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Summary. This paper is concerned with weak conver-

gence together with convergence rates in weighted almost

sure local central limit theorems for random walks. The

main tools are stochastic calculus and strong approxima-

tions.

1. INTRODUCTION.

Let X, X1, X2, · · · be i.i.d. random variables with EX = 0 and σ2 = EX2 ∈ (0,∞).
Let Sn =

∑
1≤j≤n Xj be the corresponding random walk. Assuming that E |X |2+δ < ∞

for some δ > 0, Brosamler (1988) and Schatte (1988, 1990, 1991) have shown that,

(1.1) lim
n→∞

1
log n

∑
1≤k≤n

1
k

G

(
Sk

k1/2σ

)
=

1
(2π)1/2

∫ ∞

−∞
G(t)dΦ(t), a.s. ,

if |G(x)| ≤ exp(cx2), for some c < 1/4. Here and throughout, Φ is the usual standard
normal distribution function and log t = loge(t ∨ e

)
where loge denotes the natural log-

arithm. In particular, if G(x) = I
{
x ≤ x0

}
for some fixed point, x0 ∈ R, then (1.1) is

the so–called central limit theorem for logarithmic averages, because the limiting value in
(1.1) is simply Φ(x0). Lévy (1937) and Erdős and Hunt (1953) obtained the first results
for logarithmic averages of signs of random walks. For further results in logarithmic aver-
ages, we refer to Lacey and Phillip (1990), Révész (1990), Lacey (1991), Berkes, Dehling
and Móri (1991), Berkes and Dehling (1993), Csáki, Földes and Révész (1993) and Csáki
and Földes (1994). Weigl (1986) (cf. also Révész (1990)), Csörgő and Horváth (1992)
and Horváth and Khoshnevisan (1994) have investigated the rate of convergence in (1.1)
via strong approximations. A consequence of this development is that for a large class of
functions, G,

1

σ0(G)
(
log n

)1/2

( ∑
1≤k≤nt

1
k

G

(
Sk

k1/2σ

)
− t log n

∫ ∞

−∞
G(s)dΦ(s)

)
, 0 ≤ t ≤ 1
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converges weakly (i.e., in D(
[0, 1]

)
) to Brownian motion, for some determinable positive

constant, σ0(G).
Viewing (1.1) as a strong law for the central limit theorem, it is natural to ask whether

(1.1) has a local version. Such local versions of (1.1) play an integral role in the study of
return times for random walks; see Erdős and Taylor (1960) and Section 2 below. To state
such a result, let us assume that there is a lattice, L ⊂ R, such that P(X ∈ L) = 1. By
Csáki, Földes and Révész (1993), (cf. also Chung and Erdős (1951) and Erdős and Taylor
(1960)), if we further assume that E |X |3 < ∞, then for any fixed x0 ∈ L,

(1.2) lim
n→∞

1
log n

∑
1≤k≤n

1
k1/2

I
{
Sk = x0

}
=

1
(2π)1/2σ

, a.s. .

Calling (1.2) an “almost sure local central limit theorem”, Csáki et al. (1993) have posed
the problem of finding the rate of convergence in (1.2). On the other hand, Arcones
and Klass (personal communications) have asked whether the k−1/2 term in (1.2) can be
replaced by other weight functions. It is the goal of this paper, to give a simultaneous
answer to both questions mentioned above.

We begin with the following dichotomy which identifies the appropriate class of weight
functions.

Proposition 1.1. For F : Z 7→ R+ , define S(F ) =
∑

k≥1 k−1/2F (k). Suppose P(X ∈
L) = 1 and EX = 0 and σ2 = EX2 ∈ (0,∞). Then for any x0 ∈ L,

P
(∑

kF (k)I
{
Sk = x0

}
= ∞)

=
{

1, if S(F ) = ∞
0, if S(F ) < ∞ .

We shall see later (see Theorem 1.6 below) that in effect, the only interesting weight
functions are of the form, F (k) = k−1/2µ(k), where µ(et) is regularly varying. Moreover, by
Proposition 1.1, for there to be a result of type (1.2) with this more general weight function,
we need,

∑
k≥1 k−1µ(k) = ∞. With this in mind, define for any µ : [1,∞) 7→ R+ , t ≥ 1

and x0 ∈ L,

(1.3) Aµ(t) =
∑

1≤k≤t

µ(k)
k1/2

I
{
Sk = x0

}− 1
(2π)1/2σ

∫ log t

0

µ(es)ds.

(As an example, take µ(t) = 1. If E |X |3 < ∞, then (1.2) is equivalent to the statement
that as n →∞, Aµ(n) = o

(
log n

)
, almost surely.)

The main result of this paper is the following strong approximation theorem:

Theorem 1.2. Suppose P(X ∈ L) = 1, EX = 0, σ2 = EX2 ∈ (0,∞) and E |X |2+δ < ∞,
for some δ > 0. Suppose further that µ : [1,∞) 7→ R is monotone, possesses a continuous
derivative and

(1.4) lim
t→∞

log µ(t)
log t

= 0.

2



STOCHASTIC PROCESSES AND THEIR APPLICATIONS 59, 105–123.

Then on a suitable probability space, there exists a reconstruction of Aµ, together with a
Brownian motion, B∗, such that for all ε > 0,

∣∣∣∣Aµ(n)−
(

2 log 2
σ2π

)1/2 ∫ log n

0

µ(es)dB∗(s)
∣∣∣∣ = O

(
1 + |µ(n)|(logn)(1/4)+ε

)
, a.s. ,

where Aµ is defined in (1.3).

