On Sums of 11d Random Variables Indexed by N Parameters*

By D. KHOSHNEVISAN The University of Utah

Summary. Motivated by the works of J.L. DOOB and R. CAIROLI, we discuss reverse N-parameter inequalities for sums of i.i.d. random variables indexed by N parameters. As a corollary, we derive SMYTHE's law of large numbers.

1. INTRODUCTION

For any integer $N \ge 1$, let us consider $\mathbb{Z}_+^N \triangleq \{1, 2, \cdots\}^N$ and endow it with the following partial order: for all $\mathbf{n}, \mathbf{m} \in \mathbb{Z}_+^N$,

 $\mathbf{n} \preccurlyeq \mathbf{m} \iff n_i \leqslant m_i, \quad \text{for all } 1 \leqslant i \leqslant N.$

Suppose $\{X, X(\mathbf{k}); \mathbf{k} \in \mathbb{Z}_+^N\}$ is a sequence of independent, identically distributed random variables, indexed by \mathbb{Z}_+^N . The corresponding random walk S is given by:

$$S(\mathbf{n}) \triangleq \sum_{\mathbf{k} \preccurlyeq \mathbf{n}} X(\mathbf{k}), \qquad \mathbf{n} \in \mathbb{Z}_+^N$$

According to CAIROLI AND DALANG [CD], for all p > 1,

$$\mathbb{E}\sup_{\mathbf{n}} \left| \frac{S(\mathbf{n})}{\langle \mathbf{n} \rangle} \right| < \infty \quad \Longleftrightarrow \quad \mathbb{E} \left[|X| \left(\log_{+} |X| \right)^{N} \right] < \infty, \\
\mathbb{E}\sup_{\mathbf{n}} \left| \frac{S(\mathbf{n})}{\langle \mathbf{n} \rangle} \right|^{p} < \infty \quad \Longleftrightarrow \quad \mathbb{E} |X|^{p} < \infty.$$
(1.1)

Here and throughout, for all x > 0,

$$\log_+ x \triangleq \begin{cases} \ln(x), & \text{if } x > e \\ 1, & \text{if } 0 < x \leq e \end{cases}$$

 $[\]star$ ~ Research partially supported by NSA and NSF

and for all $\mathbf{n} \in \mathbb{Z}_{+}^{N}$, $\langle \mathbf{n} \rangle \triangleq \prod_{j=1}^{N} n_{j}$. When N = 1, this is classical. In this case, J.L. DOOB has given a more probabilistic interpretation of this fact by observing that S(n)/n is a reverse martingale; cf. CHUNG [Ch] for this and more. The goal of this note is to show how a quantitative version of the method of DOOB can be carried out, even when N > 1. Our approach involves projection arguments which are reminiscent of some old ideas of R. CAIROLI; see CAIROLI [Ca], CAIROLI AND DALANG [CD] and WALSH [W].

Perhaps the best way to explain the proposed approach is by demonstrating the following result which may be of independent interest. For related results and a wealth of further references, see [CD], SHORACK AND SMYTHE [S1] and SMYTHE [S2].

Theorem 1. For all p > 1,

$$\mathbb{E}\sup_{\mathbf{n}\in\mathbb{Z}_{+}^{N}}\left|\frac{S(\mathbf{n})}{\langle\mathbf{n}\rangle}\right|^{p} \leqslant \left(\frac{p}{p-1}\right)^{Np} \mathbb{E}|X|^{p}.$$
(1.2)

Moreover, the corresponding L^1 norm has the following bound:

$$\mathbb{E}\sup_{\mathbf{n}\in\mathbb{Z}_{+}^{N}}\left|\frac{S(\mathbf{n})}{\langle\mathbf{n}\rangle}\right| \leqslant \left(\frac{e}{e-1}\right)^{N} \left\{N + \mathbb{E}\left[|X|\left(\log_{+}|X|\right)^{N}\right]\right\}.$$
 (1.3)

Theorem 1 implies the "hard" half of both displays in eq. (1.1). The easy half is obtained upon observing that for all $p \ge 1$,

$$\mathbb{E}\sup_{\mathbf{n}} \left| \frac{S(\mathbf{n})}{\langle \mathbf{n} \rangle} \right|^p \ge 2^{-p} \mathbb{E}\sup_{\mathbf{n}} \left| \frac{X(\mathbf{n})}{\langle \mathbf{n} \rangle} \right|^p,$$

and directly calculating the above.

An enhanced version of Theorem 1 is stated and proved in Section 2. There, we also demonstrate how to use Theorem 1 together with Banach space arguments to obtain the law of large numbers for $S(\mathbf{n})$ due to SMYTHE [S2].

