

These bounds can be used to study further the large-time intermittent structure
of the solution to the parabolic Anderson model driven by Riesz-type correla-
tions. We will not delve into this matter here.

Proof. Recall that f(x) = A · ‖x‖−α; we will, without incurring much loss of
generality, that A = 1.

We first derive the lower bound on the moments of ut(x). Let {b(j)}kj=1

denote k independent standard Brownian motions in Rd. We may apply Lemma
4.5 to see that

E
(
|ut(x)|k

)
> uk0E

exp

∑∑
16i6=j6k

∫ t

0

κ−α/2 ds∥∥∥b(i)s − b(j)s ∥∥∥α
 . (9.6)

We can use the preceding to obtain a large-deviations lower bound for the
kth moment of ut(x) as follows: Note that

∫ t
0
‖b(i)s − b(j)s ‖−α ds > (2ε)−αt1Ωε

a.s., where Ωε is defined as the event {max16l6k sups∈[0,t] ‖b
(l)
s ‖ 6 ε}. Therefore,

E
(
|ut(x)|k

)
> uk0 sup

ε>0

[
exp

(
k(k − 1)t
(2ε
√

κ)α

)
· P(Ωε)

]
. (9.7)

Because of an eigenfunction expansion [27, Theorem 7.2, p. 126] there exist
constants λ1 = λ1(d) ∈ (0 ,∞), and c = c(d) ∈ (0 ,∞) such that

P(Ωε) =

(
P

{
sup

s∈[0,t/ε2]

‖b(1)
s ‖ 6 1

})k
> cke−ktλ1/ε

2
, (9.8)
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uniformly for all k > 2 and ε ∈ (0 , t1/2]. And, in fact, λ1 is the smallest positive
eigenvalue of the Dirichlet Laplacian on the unit ball of Rd. Thus,

E
(
|ut(x)|k

)
> (cu0)k sup

ε∈(0,t1/2]

[
exp

(
k(k − 1)t
(2ε
√

κ)α
− ktλ1

ε2

)]
. (9.9)

The supremum of the expression inside the exponential is at least const · tk ·
k2/(2−α)/κα/(2−α), where “const” depends only on (α , d). This proves the as-
serted lower bound on the Lk(P)-norm of ut(x).

We adopt a different route for the upper bound. Let {R̄λ}λ>0 denote the
resolvent corresponding to

√
2 times a Brownian motion in Rd with diffusion

coefficient κ. In other words, R̄λf :=
∫∞

0
exp(−λs)(p2s ∗ f) ds = (1/2)(Rλ/2f).

Next define

Q(k , β) := zk

√
(R̄2β/kf)(0) for all β > 0 and k > 2, (9.10)

where zk is the optimal constant, due to Davis [14], in the Burkholder–Davis–
Gundy inequality for the Lk(P) norm of continuous martingales [4, 5, 6]. We
can combine [17, Theorem 1.2] and Dalang’s theorem [12] to conclude that,
because the solution to (PAM) exists, (R̄λf)(0) < ∞ for all λ > 0. The proof
of [17, Theorem 1.3] and Eq. (5.35) therein [loc. cit.] together imply that if
Q(k , β) < 1 then e−βt/k‖ut(x)‖k 6 u0/(1−Q(k , β)) uniformly for all t > 0 and
x ∈ Rd. In particular, if Q(k , β) 6 1

2 , then

E
(
|ut(x)|k

)
6 eβt2kuk0 . (9.11)

According to Carlen and Kree [8], zk 6 2
√
k; this is the inequality that led also

to (BDG). Therefore, (9.11) holds as soon as k(R̄2β/kf)(0) < 1/16. Because both
Brownian motion and f satisfy scaling relations, a simple change of variables
shows that (R̄λf)(0) = c2λ

−(2−α)/2κ−α/2, where c2 is also a nontrivial constant
that depends only on (d , α). Therefore, the condition k(R̄2β/kf)(0) < 1/16—
shown earlier to be sufficient for (9.11)—is equivalent to the assertion that
β > k · c3k2/(2−α)/κα/(2−α) for a nontrival constant c3 that depends only on
(d , α). Now we choose β := 2k · c3k2/(2−α)/κα/(2−α), plug this choice in (9.11),
and deduce the upper bound.