Theorem 1.2 has a number of interesting consequences. First, let us see that one
can indeed obtain (1.2) together with its rate of convergence under the nearly minimal
condition that E |X |2+δ < ∞. Let µ(t) = 1 to see that by Theorem 1.2,

∣∣∣∣Aµ(n)−
(

2 log 2
σ2π

)1/2

B∗(log n)
∣∣∣∣ = O

(
(log n)(1/4)+ε

)
, a.s. .

In particular, standard facts about the Brownian motion, B∗, show the following:

Corollary 1.3. Under the assumptions of Theorem 1.2, (1.2) holds and

(
σ2π

2 log n · log 2

)1/2( ∑
1≤k≤nt

1
k1/2

I
{
Sk = x0

}− t log n

(2π)1/2σ

)
, 0 ≤ t ≤ 1,

converges in D[0, 1] to Brownian motion. Furthermore,

(1.5) lim sup
n→∞

Aµ(n)(
log n · log log log n

)1/2
=

(
4 log 2
σ2π

)1/2

, a.s.

and

(1.6) lim inf
n→∞

(
log log log n

log n

)1/2

max
1≤k≤n

|Aµ(k)| = 1
2σ

(
π log 2

)1/2
, a.s. .

One can also obtain the functional version of (1.5) (in the sense of Strassen (1964))
as well as Lévy classes corresponding to both (1.5) and (1.6). For the Brownian motion,
B∗, the latter results can be found in Révész (1990), for example.

An interesting class of µ’s is when µ(et) is regularly varying of index α > −1/2. For
such µ’s, (1.4) holds (cf. Bingham et al. (1987, p.26)) Define for all t ≥ 1,

(1.7) γ(t) =
( ∫ log t

0

µ2(es)ds

)1/2

.
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Theorem 1.4. Suppose X satisfies the conditions of Theorem 1.2. Suppose also, that
µ(et) is regularly varying of index α > −1/2 and possesses a continuous derivative. If γ−1

is the right continuous inverse function to γ (see (1.7)), then

(i)
{√

σ2π/(2n log 2)Aµ

(
γ−1(

√
nt)

)
; 0 ≤ t ≤ 1

}
converges in D[0, 1] to Brownian motion;

(ii) lim supn→∞ |µ(n)|−1
(
log n · log log |µ(n)|)−1/2

Aµ(n) =
(
log(2)/

(
(2α + 1)σ2π

) )1/2
,

a.s.

(iii) lim infn→∞ |µ(n)|−1
(
log log |µ(n)|)1/2(log n)−1/2 max1≤k≤n |Aµ(k)| = c, a.s., where

c =
(
π log(2)/(4σ2(2α + 1)

))1/2
.

Next, we investigate the class of functions of form, µ(t) = (log t)α =
(
loge(t ∨ e)

)α.
By Proposition 1.1, it is enough to consider α ≥ −1 only. Then we have the following:

Theorem 1.5. Suppose X satisfies the conditions of Theorem 1.2. Let µ(t) = (log t)α,

α0 = 2α + 1 and νn =
(
σ2π/(2n log 2)

)1/2
.

(i) If α > −1/2, then
{
νnAµ

(
exp((α0nt)1/α0)

)
; 0 ≤ t ≤ 1} converges in D[0, 1] to

Brownian motion.

(ii) If α = −1/2, then
{
νnAµ

(
exp(ent)

)
; 0 ≤ t ≤ 1

}
converges in D[0, 1] to Brownian

motion.

(iii) If −1 ≤ α < −1/2, then almost surely, supn |Aµ(n)| < ∞.

In particular, the above theorem says that when µ(t) = (log t)α, the rate of con-
vergence in the weighted version of (1.2) goes through a phase transition at α = −1/2.
Consequently, R(n)Aµ(n) D−→N(0,1), where,

R(n) =




(
σ2π(2α + 1)

2(log n)2α+1 log 2

)1/2

, if α > −1/2

(
σ2π

log 2 · log log n

)1/2

, if α = −1/2

.

Furthermore, when α ∈ [−1,−1/2), there cannot be such a central limit theorem.
Finally, we come back to the issue of what happens when µ(et) is not regularly varying.

In this case, it is essentially impossible to obtain almost sure principles. We illustrate this
by considering functions of type: µ(t) = tθ where θ ≥ 0. (The case θ < 0 is trivial by
Proposition 1.1.)

Theorem 1.6. Under the conditions of Theorem 1.2 for X , for each θ ≥ 0,

n−θ
∑

1≤k≤nt

kθ−(1/2)I
{
Sk = x0

}
, 0 ≤ t ≤ 1,
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converges in D[0, 1] to ∫ t

0

sθ−(1/2)dL(s), 0 ≤ t ≤ 1,

where L is the process of local times for standard Brownian motion at zero.

Remark 1.6.1. That
∫ t

0
sθ−(1/2)dL(s) is a finite process is part of the assertion of the

theorem.

The key idea behind the proof of the above results is a detailed analysis (via stochastic
calculus) of the process of local times, `, of the standard Ornstein–Uhlenbeck process. Our
analysis leads to a strong improvement of the Chacon–Ornstein ergodic theorem for `,
which is of independent interest. For the statement of the latter ergodic theorem, see
Revuz and Yor (1991). Our improvement appears in Section 3, together with other related
facts about the Ornstein–Uhlenbeck process. An application of Theorem 1.2 to the study
of return times of random walks appears in Section 2 while the proof of the latter theorem
appears in Section 4. Theorems 1.4 through 1.6 are proved in Section 5. Proposition 1.1
is a routine generalization of the well–known fact that a random walk is recurrent if and
only if the expected number of returns to the origin is infinite. Viewed as such, the proof
of Proposition 1.1 is well–known. For the sake of completeness, we have included it in an
appendix.

