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On Sums of iid Random Variables

Indexed by N Parameters?

By D. Khoshnevisan

The University of Utah

Summary. Motivated by the works of J.L. Doob and
R. Cairoli, we discuss reverse N–parameter inequalities for
sums of i.i.d. random variables indexed by N parameters. As
a corollary, we derive Smythe’s law of large numbers.

1. Introduction

For any integer N > 1, let us consider ZN
+ , {1, 2, · · ·}N and endow it with

the following partial order: for all n,m ∈ ZN
+,

n 4m ⇐⇒ ni6mi, for all 16 i6N.

Suppose {X, X(k); k ∈ ZN
+} is a sequence of independent, identically distributed

random variables, indexed by Z
N
+. The corresponding random walk S is given

by:
S(n) ,

∑
k4n

X(k), n ∈ ZN
+.

According to Cairoli and Dalang [CD], for all p > 1,

E sup
n

∣∣∣S(n)
〈n〉

∣∣∣ < ∞ ⇐⇒ E
[|X |( log+ |X |)N ]

< ∞,

E sup
n

∣∣∣S(n)
〈n〉

∣∣∣p < ∞ ⇐⇒ E |X |p < ∞.

(1.1)

Here and throughout, for all x > 0,

log+ x ,




ln(x), if x > e

1, if 0 < x6 e
,

?
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and for all n ∈ Z
N
+, 〈n〉 , ∏N

j=1 nj . When N = 1, this is classical. In this
case, J.L. Doob has given a more probabilistic interpretation of this fact by
observing that S(n)/n is a reverse martingale; cf. Chung [Ch] for this and
more. The goal of this note is to show how a quantitative version of the method
of Doob can be carried out, even when N > 1. Our approach involves projection
arguments which are reminiscent of some old ideas of R. Cairoli; see Cairoli

[Ca], Cairoli and Dalang [CD] and Walsh [W].
Perhaps the best way to explain the proposed approach is by demonstrating

the following result which may be of independent interest. For related results
and a wealth of further references, see [CD], Shorack and Smythe [S1] and
Smythe [S2].

Theorem 1. For all p > 1,

E sup
n∈ZN

+

∣∣∣S(n)
〈n〉

∣∣∣p6( p

p− 1

)Np

E |X |p . (1.2)

Moreover, the corresponding L1 norm has the following bound:

E sup
n∈ZN

+

∣∣∣S(n)
〈n〉

∣∣∣6( e

e− 1

)N{
N + E

[|X |( log+ |X |)N ]}
. (1.3)

Theorem 1 implies the “hard” half of both displays in eq. (1.1). The easy
half is obtained upon observing that for all p> 1,

E sup
n

∣∣∣S(n)
〈n〉

∣∣∣p> 2−p
E sup

n

∣∣∣X(n)
〈n〉

∣∣∣p,
and directly calculating the above.

An enhanced version of Theorem 1 is stated and proved in Section 2. There,
we also demonstrate how to use Theorem 1 together with Banach space argu-
ments to obtain the law of large numbers for S(n) due to Smythe [S2].

2. Proof of Theorem 1

I will prove (1.3) of Theorem 1. Eq. (1.2) follows along similar lines. In
fact, it turns out to be alot simpler to prove more. Define for all p> 0,

Ψp(x) , x
(
log+ x

)p
, x > 0.

I propose to prove the following extension of Theorem 1:

Theorem 1-bis. For all p> 0,

E sup
n∈ZN

+

Ψp

(
S(n)
〈n〉

)
6(p + 1)N

( e

e− 1

)N{
N + EΨp+N

(|X |)}.

Setting p ≡ 0 in Theorem 1-bis, we arrive at Theorem 1.
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Let us recall the following elementary fact:

Lemma 2.1. Suppose {Mn; n> 1} is a reverse martingale. Then for all p > 1,

E sup
n > 1

|Mn|p6
( p

p− 1

)p

E |M1 |p. (2.1)

For any p> 0,

E sup
n > 1

Ψp

(|Mn|
)
6(p + 1)

( e

e− 1

){
1 + EΨp+1 (|X |)

}
. (2.2)

Proof. Eq. (2.1) follows from integration by parts and the maximal inequality
of Doob. Likewise, one shows that

E sup
n > 1

Ψp

(|Mn|
)
6

( e

e− 1

){
1 + E

[
Ψp(|M1|) ln+ Ψp(|M1|)

]}
.

For all x > 0, ln+ Ψp(x)6 ln+ x + p ln+ ln+ x. Eq. (2.2) follows easily. ♦
Now, each n ∈ ZN

+ can be thought of as n =
(
n̂, nN

)
, where n̂ is defined by

n̂ ,
(
n1, · · · , nN−1

) ∈ ZN−1
+ . For all n ∈ ZN

+ and all 16 j6nN , define

Y (n̂, j) ,
1∏N−1

j=1 nj

n1∑
i1=1

· · ·
nN−1∑

iN−1=1

X (̂i, j).

Clearly,
S(n)
〈n〉 =

1
nN

nN∑
j=1

Y (n̂, j), n ∈ ZN
+. (2.3)

Let
R(k) , σ

{
X(m); mN > k

} ∨ σ
{
S(m); mN = k

}
, k> 1,

where σ{· · ·} represents the (P–completed) σ–field generated by {· · ·}.
Lemma 2.2. {R(k); r> 1} is a reverse filtration indexed by Z1

+.

Proof. This means that R(k) ⊃ R(k + 1) — a simple fact. ♦
Lemma 2.3. For all n ∈ ZN

+,

S(n)
〈n〉 = E

[
Y (n̂, 1)

∣∣ R(nN )
]
.