Before we proceed further, let us observe that, in accord with (9.2),

f(x) =
const
‖x‖α

= (h ∗ h)(x) = (h ∗ h̃)(x) with h(x) :=
const

‖x‖(d+α)/2
, (9.12)

where the convolution is understood in the sense of generalized functions.
As in (3.16), we can define hn(x) := h(x)%̂n(x) and fn = (h−hn) ∗ (h̃− h̃n).

Lemma 9.3. For all η ∈ (0 , 1∧α) there exists a constant A := A(d ,κ , α , η) ∈
(0 ,∞) such that (ps ∗ fn)(0) 6 An−η · s−(α−η)/2 for all s > 0 and n > 1.
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Proof. Because fn 6 h ∗ (h− hn), it follows that

(ps ∗ fn)(0) 6 [(ps ∗ h ∗ h)(0)− (ps ∗ h ∗ hn)(0)]

=
∫
Rd

dy
∫
Rd

dz ps(z)h(y)h(y − z) (1− %̂n(y − z)) (9.13)

6 const ·
∫
Rd

dy
‖y‖(d+α)/2

∫
Rd

ps(z) dz
‖y − z‖(d+α)/2

(
1 ∧ ‖y − z‖

n

)
;

see (3.11).
Choose and fix some η ∈ (0 , 1 ∧ α). Since 1 ∧ r 6 rη for all r > 0,

(ps ∗ fn)(0) 6
const
nη

·
∫
Rd

dy
‖y‖(d+α)/2

∫
Rd

ps(z) dz
‖y − z‖(d+α−2η)/2

=
const
nη

·
∫
Rd

dy
∫
Rd

dz R(d+α)/2(y)ps(z)R(d+α−2η)/2(z − y)

=
const
nη

·
∫
Rd

‖z‖−α+ηps(z) dz, (9.14)

by (9.2), because ps is a rapidly-decreasing test function for all s > 0. A change
of variable in the integral above proves the result.

Proposition 9.4. For every η ∈ (0 , 1 ∧ α), the following holds uniformly for
every k > 2, δ > 0, and all predictable random fields Z:

M(k)
δ

(
p ∗ ZF (h) − p ∗ ZF (hn)

)
6 const ·

√
k

nη · δ(2−α+η)/2
M(k)

δ (Z), (9.15)

where the implied constant depends only on (d ,κ , α , η).

Remark 9.5. Proposition 9.4 compares to Proposition 3.4.

Proof. For notational simplicity, let us write

Ξ :=
∥∥∥(p ∗ ZF (h)

)
t
(x)−

(
p ∗ ZF (hn)

)
t
(x)
∥∥∥
k
. (9.16)

We apply first (BDG), and then Minkowski’s inequality, to see that for all δ > 0,

Ξ2 6 4
[
M(k)

δ (Z)
]2
k

∫ t

0

ds
∫
Rd

dy
∫
Rd

dz pt−s(y)fn(y − z)pt−s(z)

6 4e2δt
[
M(k)

δ (Z)
]2
k

∫ ∞
0

e−2δr (p2r ∗ fn) (0) dr

= 2e2δt
[
M(k)

δ (Z)
]2
k

∫ ∞
0

e−δs (ps ∗ fn) (0) ds. (9.17)

The appeal to Fubini’s theorem is justified since: (i) pr is a rapidly decreasing
test function for all r > 0; (ii) pr ∗ pr = p2r by the Chapman–Kolmogorov
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equation; and (iii) pr, fn > 0 pointwise for every r > 0 and n > 1. Now we
apply Lemma 9.3 in order to find that for all η ∈ (0 , 1 ∧ α),

Ξ2 6 const · e2δtk

nη

[
M(k)

δ (Z)
]2 ∫ ∞

0

e−δss−(α−η)/2 ds

= const · e2δtk

nη

[
M(k)

δ (Z)
]2
δ−(2−α+η)/2.