2. Proof of Theorem 1

I will prove (1.3) of Theorem 1. Eq. (1.2) follows along similar lines. In fact, it turns out to be alot simpler to prove more. Define for all $p \ge 0$,

$$\Psi_p(x) \triangleq x (\log_+ x)^p, \qquad x > 0.$$

I propose to prove the following extension of Theorem 1:

Theorem 1-bis. For all $p \ge 0$,

$$\mathbb{E} \sup_{\mathbf{n} \in \mathbb{Z}_{+}^{N}} \Psi_{p}\left(\frac{S(\mathbf{n})}{\langle \mathbf{n} \rangle}\right) \leqslant (p+1)^{N} \left(\frac{e}{e-1}\right)^{N} \left\{N + \mathbb{E} \Psi_{p+N}\left(|X|\right)\right\}.$$

Setting $p \equiv 0$ in Theorem 1-bis, we arrive at Theorem 1.

Let us recall the following elementary fact:

Lemma 2.1. Suppose $\{M_n; n \ge 1\}$ is a reverse martingale. Then for all p > 1,

$$\mathbb{E}\sup_{n \ge 1} |M_n|^p \leqslant \left(\frac{p}{p-1}\right)^p \mathbb{E}|M_1|^p.$$
(2.1)

 \diamond

 \diamond

For any $p \ge 0$,

$$\mathbb{E}\sup_{n \ge 1} \Psi_p(|M_n|) \le (p+1)\left(\frac{e}{e-1}\right) \left\{1 + \mathbb{E}\Psi_{p+1}(|X|)\right\}.$$
(2.2)

Proof. Eq. (2.1) follows from integration by parts and the maximal inequality of DOOB. Likewise, one shows that

$$\mathbb{E} \sup_{n \ge 1} \Psi_p(|M_n|) \leqslant \left(\frac{e}{e-1}\right) \bigg\{ 1 + \mathbb{E} \bigg[\Psi_p(|M_1|) \ln_+ \Psi_p(|M_1|) \bigg] \bigg\}.$$

For all x > 0, $\ln_+ \Psi_p(x) \leq \ln_+ x + p \ln_+ \ln_+ x$. Eq. (2.2) follows easily.

Now, each $\mathbf{n} \in \mathbb{Z}_+^N$ can be thought of as $\mathbf{n} = (\widehat{\mathbf{n}}, n_N)$, where $\widehat{\mathbf{n}}$ is defined by $\widehat{\mathbf{n}} \triangleq (n_1, \cdots, n_{N-1}) \in \mathbb{Z}_+^{N-1}$. For all $\mathbf{n} \in \mathbb{Z}_+^N$ and all $1 \leq j \leq n_N$, define

$$Y(\widehat{\mathbf{n}},j) \triangleq \frac{1}{\prod_{j=1}^{N-1} n_j} \sum_{i_1=1}^{n_1} \cdots \sum_{i_{N-1}=1}^{n_{N-1}} X(\widehat{\mathbf{i}},j).$$

Clearly,

$$\frac{S(\mathbf{n})}{\langle \mathbf{n} \rangle} = \frac{1}{n_N} \sum_{j=1}^{n_N} Y(\widehat{\mathbf{n}}, j), \qquad \mathbf{n} \in \mathbb{Z}_+^N.$$
(2.3)

Let

$$\Re(k) \triangleq \sigma \{ X(\mathbf{m}); m_N > k \} \lor \sigma \{ S(\mathbf{m}); m_N = k \}, \qquad k \ge 1,$$

where $\sigma\{\cdots\}$ represents the (\mathbb{P} -completed) σ -field generated by $\{\cdots\}$. **Lemma 2.2.** $\{\Re(k); r \ge 1\}$ is a reverse filtration indexed by \mathbb{Z}^1_+ . **Proof.** This means that $\Re(k) \supset \Re(k+1)$ — a simple fact. **Lemma 2.3.** For all $\mathbf{n} \in \mathbb{Z}^N_+$,

$$\frac{S(\mathbf{n})}{\langle \mathbf{n} \rangle} = \mathbb{E} \big[Y(\widehat{\mathbf{n}}, 1) \mid \mathcal{R}(n_N) \big].$$

Assuming Lemma 2.3 for the moment, let us prove Theorem 1.