Assuming Lemma 2.3 for the moment, let us prove Theorem 1.

Proof of Theorem 1-bis. Without loss of generality, we can and will assume
that

EΨp+N (|X |) < ∞. (2.4)
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Otherwise, there is nothing to prove. When N = 1, the result follows im-
mediately from Lemma 2.1. Our proof proceeds by induction over N . Suppose
Theorem 1-bis holds for all sums of iid random variables indexed by ZN−1

+ whose
incremental distribution is the same as that of X . We will prove it holds for N .
By Lemma 2.3,

E sup
n∈ZN

+

Ψp

(S(n)
〈n〉

)
6 E sup

k > 1
Ψp

(
E
[
W

∣∣ R(k)
])

,

where
W , sup

n1,···,nN−1> 1

∣∣Y (n̂, 1)
∣∣.

However,
{
Y (n̂, 1); n̂ ∈ ZN−1

+

}
is the average of a random walk indexed by ZN−1

+

with the same increments as S. Therefore, by the induction assumption,

EΨp (W )6(p + 1)N−1
( e

e− 1

)N−1{
N − 1 + EΨp+N (|X |)

}
. (2.5)

In particular, EW < ∞. Together with with Lemma 2.1’s eq. (2.2), this implies
that Mk , E

[
W

∣∣ R(k)
]

is a reverse martingale, By eq. (2.2) of Lemma 2.1,

E

[
sup

n∈ZN
+

Ψp

(S(n)
〈n〉

)]
6(p + 1)

( e

e− 1

){
1 + E

[
Ψp(W )

]}
.

Note that (p + 1)e(e− 1)−1> 1. Therefore, applying (2.5) to this inequality, we
obtain Theorem 1-bis. ♦

Proof of Lemma 2.3. Recall (2.3). It remains to show that for 16 j6nN ,

E
[
Y (n̂, j)

∣∣ R(nN )
]

= E
[
Y (n̂, 1)

∣∣ R(nN )
]
. (2.6)

To this end, we observe that
{
Y (n̂, j); 16 j6nN

}
is a sequence of iid random

variables. By exchangeability,

E
[
Y (n̂, j)

∣∣ B(n)
]

= E
[
Y (n̂, 1)

∣∣ B(n)
]
, (2.7)

where for all n ∈ ZN,,

B(n) , σ
{
S(k);k ∈ ZN

+ with kN = nN and kj 6nj, for all 16 j6N − 1
}
.

Let C0(nN ) denote the sigma-field generated by
{
X(k); kN > nN

}
and define

C(nN ) , C0(nN ) ∨ σ
{
X(k); kN = nN and for some 16 j6N − 1, kj > nj

}
.

It is easy to see that B(n) is independent of C(nN ) and

R(nN ) = C(nN ) ∨B(n). (2.8)
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Eq. (2.6) follows from (2.7), (2.8) and the elementary fact that the collection{
Y (n̂, j); 16 j6nN

}
is independent of C(nN ). ♦

Open Problem.? Motivated by the proof of Theorem 1-bis — and in the
notation of that proof — consider:

T (nN)(n̂) ,
1

nN

nN∑
j=1

Y (n̂, j).

It is easy to see that T (nN) is a reverse martingale which takes its values in the
space of all sequences indexed by ZN−1

+ . For all n ∈ ZN
+ and any two reals a < b,

define Ua,b(nN )(n̂) to be the total number of upcrossings of the interval [a, b]
before time nN of the (real valued) reverse martingale k 7→ T (k)(n̂). Is it true
that there exist constants C1 and C2 (which depend only on N) such that

E
[

sup
n̂∈ZN−1

+

Ua,b(nN )(n̂)
]
6C1

E
[
sup

n̂∈ZN−1
+

|T (1)(n̂)− a|]
(b − a)C2

? (2.9)

Note that when N = 1, the supremum is vacuous. In this case, the above
holds with C1 = C2 = 1 and is Doob’s upcrossing inequality for the reversed
martingale T . If it holds, (2.9) and Theorem 1 together imply Smythe’s strong
law of large numbers; cf. [S2]. The main part of the aforementioned result is
the following:

Theorem 2. ([S2]) Suppose

E
[|X |( log+ |X |)N−1]

< ∞ and EX = 0. (2.10)

Then almost surely,

lim
〈n〉→∞

S(n)
〈n〉 = 0.

Remark. Classical arguments show that condition (2.10) is necessary as well.

Proof. I will first prove Theorem 2 for N = 2. Let c0 denote the collection of
all bounded functions a : Z1

+ 7→ R such that limk→∞ |a(k)| = 0. Topologize c0

with the supremum norm: ‖a‖ , supk |a(k)|. Then, c0 is a separable Banach
space. Let

ξj(k) ,
1
k

k∑
i=1

X(i, j).

? Added Note. Since this article was accepted for publication, we have found
the answer to the open problem above to be affirmative.
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Note that ξj are i.i.d. random functions from Z
1
+ to R. By Theorem 1, for all

j> 1, E‖ξj ‖6 e2(e − 1)−2
{
2 + E

[|X | log+ |X |]} < ∞. By the classical strong
law of large numbers, ξ1, ξ2, · · · are i.i.d. elements of c0. The most elementary
law of large numbers on Banach spaces will show that as elements of c0, almost
surely,

lim
n→∞

1
n

n∑
j=1

ξj = 0.

See Ledoux and Talagrand [LT; Corollary 7.10] for this and much more. In
other words, almost surely

lim
n1→∞

1
n1

n1∑
i1=1

X(i1, i2) = 0,

uniformly over all i2> 1. Plainly, this implies the desired result and much more
when N = 2. The general case follows by inductive reasoning; the details are
omitted. ♦
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