(9.18)

Since the right-most term is independent of x, we can divide both sides by
exp(2δt), optimize over t, and then take square root to complete the proof.

9.2 Localization for Riesz kernels

The next step in our analysis of Riesz-type correlations is to establish local-
ization; namely results that are similar to those of Section 5 but which are
applicable to the setting of Riesz kernels.

9.3 The general case

Recall the random fields U (β), V (β), and Y (β) respectively from (5.2), (5.6), and
(5.7). We begin by studying the nonlinear problem (PAM) in the presence of
noise whose spatial correlation is determined by f(x) = const · ‖x‖−α.

Proposition 9.6. Let u denote the solution to (PAM). For every T > 0 and
η ∈ (0 , 1 ∧ α) there exist finite and positive constants `i := `i(d , α , T,κ , η)
[i = 1, 2], such that uniformly for β > 0 and k > 2,

sup
t∈[0,T ]

sup
x∈Rd

E
(∣∣∣ut(x)− U (β)

t (x)
∣∣∣k) 6

(
`2k

βη

)k/2
e`1k

(4−α)/(2−α)
. (9.19)

Proof. Notice that

V
(β)
t (x) = (pt ∗ u0)(x) +

(
p ∗ U (β)F (h)

)
t
(x),

Y
(β)
t (x) = (pt ∗ u0)(x) +

(
p ∗ U (β)F (hβ)

)
t
(x).

(9.20)

Proposition 9.4 tells us that for all η ∈ (0 , 1 ∧ α),

M(k)
δ

(
V (β) − Y (β)

)
6 C1 ·

√
k

βη · δ(2−α+η)/2
M(k)

δ (U (β)), (9.21)

where C1 is a positive and finite constant that depends only on (d ,κ , α , η). It
follows from the definition (1.5) that

M(k)
δ

(
V (β) − Y (β)

)
6 const ·

√
kκ(2−α)/2

βη · δ(2−α+η)/2
M(k)

δ (U (β)), (9.22)
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where “const” depends only on (d ,κ , α , η). In order to estimate the latter
M(k)

δ -norm we mimic the proof of the first inequality in Proposition 9.1 to see
that, for the same constant c as in the latter proposition, log ‖U (β)

t (x)‖k 6
u0 + ctk2/(2−α)/κα/(2−α) uniformly for all x ∈ Rd, t,κ, β > 0, and k > 2. We
omit the lengthy details because they involve making only small changes to the
proof of the second inequality in Proposition 9.1. The end result is that

M(k)
δ (U (β)) 6 sup

t>0

[
u0 exp

{
−δt+ ct

k2/(2−α)

κα/(2−α)

}]
= u0, (9.23)

provided that
δ > ck2/(2−α)/κα/(2−α). (9.24)

Therefore, the following is valid whenever δ satisfies (9.24):

M(k)
δ

(
V (β) − Y (β)

)
6 C1 ·

√
k

βη · δ(2−α+η)/2
, (9.25)

where C1 depends only on (d ,κ , α , η , σ(0) ,Lipσ, u0).
In order to bound ‖Y (β)

t (x)− U (β)
t (x)‖k, we apply (BDG) and deduce that

E
(
|Y (β)
t (x)− U (β)

t (x)|k
)

(9.26)

6 E

∣∣∣∣∣4k
∫ t

0

ds
∫

[x−β
√
t,x+β

√
t]c

dy
∫

[x−β
√
t,x+β

√
t]c

dz h(∗2)
β (z − y)W

∣∣∣∣∣
k/2


6

(
4k
∫ t

0

ds
∫

[x−β
√
t, x+β

√
t]c

dy
∫

[x−β
√
t, x+β

√
t]c

dz f(z − y)‖W‖k/2

)k/2
,

where we have used Minkowski’s inequality in the last bound. Here, h(∗2)
β :=

hβ ∗ h̃β , and W := pt−s(y − x)pt−s(z − x)|U (β)
s (y)| · |U (β)

s (z)|. In particular,

‖W‖k/2 6 pt−s(y − x)pt−s(z − x) sup
y∈Rd

∥∥∥U (β)
s (y)