2. AN APPLICATION TO RETURN TIMES.

Using the notation of the previous sections, define the return times of the random walk
as: ρ0 = 0 and for all k ≥ 1, ρk = min{j > ρk−1 : Sk = x0}. It is well–known (cf. Feller
(1957) for simple walks, for example) that Eρ1 = ∞. Moreover, by the strong Markov
property, ρn =

∑
1≤k≤n

(
ρk − ρk−1

)
is an increasing random walk. Hence, there cannot

possibly be a strong law of large numbers for ρk’s. On the other hand, Erdős and Taylor
(1960) have shown that a suitable re-interpretation of such a result does exist. Namely, if
Sn is the simple symmetric random walk on L, then

(2.1) lim
n→∞

1
log n

∑
1≤k≤n

1

ρ
1/2
k

=
(

2
πσ2

)1/2

, a.s.,

for σ = 1. In Csáki et al. (1993), the above has been shown to be true for any random walk
on L satisfying: EX = 0, σ2 = EX2 < ∞ and E |X |3 < ∞. In this section, we discuss the
existence and rate of convergence in (2.1) under the nearly minimal conditions of Theorem
1.2 on the distribution of X . To this end, let us define for all t ≥ 1,

(2.2) H(t) =
∑

1≤k≤t

1

ρ
1/2
k

−
(

2
πσ2

)1/2

log t.

Then we have the following result:

5
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Theorem 2.1. Under the conditions of Theorem 1.2 for X , the reconstruction of Theorem
1.2 yields that for all ε > 0, almost surely,∣∣∣∣H(n)−

√
2 log 2
σ2π

B∗(2 log n)
∣∣∣∣ = O

(
(log n)(1/4)+ε

)
.

Remark 2.1.1. One can use the techniques of Section 3, to extend the above to the case of
more general weight functions.

Corollary 2.2. Under the conditions of Theorem 1.2,
(i) (2.1) holds, and

(ii)
{(

σ2π/(2n log 2)
)1/2

H
(
exp(nt/2)

)
; 0 ≤ t ≤ 1

}
converges in D(

[0, 1]
)

to Brownian
motion.

Proof of Theorem 2.1. Recalling (1.3), define A(n) = Aµ(n) for µ(t) = 1. It is not hard
to see that,

(2.3) H(n) = A(ρn)− 1
(2π)1/2σ

· log
(
n2/ρn

)
.

Recalling the integral tests of Khintchine (1938) and Breiman (1968) (cf. also Mijnheer
(1975)), we can argue as in Horváth (1986, Example 6), to see that almost surely,

(2.4)
∣∣ log

(
ρn/n2

)∣∣ = O
(
log log n

)
.

By (2.3) and Theorem 1.2, for all ε > 0,∣∣∣∣H(n)−
√

2 log 2
σ2π

B∗(log ρn)
∣∣∣∣ = O

(
(log ρn)(1/4)+ε

)
= O

(
(log n)(1/4)+ε

)
.(2.5)

But, ∣∣B∗(log ρn)−B∗(log n2)
∣∣ ≤ sup

0≤t≤log n2
sup

|s|≤| log(ρn/n2)|

∣∣B∗(t + s)−B∗(t)
∣∣

= O
(
log log n

)
,

by the modulus of continuity of Csörgő and Révész (1991, p.30). By (2.5), the result
follows. ♦

3. THE LOCAL TIME OF THE ORNSTEIN–UHLENBECK PROCESS.

Let {W (t); t ≥ 0} be a Brownian motion. The local time of W at zero is denoted by
L(t). For the definition, existence and properties of L(t), we refer to Revuz and Yor (1991,
Chapter VI). By Tanaka’s formula (cf. Revuz and Yor (1991, p. 207)), we have,

(3.1) |W (t)| = β(t) + L(t),

6
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where,

(3.2) β(t) =
∫ t

0

sign
(
W (s)

)
dW (s).

It is easy to see that the quadratic variation, 〈β〉t, of β(t) is t, a.s.. Moreover, β is a contin-
uous local martingale with respect to the filtration of W . Hence, by Lévy’s characterization
theorem (cf. Revuz and Yor (1991, p. 141)), β is a Brownian motion.

Let

(3.3) U(t) = e−t/2W (et),

and

(3.4) V (t) = e−t/2β(et).

Evidently, U and V are Ornstein–Uhlenbeck processes, i.e., centered Gaussian processes
with

EU(s)U(t) = EV (s)V (t) = exp
(− |s− t|/2

)
.

It is well–known that U and V are linear diffusions (cf. Rogers and Williams (1987), for
example). We begin with some elementary observations, many of which are well–known.
Let f(x, t) = xt−1/2. Applying Itô’s formula (cf. Revuz and Yor (1991, p. 138)) to
f
(
β(t), t

)
, we obtain the following for all t ≥ 1:

β(t)
t1/2

= β(1) +
∫ t

1

s−1/2dβ(s)− 1
2

∫ t

1

s−3/2β(s)ds

= β(1) +
∫ t

1

s−1/2dβ(s)− 1
2

∫ log t

0

V (s)ds,

by changing variables. A similar expression holds for B(t)/t1/2. Using (3.3) and (3.4), the
above development implies that

(3.5) V (t) = V (0) + Γβ(t)− 1
2

∫ t

0

V (s)ds,

and

(3.6) U(t) = U(0) + ΓW (t)− 1
2

∫ t

0

U(s)ds,

where,

(3.7) Γβ(t) =
∫ et

1

s−1/2dβ(s),

7
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and

(3.8) ΓW (t) =
∫ et

1

s−1/2dW (s).