Proof of Theorem 1-bis. Without loss of generality, we can and will assume that

$$\mathbb{E}\Psi_{p+N}(|X|) < \infty. \tag{2.4}$$

Otherwise, there is nothing to prove. When N = 1, the result follows immediately from Lemma 2.1. Our proof proceeds by induction over N. Suppose Theorem 1-bis holds for all sums of iid random variables indexed by \mathbb{Z}_{+}^{N-1} whose incremental distribution is the same as that of X. We will prove it holds for N. By Lemma 2.3,

$$\mathbb{E} \sup_{\mathbf{n} \in \mathbb{Z}_{+}^{N}} \Psi_{p} \Big(\frac{S(\mathbf{n})}{\langle \mathbf{n} \rangle} \Big) \leqslant \mathbb{E} \sup_{k \geqslant 1} \Psi_{p} \Big(\mathbb{E} \big[W \mid \mathcal{R}(k) \big] \Big),$$

where

$$W \triangleq \sup_{n_1, \dots, n_{N-1} \ge 1} |Y(\widehat{\mathbf{n}}, 1)|.$$

However, $\{Y(\widehat{\mathbf{n}}, 1); \widehat{\mathbf{n}} \in \mathbb{Z}_+^{N-1}\}$ is the average of a random walk indexed by \mathbb{Z}_+^{N-1} with the same increments as S. Therefore, by the induction assumption,

$$\mathbb{E}\Psi_p(W) \leqslant (p+1)^{N-1} \left(\frac{e}{e-1}\right)^{N-1} \left\{ N - 1 + \mathbb{E}\Psi_{p+N}(|X|) \right\}.$$
 (2.5)

In particular, $\mathbb{E}W < \infty$. Together with with Lemma 2.1's eq. (2.2), this implies that $M_k \triangleq \mathbb{E}[W \mid \mathcal{R}(k)]$ is a reverse martingale, By eq. (2.2) of Lemma 2.1,

$$\mathbb{E}\bigg[\sup_{\mathbf{n}\in\mathbb{Z}_{+}^{N}}\Psi_{p}\bigg(\frac{S(\mathbf{n})}{\langle\mathbf{n}\rangle}\bigg)\bigg]\leqslant(p+1)\bigg(\frac{e}{e-1}\bigg)\bigg\{1+\mathbb{E}\big[\Psi_{p}(W)\big]\bigg\}.$$

Note that $(p+1)e(e-1)^{-1} \ge 1$. Therefore, applying (2.5) to this inequality, we obtain Theorem 1-bis.

Proof of Lemma 2.3. Recall (2.3). It remains to show that for $1 \leq j \leq n_N$,

$$\mathbb{E}\big[Y(\widehat{\mathbf{n}},j) \mid \mathcal{R}(n_N)\big] = \mathbb{E}\big[Y(\widehat{\mathbf{n}},1) \mid \mathcal{R}(n_N)\big].$$
(2.6)

To this end, we observe that $\{Y(\hat{\mathbf{n}}, j); 1 \leq j \leq n_N\}$ is a sequence of iid random variables. By exchangeability,

$$\mathbb{E}[Y(\widehat{\mathbf{n}}, j) \mid \mathcal{B}(\mathbf{n})] = \mathbb{E}[Y(\widehat{\mathbf{n}}, 1) \mid \mathcal{B}(\mathbf{n})], \qquad (2.7)$$

where for all $\mathbf{n} \in \mathbb{Z}^N$,

$$\mathcal{B}(\mathbf{n}) \triangleq \sigma \{ S(\mathbf{k}); \mathbf{k} \in \mathbb{Z}_+^N \text{ with } k_N = n_N \text{ and } k_j \leq n_j, \text{ for all } 1 \leq j \leq N-1 \}.$$

Let $\mathcal{C}_0(n_N)$ denote the sigma-field generated by $\{X(\mathbf{k}); k_N > n_N\}$ and define

$$\mathcal{C}(n_N) \triangleq \mathcal{C}_0(n_N) \lor \sigma \{ X(\mathbf{k}); \ k_N = n_N \text{ and for some } 1 \leqslant j \leqslant N-1, \ k_j > n_j \}.$$

It is easy to see that $\mathfrak{B}(\mathbf{n})$ is independent of $\mathfrak{C}(n_N)$ and

$$\mathfrak{R}(n_N) = \mathfrak{C}(n_N) \vee \mathfrak{B}(\mathbf{n}). \tag{2.8}$$

Eq. (2.6) follows from (2.7), (2.8) and the elementary fact that the collection $\{Y(\hat{\mathbf{n}}, j); 1 \leq j \leq n_N\}$ is independent of $\mathcal{C}(n_N)$.