∥∥∥2

k
, (9.27)

thanks to the Cauchy–Schwarz inequality. By the definition (1.5) of M(k)
δ ,

sup
w∈Rd

∥∥∥U (β)
s (w)

∥∥∥
k

6 eδsM(k)
δ

(
U (β)

)
for all s > 0. (9.28)

Therefore,

‖W‖k/2 6 const · e2δspt−s(y − x)pt−s(z − x)M(k)
δ (U (β))2. (9.29)

Let us define

Θ :=
∫ t

0

ds
∫∫
A×A

dy dz f(z − y)e2δspt−s(y − x)pt−s(z − x), (9.30)
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where we have written A := [x− β
√
t , x+ β

√
t]c, for the sake of typographical

ease. Our discussion so far implies that∥∥∥Y (β)
t (x)− U (β)

t (x)
∥∥∥
k

6 const ·
√
k M(k)

δ (U (β)) ·Θ1/2. (9.31)

We may estimate Θ as follows:

Θ 6
∫ t

0

sup
w∈Rd

(pt−s ∗ f)(w)e2δs ds
∫

[x−β
√
t,x+β

√
t]c
pt−s(y − x) dy

6 const ·
∫ t

0

sup
w∈Rd

(pt−s ∗ f)(w) exp
(
− dβ2t

4κ(t− s)
+ 2δs

)
ds,

(9.32)

where we used (5.13) and “const” depends only on (d , α). Because pt−s ∗ f is
a continuous positive-definite function, it is maximized at the origin. Thus, by
scaling,

sup
w∈Rd

(pt−s ∗ f) (w) 6
const

(t− s)α/2κα/2
, (9.33)

where “const” depends only on (d , α). Consequently,

Θ 6
const
κα/2

·
∫ t

0

exp
(
− dβ2t

4κ(t− s)
+ 2δs

)
ds

(t− s)α/2
(9.34)

6
const
κα/2

· e2δt t(2−α)/2

∫ 1

0

e−dβ
2/(4κs) ds

sα/2
6

const
κα/2

t
(2−α)/2 exp

(
2δt− dβ2

4κ

)
.

It follows from the preceding discussion and (9.31) that

M(k)
δ

(
Y (β) − U (β)

)
6

const
κα/4

· e−dβ
2/(8κ)

√
k, (9.35)

provided that δ satisfies (9.24).
Next we note that

‖ut(x)− V (β)
t (x)‖k

6

∥∥∥∥∥
∫

(0,t)×Rd

pt−s(y − x)
[
us(y)− U (β)

s (y)
]
F (h)(dsdy)

∥∥∥∥∥
k

6 const ·

√
k

∫ t

0

ds
∫
Rd

dy
∫
Rd

dz f(y − z)T̃ ,

(9.36)

where

T̃ := pt−s(y − x)pt−s(z − x)
∥∥∥us(z)− U (β)

s (z)
∥∥∥
k
·
∥∥∥us(y)− U (β)

s (y)
∥∥∥
k

6 pt−s(y − x)pt−s(z − x) sup
y∈Rd

∥∥∥us(y)− U (β)
s (y)

∥∥∥2

k
.

(9.37)
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We then obtain

‖ut(x)− V (β)
t (x)‖k 6 const ·

(
k

∫ t

0

supy ‖us(y)− U (β)
s (y)‖2k

((t− s)κ)α/2
ds

)1/2

, (9.38)

from similar calculations as before; see the derivation of (9.33). Consequently,

M(k)
δ

(
u− V (β)

)
6 const · k1/2M(k)

δ

(
u− U (β)

)(∫ ∞
0

e−2δr

(κr)α/2
dr

)1/2

=
const · k1/2

κα/4δ(2−α)/4
M(k)

δ

(
u− U (β)

)
.