It is easy to see that Γβ and ΓW are centered Gaussian processes for which,

EΓβ (s)Γβ(t) = EΓW (s)ΓW (t) = s ∧ t.

Therefore, Γβ and ΓW are both Brownian motions.
Next, we compute the strong generator of U and V . First, we apply Itô’s formula to

f
(
U(t)

)
, where f is a twice continuously differentiable function. By (3.6), we obtain,

(3.9) f
(
U(t)

)− f
(
U(0)

)− ∫ t

0

Af
(
U(s)

)
ds =

∫ t

0

f ′
(
U(s)

)
dΓW (s),

where,

(3.10) Af(x) =
1
2
f ′′(x)− 1

2
xf ′(x).

The right hand side of (3.9) being a martingale, it follows from the martingale problem,
that the generator of U is A. Since U and V are equivalent in distribution, the same holds
for V .

Let `(t) denote the local time of U at zero. The existence of ` follows from Revuz and
Yor (1991, p. 209). Moreover, ` can be written as,

(3.11) `(t) = lim
ε↓0

1
2ε

∫ t

0

I
{|U(s)| ≤ ε

}
ds, a.s.,

and

(3.12) lim
ε↓0

E

∣∣∣∣`(t)− 1
2ε

∫ t

0

I
{|U(s)| ≤ ε

}
ds

∣∣∣∣
p

= 0,

for all p > 0.

Lemma 3.1. If D(t) = |U(t)| − V (t), then almost surely for all t > 0,

(3.13)
1
2

∫ t

0

D(s)ds = `(t) + D(0)−D(t).

Proof. First, we use Tanaka’s formula and (3.6) to see that

|U(t)| = |U(0)|+
∫ t

0

sign
(
U(s)

)
dU(s) + `(t)

= |U(0)|+
∫ t

0

sign
(
U(s)

)
dΓW (s)− 1

2

∫ t

0

sign
(
U(s)

)
U(s)ds + `(t)

= |U(0)|+
∫ t

0

sign
(
U(s)

)
dΓW (s)− 1

2

∫ t

0

|U(s)|ds + `(t).(3.14)

8
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Subtracting (3.5) from (3.14), we obtain

(3.15) D(t) = D(0) + M(t)− 1
2

∫ t

0

D(s)ds + `(t),

where,

M(t) =
∫ t

0

sign
(
U(s)

)
dΓW (s)− Γβ(t).

Since M is a continuous martingale, it follows that M(t) = M(0) = 0, if we can prove
that the quadratic variation, 〈M〉t, is zero for all t (cf. Revuz and Yor (1991, p. 119)).
We note that

〈M〉t = 〈
·∫
0

sign(U(s))dΓW (s)〉t + 〈Γβ〉t − 2〈
·∫
0

sign(U(s))dΓW (s), Γβ〉t
= Z1(t) + Z2(t)− 2Z3(t).

Here 〈N1, N2〉t denotes the mutual variation of the semimartingales, N1 and N2.
Since ΓW and Γβ are Brownian motions, Z2(t) = t, for all t ≥ 0, almost surely.

Furthermore,

Z1(t) =
∫ t

0

(
signU(s)

)2
ds = t, a.s. .

To finish the lemma, it remains to prove that Z3(t) = t.
Writing Γβ(t) =

∫ t

0
dΓβ(s), it follows that,

Z3(t) =
∫ t

0

sign
(
U(s)

)
d〈ΓW , Γβ〉s.

By (3.7) and (3.8),

〈ΓW , Γβ〉t =
∫ et

1

s−1d〈W, β〉s,
almost surely. Therefore,

Z3(t) =
∫ t

0

sign
(
U(s)

)
d〈W, β〉es , a.s. .

By (3.2) and (3.3),

〈W, β〉t = 〈
·∫
0

dW (u), β〉t

=
∫ t

0

sign
(
W (s)

)
ds

=
∫ t

0

sign
(
U(log s)

)
ds, a.s. .

Hence,

Z3(t) =
∫ t

0

sign2
(
U(s)

)
ds = t. a.s..

This proves the lemma. ♦

9
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Lemma 3.2. For all t ≥ 0,

(3.16) E`(t) =
t

(2π)1/2
.

Moreover, as t →∞,

(3.17) Var `(t) =
2 log 2

π
· t + o(t).

Proof. Since ED(t) = (2/π)1/2, (3.16) follows from Lemma 3.1. To prove (3.17), define,

p(x, y) =
1
2π

(
2− exp(−|x− y|))−1/2

.

By (3.12),

E`2(t) = 2
∫ t

0

∫ y

0

p(x, y)dxdy.

Elementary calculations reveal

E `2(t) =
t2

2π
+

1
π

∫ t

0

log
(
2 + 2(1− e−s)1/2 + e−s

)
ds.

This proves (3.17) and hence the lemma. ♦
Following Motoo (1959), define the stopping time, {τk; t ≥ 0} by, τ0 = 0, and for all

j ≥ 0,
τ2j+1 = inf

{
s > τ2j : U(s) = 1

}
,

τ2j+2 = inf
{
s > τ2j+1 : U(s) = 0

}
.