Open Problem.^{\star} Motivated by the proof of Theorem 1-bis — and in the notation of that proof — consider:

$$T(n_N)(\widehat{\mathbf{n}}) \triangleq \frac{1}{n_N} \sum_{j=1}^{n_N} Y(\widehat{\mathbf{n}}, j).$$

It is easy to see that $T(n_N)$ is a reverse martingale which takes its values in the space of all sequences indexed by \mathbb{Z}^{N-1}_+ . For all $\mathbf{n} \in \mathbb{Z}^N_+$ and any two reals a < b, define $U_{a,b}(n_N)(\widehat{\mathbf{n}})$ to be the total number of upcrossings of the interval [a, b] before time n_N of the (real valued) reverse martingale $k \mapsto T(k)(\widehat{\mathbf{n}})$. Is it true that there exist constants C_1 and C_2 (which depend **only** on N) such that

$$\mathbb{E}\Big[\sup_{\widehat{\mathbf{n}}\in\mathbb{Z}_{+}^{N-1}}U_{a,b}(n_{N})(\widehat{\mathbf{n}})\Big]\leqslant C_{1}\frac{\mathbb{E}\big[\sup_{\widehat{\mathbf{n}}\in\mathbb{Z}_{+}^{N-1}}|T(1)(\widehat{\mathbf{n}})-a|\big]}{(b-a)^{C_{2}}}$$
(2.9)

Note that when N = 1, the supremum is vacuous. In this case, the above holds with $C_1 = C_2 = 1$ and is DOOB's upcrossing inequality for the reversed martingale T. If it holds, (2.9) and Theorem 1 together imply SMYTHE's strong law of large numbers; cf. [S2]. The main part of the aforementioned result is the following:

Theorem 2. ([S2]) Suppose

$$\mathbb{E}\left[|X|\left(\log_{+}|X|\right)^{N-1}\right] < \infty \quad and \quad \mathbb{E}X = 0.$$
(2.10)

Then almost surely,

$$\lim_{\langle \mathbf{n} \rangle \to \infty} \frac{S(\mathbf{n})}{\langle \mathbf{n} \rangle} = 0$$

Remark. Classical arguments show that condition (2.10) is necessary as well.

Proof. I will first prove Theorem 2 for N = 2. Let c_0 denote the collection of all bounded functions $a : \mathbb{Z}^1_+ \mapsto \mathbb{R}$ such that $\lim_{k\to\infty} |a(k)| = 0$. Topologize c_0 with the supremum norm: $||a|| \triangleq \sup_k |a(k)|$. Then, c_0 is a separable Banach space. Let

$$\xi_j(k) \triangleq \frac{1}{k} \sum_{i=1}^k X(i,j).$$

^{*} Added Note. Since this article was accepted for publication, we have found the answer to the open problem above to be affirmative.

Note that ξ_j are i.i.d. random functions from \mathbb{Z}^1_+ to \mathbb{R} . By Theorem 1, for all $j \ge 1$, $\mathbb{E}||\xi_j|| \le e^2(e-1)^{-2} \{2 + \mathbb{E}[|X|\log_+|X|]\} < \infty$. By the classical strong law of large numbers, ξ_1, ξ_2, \cdots are i.i.d. elements of c_0 . The most elementary law of large numbers on Banach spaces will show that as elements of c_0 , almost surely,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \xi_j = 0.$$

See LEDOUX AND TALAGRAND [LT; Corollary 7.10] for this and much more. In other words, almost surely

$$\lim_{n_1 \to \infty} \frac{1}{n_1} \sum_{i_1=1}^{n_1} X(i_1, i_2) = 0,$$

uniformly over all $i_2 \ge 1$. Plainly, this implies the desired result and much more when N = 2. The general case follows by inductive reasoning; the details are omitted. \diamondsuit

References.

- [Ca] R. CAIROLI, (1970). Une ingalité pour martingales à indices multiples et ses applications, Sém. de Prob. IV, 1–27, Lecture Notes in Math., 124, Springer, New York
- [CD] R. CAIROLI AND R.C. DALANG, (1996). Sequential Stochastic Optimization, Wiley, New York
- [Ch] K.L. CHUNG, (1974). A Course in Probability Theory, Second Ed., Academic Press, New York
- [LT] M. LEDOUX AND M. TALAGRAND, (1991). Probability in Banach Spaces, Springer, New York
- [S1] G.R. SHORACK AND R.T. SMYTHE, (1976). Inequalities for $\max|S_{\mathbf{k}}|/b_{\mathbf{k}}$ where $\mathbf{k} \in N^r$, Proc. Amer. Math. Soc., 54, 331–336
- [S2] R.T. SMYTHE, (1973). Strong law of large numbers for r-dimensional arrays of random variables, Ann. Prob., 1(1), 164–170
- [W] J.B. WALSH, (1986). Martingales with a multidimensional parameter and stochastic integrals in the plane, *Lectures in Probability and Statistics*, 329– 491, Lecture Notes in Math. **1215**, Springer, New York

Department of Mathematics Salt Lake City, UT. 84112 davar@math.utah.edu SÉMINAIRE DE PROBABILITÉS XXXIV, Lec. Notes in Math., 151-156 (2000)