(9.39)

Next we apply the decomposition (5.5) and the bounds in (9.39), (9.35), and
(9.25) to see that

M(k)
δ

(
u− U (β)

)
(9.40)

6M(k)
δ

(
u− V (β)

)
+M(k)

δ

(
V (β) − Y (β)

)
+M(k)

δ

(
Y (β) − U (β)

)
6

const · k1/2

κα/4δ(2−α)/4
M(k)

δ

(
u− U (β)

)
+ C1 ·

√
k

βη · δ(2−α+η)/2
+

const · k1/2

κα/4
e−dβ

2/(8κ).

We now choose δ := Ck2/(2−α)/κα/(2−α) with C > c so large that the coefficient
of M(k)

δ (u− U (β)) in the preceding bound, is smaller that 1/2. Because δ has a
lower bound that holds uniformly for all k > 1, the preceding implies that

M(k)
δ

(
u− U (β)

)
6 const ·

√
k
[
β−η/2 + e−dβ

2/(8κ)
]

6 const ·
√
k β−η/2, (9.41)

which has the desired result.

Recall the nth level Picard-iteration approximation U (β,n)
t (x) of U (β)

t (x) de-
fined in (5.18). The next two lemmas are the Picard-iteration analogues of
Lemmas 5.3 and 5.4.

Lemma 9.7. For every T > 0 and η ∈ (0 , 1 ∧ α) there exist finite and positive
constants `i := `i(d , α , T,κ , η , σ) [i = 1, 2], such that uniformly for β > 0 and
k > 2

sup
t∈[0,T ]

sup
x∈Rd

E
(∣∣∣ut(x)− U (β, [log β]+1)

t (x)
∣∣∣k) 6

(
`2k

βη

)k/2
e`1k

(4−α)/(2−α)
. (9.42)

Lemma 9.8. Choose and fix β > 1, t > 0 and n > 1. Also fix x(1), x(2), · · · ∈ Rd

such that D(x(i) , x(j)) > 2nβ(1 +
√
t). Then {U (β,n)

t (x(j))}j∈Z are independent
random variables.

We will skip the proofs, as they are entirely similar to the respective proofs
of Lemmas 5.3 and 5.4, but apply the method of proof of Proposition 9.6 in
place of Lemma 5.2.
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9.4 Proof of Theorem 2.6

The proof of this theorem is similar to that of Theorem 2.5. Thanks to Propo-
sition 9.1 and [10, Lemma 3.4], we have the following: There exist positive and
finite constants a < b, independently of κ > 0, such that for all x ∈ Rd and
λ > e,

ae−b(log λ)(4−α)/2κα/2 6 P {|ut(x)| > λ} 6 be−a(log λ)(4−α)/2κα/2 . (9.43)

Define, for the sake of typographical ease,

EM := EM,κ(R) := exp
(
M · (logR)2/(4−α)

κα/(4−α)

)
for all M > 0. (9.44)

For the lower bound, we again chooseN points x(1), . . . , x(N) such thatD(x(i) , x(j)) >
2nβ(1 +

√
t) whenever i 6= j; see (5.24) for the definition of D(x , y). Let

n := [log β] + 1 and choose and fix η ∈ (0 , 1∧α). We apply Proposition 9.6 and
the independence of the U (β,n)(x(j))’s (Lemma 9.8) to see that

P
{

max
16j6N

|ut(x(j))| < EM
}

6
(

1− P
{
|U (β,n)
t (x(1))| > 2EM

})N
+ const · N

βkη/2EkM
(9.45)