Lemma 3.3. The following are true:

(i) The random variables, {τ2j+1− τ2j ; j ≥ 1}, are i.i.d. with a finite moment generating
function in a neighbourhood of zero.

(ii) The random variables, {τ2j+2 − τ2j+1; j ≥ 0}, are i.i.d. with a finite moment gener-
ating function in a neighbourhood of zero.

(iii) The sequence, {τ2j+1 − τ2j ; j ≥ 1} and {τ2j+2 − τ2j+1; j ≥ 0}, are independent.

(iv) The random variables,
{(

`(τ2j+2)− `(τ2j) , τ2j+2 − τ2j

)
; j ≥ 1

}
are i.i.d. with each

co-ordinate possessing a finite moment generating function in a neighbourhood of the
origin.

Proof. That the increments are i.i.d. is a consequence of the strong Markov property of
U . The finiteness of the moment generating function of τj is due to the Gaussian decay
rate of the tails of the density of the speed measure of U . For more details, see Motoo
(1959). For (iv), we need only to prove that `(τ4)− `(τ3) has a finite moment generating

10
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function in a neighbourhood of zero. By the proof of Khoshnevisan (1993, Lemma 4.3),
`(τ4)− `(τ3) has an exponential distribution. This proves the lemma. ♦

By Lemma 3.3, the following is finite:

(3.18) ν = E
(
τ4 − τ2

)
.

The parameter, ν, can be calculated by the optional sampling theorem, (3.10), and (3.14)
and indeed, ν = 2

(
log(2)/π

)1/2. However, we will not show these calculations, as we will
not have need for the exact value of ν.

Lemma 3.4. Fix ε > 0. As k →∞,

(3.19)
∣∣∣∣`(kν)− `(τ2k)− kν − τ2k

(2π)1/2

∣∣∣∣ = O
(
k(1/4)+ε

)
, a.s..

Furthermore,

(3.20) E

∣∣∣∣`(kν)− `(τ2k)− kν − τ2k

(2π)1/2

∣∣∣∣2 = o(k).

Proof. First, we show that almost surely, as T →∞,

(3.21) sup
0≤s≤u(T )

∣∣∣∣`(T + s)− `(T )− s

(2π)1/2

∣∣∣∣ = O
(
T (1/4)+ε +

√
u(T ) log T

)
,

where u(T ) ≤ T . By Lemma 3.1, it is enough to consider,

sup
0≤s≤u(T )

∣∣∣∣D(T + s)−D(T )
∣∣∣∣ +

1
2

sup
0≤s≤u(T )

∣∣∣∣
∫ T+s

T

(
D(u)− (2/π)1/2ν

)
du

∣∣∣∣.
It is easy to see that

sup
0≤s≤T

|D(s)| ≤ sup
0≤s≤T

(|U(s)|+ |V (s)|) = O
(
(log T )1/2

)
,

almost surely. Following the proof of Csörgő and Horváth (1992, Theorem 1.4), we can
find a constant, γ > 0 and a Brownian motion, {W̃ (t); t ≥ 0}, such that as t →∞,

∣∣∫ t

0

(
D(s)− (2/π)1/2ν

)
ds− γW̃ (t)

∣∣ = O
(
t(1/4)+ε

)
, a.s. .

By the modulus of continuity of W̃ (cf. Csörgő and Révész (1991, p. 90)), (3.21) follows.
To prove (3.19), write τ2k as

(3.22) τ2k =
∑

2≤j≤k

(
τ2j − τ2j−2

)
+ τ2.

11
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By (3.18), Lemma 3.3 and the law of the iterated logarithm,

(3.23)
∣∣τ2k − kν

∣∣ = O
(√

k log log k
)
, a.s..

By (3.21) and (3.23), (3.19) follows.
To prove (3.20), we point out that by (3.22) and Lemma 3.3, for all p ≥ 1 there exists

some cp ∈ (0,∞), such that

(3.24) Eτp
2k ≤ cpk

p.

Furthermore, for all ϑ > 0, there exists some α = α(ϑ) ∈ (0, 1), such that for all k ≥ 1,

(3.25) P
(
Ec

k

) ≤ α−1 exp
(− αkϑ

)
,

where

(3.26) Ek =
{|τ2k − kν| ≤ k(1/2)+ϑ

}
.

Write,

E

∣∣∣∣`(τ2k)− `(kν)− τ2k − kν

(2π)1/2

∣∣∣∣2 ≤ 2E
(
τ2k + kν

)2
I
{
Ec

k

}
+ E

∣∣∣∣`(τ2k)− `(kν)− τ2k − kν

(2π)1/2

∣∣∣∣
2

I
{
Ek

}
+ 2E

(
`(τ2k)− `(kν)

)2
I
{
Ec

k

}
= Q1,k + Q2,k + Q3,k.

We shall show that Qj,k = o(k) for j = 1, 2, 3.
By (3.24)–(3.26), Q1,k = o(k). It is easy to see that

E

(
sup

s:|s−kν|≤k(1/2)+ϑ

∣∣D(kν)−D(s)
∣∣)2

= o(k).

Moreover, since
{ ∫ t

0

(
D(s) − (2/π)1/2

)
ds; t ≥ 0

}
is a mean zero martingale, by Doob’s

maximal inequality,

E

(
sup

s:|s−kν|≤k(1/2)+ϑ

∫ s

kν

(
D(t)− (2/π)1/2

)
dt

)2

≤ 4 sup
s:|s−kν|≤k(1/2)+ϑ

E

( ∫ s

kν

(
D(t)− (2/π)1/2

)
dt

)2

= o(k).