6

(
1−

[
P
{
|ut(x(1))| > 3EM

}
− const · N

βkη/2

])N
+ const · N

βkη/2
,

since EM is large for R sufficently large. Notice that the implied constants
depend on (κ , t , k , d, α , η , σ). Now we choose the various parameters involved
[and in this order]: Choose and fix some ν ∈ (0 , 1), and then set N := dRνed
and β := R1−ν . The following is valid for all M > 0 sufficiently small, every k
sufficiently large, and for the mentioned choices of N and β:

P
{

max
16j6N

|ut(x(j))| < EM
}

6 const ·R−2. (9.46)

Borel-Cantelli Lemma and a simple monotonicity argument together yield the
bound,

lim inf
R→∞

log u∗t (R)

(logR)2/(4−α)
>

C

κα/(4−α)
a.s., (9.47)

where C does not depend on κ. For the other bound, we start with a modulus
of continuity estimate, viz.,

‖ut(x)− ut(y)‖2k 6 const · ‖x− y‖+
(

8k
∫ t

0

sup
a∈Rd

‖us(a)‖22k Is ds
)1/2

, (9.48)

where Is :=
∫∫

Rd×Rddw dz |H(w)H(z)|f(w − z), for H(ξ) := pt−s(ξ − x) −
pt−s(ξ − y) for all ξ ∈ Rd. Because of Proposition 9.1, we can simplify our
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estimate to the following:

‖ut(x)−ut(y)‖2k 6 const · ‖x−y‖+u0e2ct(2k)2/(2−α)κ−α/(2−α)
(

8k
∫ t

0

Is ds
)1/2

.

(9.49)
The simple estimate

∫
Rd |H(z)|f(w − z) dz 6 2 supz∈Rd(pt−s ∗ f)(z), together

with (9.33) yields

Is 6
const

(t− s)α/2κα/2
·
∫
Rd

|H(w)|dw 6
const

(t− s)α/2
·
(
‖x− y‖
(t− s)1/2

∧ 1
)
, (9.50)

where “const” does not depend on (x , y , s , t), but might depend on κ; see
Lemma 6.4 for the last inequality. These remarks, and some computations
together show that, uniformly for all x, y ∈ Rd that satisfy ‖x − y‖ 6 1 ∧ t1/2,
E(|ut(x)− ut(y)|2k) 6 C‖x− y‖$k, where C := C(k ,κ , t , d , α) is positive and
finite and $ = min(1, 2 − α). Now a quantitative form of the Kolmogorov
continuity theorem [13, (39), p. 11] tells us that uniformly for all hypercubes
T ⊂ Rd of side length 6 d−1/2(1 ∧ t1/2), and for all δ ∈ (0 , 1 ∧ t1/2),

E

 sup
x,y∈T
‖x−y‖6δ

|ut(x)− ut(y)|2k

 6 const · (δ$k)k exp
(
ct(2k)(4−α)/(2−α)

κα/(2−α)

)
,

(9.51)
where “const” depends only on (κ , t , d , α). We now split [0 , R]d into sub-
cubes of sidelength const · (1∧ t1/2), each of which is contained in a ball of radius
(1 ∧ t1/2)/2. Let CR denote the collection of mentioned subcubes and MR, the
set of midpoints of these subcubes. We can then observe the following:

P {u∗t (R) > 2EM} 6
∑
x∈MR

P {|ut(x)| > EM}+
∑
T∈CR

P
{

Osc
T

(ut) > EM
}
, (9.52)

where OscT (g) := supx,y∈T |g(x) − g(y)|, and c depends only on (t , d). In this
way we find that

P {u∗t (R) > 2EM} 6 ARd ×

[
eAk

(4−α)/(2−α)κ−α/(2−α)

eMk(logR)2/(4−α)κ−α/(4−α)

]
, (9.53)

where A ∈ (0 ,∞) is a constant that depends only on (t ,κ , α , d). Finally,
we choose k := κα/(4−α)(logR)(2−α)/(4−α) and M large enough to ensure that
P{u∗t (R) > 2EM} = O(R−2) as R→∞. An application of Borel-Cantelli lemma
proves the result.
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