By Lemma 3.1 and the above two estimates, Q2,k = o(k). Finally, by Lemmas 3.1 and
3.3(iv), it follows that for every p ≥ 1, there exists a c∗p ∈ (0,∞), such that for all k ≥ 1,

E`p(kν) + E`p(τ2k) ≤ c∗pk
p.

By (3.25) and lemma 3.1,

Q3,k ≤ 4
(
E`4(τ2k)P(Ec

k)
)1/2 + 4

(
E `4(kν)P(Ec

k)
)1/2

= o(k).
This proves the lemma. ♦

12
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Lemma 3.5. There exists a sequence of i.i.d. random variables, {Yj ; j ≥ 1}, such that
for all ε > 0,

(3.27)
∣∣∣∣`(kν)−

∑
1≤j≤k

Yj

∣∣∣∣ = O
(
k(1/4)+ε

)
, a.s. .

Moreover,

(3.28) E

(
`(kν)−

∑
1≤j≤k

Yj

)2

= o(k).

Finally, Y1 has a finite moment generating function in a neighbourhood of zero and

EY1 =
ν

(2π)1/2
,(3.29)

Var Y1 =
ν log 4

π
,(3.30)

where ν is defined by (3.18).

Proof. Since τ0 = 0, we can write,

`(kν) = `(τ2k) + `(kν)− `(τ2k)

=
∑

1≤j≤k

(
`(τ2j)− `(τ2j−2) +

ν − (τ2j − τ2j−2)
(2π)1/2

)

+ `(kν)− `(τ2k)− kν − τ2k

(2π)1/2
.

By (3.18) and Lemma 3.2, we immediately get (3.29) and (3.30). ♦
We are now ready to state and prove the main result of this section.

Proposition 3.6. On an appropriate probability space, there exists a reconstruction of `
together with a Brownian motion, {B∗(t); t ≥ 0}, such that for all ε > 0,

∣∣∣∣`(t)− t

(2π)1/2
−

√
2 log 2

π
B∗(t)

∣∣∣∣ = o
(
t(1/4)+ε

)
, a.s. .

Proof. Fix an arbitrary ε > 0. By Lemma 3.5 and Komlós, Major and Tusnády (1975,
1976), on some probability space, we can reconstruct ` together with a Brownian motion,
{B∗

1(t); t ≥ 0}, such that

(3.31)
∣∣∣∣`(kν)− kν

(2π)1/2
−

√
ν log 4

π
B∗

1(k)
∣∣∣∣ = o

(
k(1/4)+ε

)
, a.s. .

13
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By the modulus of continuity of B∗
1 (cf. Csörgő and Révész (1991, p.30)),

(3.32) sup
k≤t≤k+1

∣∣B∗
1(k)−B∗

1(t)
∣∣ = O

(√
log k

)
, a.s .

Hence, by (3.21), (3.31) and (3.32) we have

(3.33) sup
k≤t≤k+1

∣∣`(kν)− `(tν)
∣∣ = o

(
k(1/4)+ε

)
, a.s. .

By (3.31)–(3.33),∣∣∣∣`(tν)− tν

(2π)1/2
−

√
ν log 4

π
B∗

1(t)
∣∣∣∣ = o

(
t(1/4)+ε

)
, a.s. .

Since B∗(t) = ν1/2B∗
1(t/ν) is another Brownian motion, Proposition 3.6 follows. ♦

4. THE PROOF OF THEOREM 1.2.

Throughout this section, let µ : [1,∞) 7→ R satisfy the conditions of Theorem 1.2.
Without loss of generality, we may take L = Z and x0 = 0, for otherwise, one can rescale
and relabel L. Finally, we shall make all of the calculations for the case σ = 1. The
modifications for general σ > 0 are routine.

Let η denote the local time of the random walk, i.e., for all t ≥ 1,

(4.1) η(t) =
∑

1≤k≤t

I
{
Sk = 0

}
.

By Bass and Khoshnevisan (1992), on a suitable probability space one can reconstruct the
random walk together with a Brownian motion, W , with local time, L, such that for some
ε = ε(δ) > 0,

(4.2)
∣∣η(t)− L(t)

∣∣ = o
(
t(1/2)−ε

)
, a.s. .

Lemma 4.1. For the construction of (4.2),

sup
n

∣∣∣∣ ∑
1≤k≤n

µ(k)
k1/2

I
{
Sk = 0

}− ∫ n

1

µ(t)
t1/2

dL(t)
∣∣∣∣ < ∞, a.s. .

Proof. Since both η and L are increasing, integration by parts reveals that,∑
1≤k≤n

µ(k)
k1/2

I
{
Sk = 0

}− ∫ n

1

µ(t)
t1/2

dL(t)

=
∫ n

1

µ(t)
t1/2

d
(
η(t)− L(t)

)
=

µ(n)
n1/2

(
η(n)− L(n)

)− µ(1)
(
η(1)− L(1)

)− ∫ n

1

(
η(t)− L(t)

)µ′(t)
t1/2

dt

+
1
2

∫ n

1

(
η(t)− L(t)

)µ(t)
t3/2

dt.(4.3)

14
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By (4.2), there exists some ε = ε(δ) such that as n →∞,

µ(n)
n1/2

(
η(n)− L(n)

)
= O

(
n−ε|µ(n)|)

= O(1),(4.4)

by (1.4). Furthermore, since µ is monotone and µ′ continuous, by (4.2) and integration by
parts, ∫ n

1

(
η(t)− L(t)

)µ′(t)
t1/2

dt = O(1) ·
∫ n

1

t−ε|µ′(t)|dt

= O(1) ·
∫ n

1

|µ(t)|
t1+ε

dt.

By (1.4), µ(t) = o(tε/2). Therefore,

(4.5)
∫ n

1

(
η(t)− L(t)

)µ′(t)
t1/2

dt = O(1), a.s. .

Finally by another application of (4.2),∫ n

1

(
η(t)− L(t)

)µ(t)
t3/2

dt = O(1) ·
∫ n

1

|µ(t)|
t1+ε

dt

= O(1),(4.6)

by (1.4). The lemma is a consequence of (4.3)–(4.6). ♦
Recall the process, D, from Lemma 3.1.

Lemma 4.2. We have∣∣∣∣
∫ log n

0

µ(es)dD(s)
∣∣∣∣ = O

(|µ(n)|
√

log log n + 1
)
, a.s. .

Proof. Integrating by parts,∫ t

0

µ(es)dD(s) = µ(et)D(t)− µ(1)D(0)−
∫ t

0

esµ′(es)D(s)ds.

As we have mentioned earlier, |D(s)| = O
(√

log s
)
. The result follows from the above

together with the following: ∫ t

0

es|µ′(es)|ds =
∣∣µ(et)− µ(1)

∣∣.
The above follows from the assumed monotonicity of µ together with the assumption that
µ′ is continuous. This proves the lemma. ♦
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Lemma 4.3. For the construction of (4.2),

∣∣∣∣
∫ n

1

µ(t)
t1/2

dL(t)− 1
2

∫ log n

0

D(s)µ(es)ds

∣∣∣∣ = O
(|µ(n)|

√
log log n

)
, a.s. .

Proof. By the definition of D (see Lemma 3.1) and by (3.1), (3.3) and (3.4),

D(t) =
L(et)
et/2

.

Integrating by parts twice,

∫ n

1

µ(t)
t1/2

dL(t) = µ(es)D(s)
∣∣∣∣
log n

0

−
∫ log n

0

esµ′(es)D(s)ds +
1
2

∫ log n

0

D(s)µ(es)ds

=
∫ log n

0

µ(es)dD(s) +
1
2

∫ log n

0

D(s)µ(es)ds.

The result follows from Lemma 4.2. ♦
Recall (3.1), (3.3) and (3.11).

Lemma 4.4. For the same construction as (4.2), almost surely,

∣∣∣∣
∫ n

1

µ(t)
t1/2

dL(t)−
∫ log n

0

µ(es)d`(s)
∣∣∣∣ = O

(
1 + |µ(n)|

√
log log n

)
.

Proof. Writing (3.13) in its differential form,

1
2
D(s)ds = d`(s)− dD(s).

Hence,

1
2

∫ log n

0

D(s)µ(es)ds =
∫ log n

0

µ(es)d`(s)−
∫ log n

0

µ(es)dD(s)

=
∫ log n

0

µ(es)d`(s) + O
(
1 + |µ(n)|

√
log log n

)
,

by Lemmas 4.1 and 4.2. Lemmas 4.1 and 4.3 together imply the result. ♦
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Lemma 4.5. Fix an arbitrary ε > 0. For the same construction as (4.2), almost surely,

∣∣∣∣
∫ log n

0

µ(es)d`(s)− 1
(2π)1/2

∫ log n

0

µ(es)ds−
√

2 log 2
π

∫ log n

0

µ(es)dB∗(s)
∣∣∣∣

= O
(
1 + |µ(n)|(logn)(1/4)+ε

)
,

where B∗ is the Brownian motion of Proposition 3.6.

Proof. By integration by parts,

∫ log n

0

µ(es)d`(s) = µ(es)`(s)
∣∣∣∣
log n

0

−
∫ log n

0

esµ′(es)`(s)ds.

By Proposition 3.6, with probability one,

`(s) =
s

(2π)1/2
+

√
2 log 2

π
B∗(s) + o

(
s(1/4)+ε

)
.

By the assumptions on µ, one easily sees that for all t > 0,

∫ t

0

s(1/4)+εesµ′(es)ds ≤ t(1/4)+ε
∣∣µ(et)− µ(1)

∣∣.
This proves the lemma. ♦
Proof of Theorem 1.2. Theorem 1.2 is a trivial consequence of Lemmas 4.1, 4.4 and
4.5, together with the triangle inequality. ♦

5. MORE PROOFS.

The Proof of Theorem 1.4. Theorem 1.4 is an immediate consequence of the following
strong approximation result:

Theorem 5.1. Under the conditions of Theorem 1.4, on a suitable probability space one
can reconstruct Aµ, together with a Brownian motion, B̃, such that for each ε > 0, almost
surely, ∣∣∣∣Aµ

(
γ−1(

√
n)

)− B̃(n)
∣∣∣∣ = O

(
n1/2(log n)(−1/4)+ε

)
.

Proof. Since µ(et) is regularly varying of index α > −1/2, by Karamata’s Tauberian
theorem (cf. Bingham et al. (1987, p.26)), as t → ∞, we have that, γ(t) ∼ (2α +
1)−1/2|µ(t)|√log t. Hence, (cf. Bingham et al. (1987, p.28)),

(5.3) |µ(
γ−1(t)

)|( log γ−1(t)
)(1/4)+ε = O

(
t(log t)−(1/4)+ε

)
,

17
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for any ε > 0. Define B̃ by,

B̃
(
γ2(t)

)
=

∫ log t

0

µ(es)dB∗(s),

where B∗ is the Brownian motion of Theorem 1.2. Evidently, B̃ is a Brownian motion.
By Theorem 1.2, the modulus of continuity of B̃ (cf. Csörgő and Révész (1991, p.90)) and
the assumed properties of µ, for all ε > 0,

∣∣∣∣Aµ(t)−
√

2 log 2
σ2π

B̃(γ2(t))
∣∣∣∣ = O

(|µ(t)|(log t)(1/4)+ε
)
, a.s .

The result follows from changing variables, together with (5.3). ♦
The Proof of Theorem 1.5. When α > −1/2, Theorem 1.5 is trivially a consequence
of Theorem 1.4. The other cases are treated similar to the proof of Theorem 1.4. ♦
Proof of Theorem 1.6. The proof of Lemma 4.1 goes through with no changes to show
that,

(5.4)
∣∣∣∣ ∑
1≤k≤n

kθ−(1/2)I
{
Sk = x0

}− ∫ n

1

tθ−(1/2)dL(t)
∣∣∣∣ = o(nθ), a.s .

Let Ln(t) = n−1/2L(nt). By Brownian scaling, Ln has the same distribution as L. In
particular, { ∫ t

1/n

sθ−(1/2)dLn(s); t ≥ 0
}

D=
{∫ t

1/n

sθ−(1/2)dL(s); t ≥ 0
}

.

Changing variables, we see that for all n ≥ 1 and t ≥ (1/n),

n−θ

∫ nt

1

sθ−(1/2)dL(s) =
∫ t

1/n

sθ−(1/2)dLn(s).

Since,

lim
n→∞

∫ t

1/n

sθ−(1/2)dL(s) =
∫ t

0

sθ−(1/2)dL(s), a.s. ,

it remains to show that the above integral is a.s. finite and continuous. By (3.1), EL(t) =
(2t/π)1/2. Integrating by parts, we see that

E

∫ t

0

sθ−(1/2)dL(s) =
tθ

(2π)1/2θ
< ∞,

which gives the desired finiteness and continuity of the above integral. This and (5.4)
together prove the theorem. ♦
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APPENDIX. THE PROOF OF PROPOSITION 1.1

By rescaling and relabelling L, we might as well assume that L = Z and that x0 = 0.
Moreover, it is easy to see that there is no loss in generality in assuming that F is positive
and non-increasing. Define for all n ≥ 1

sn =
∑

1≤k≤n

F (k)I
{
Sk = 0

}
,

pn = P(Sn = 0).

Evidently, Esn =
∑

1≤k≤n F (k)pk. By the local central limit theorem (cf. Révész (1990)),
as k →∞, pk ∼ (2πk)−1/2. Hence there exists some c > 1, such that for all n ≥ 1,

(A.1) c−1Sn(F ) ≤ Esn ≤ c Sn(F ),

where Sn(F ) =
∑

1≤k≤n k−1/2F (k). By the monotone convergence theorem, S(F ) < ∞
implies that E supn sn < ∞ which, in turn, proves the sufficiency. To prove the necessity,
assume that S(F ) = ∞, i.e., that Sn(F ) →∞. Since by (A.1), this implies that Esn →∞,
Kolmogorov’s 0–1 law together with a standard second moment argument show that it is
sufficient to show the following:

(A.2) lim sup
n→∞

Es
2
n(

Esn

)2 ≤ 2.

Indeed,

Es
2
n =

∑
1≤k≤n

F 2(k)pk + 2
n∑

k=2

k−1∑
j=1

F (k)F (j)pk−jpj = T1,n + T2,n.

Recall that F is non-increasing, and that as n → ∞, Esn → ∞. Therefore, T1,n ≤
F (1)Esn = o

(
E

2
sn

)
. Moreover, since F is non-increasing and Esn is non-decreasing,

T2,n = 2
n−1∑
j=1

n−j∑
k=1

F (k + j)F (j)pkpj ≤ 2
n∑

j=1

Esn−j F (j)pj ≤ 2
(
Esn

)2
.

This proves (A.2) and hence Proposition 1.1. ♦

REFERENCES

R.F. Bass and D. Khoshnevisan (1992). Strong approximations to Brownian local time. Seminar on

Stochastic Processes, pp. 43–65. Birkhäuser. Boston
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P. Erdős and G.A. Hunt (1953). Changes of signs of sums of random variables. Pac. J. Math., 3, pp.

673–687
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P. Révész (1990). Random Walk in Random and Non–Random Environments, World Scientific, Singapore

D. Revuz and M. Yor (1991). Continuous Martingales and Brownian Motion, Springer–Verlag, Berlin

L.C.G. Rogers and D. Williams (1987). Diffusions, Markov Processes and Martingales, Vol. 2, Wiley,
New York

P. Schatte (1988). On strong versions of the central limit theorem. Math. Nachr., 137, pp. 249–256

P. Schatte (1990). On the central limit theorem with almost sure convergence. Prob. Math. Stat., 11, pp.

237–246

P. Schatte (1991). Two remarks on the almost sure central limit theorem. Math. Nachr., 154, pp. 225–229

V. Strassen (1964). An invariance principle for the law of the iterated logarithm, Z. Wahr. Geb. verw.,
3, pp. 211–226

A. Weigl (1986). Zwei Sätze über die Belegungszeit beim Random Walk, Diplomarbeit, TU Wien

21


