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Abstract. Consider a wager that is more complicated than simply winning or losing
the amount of the bet. For example, a pass line bet with double odds is such a wager,
as is a bet on video poker using a specified drawing strategy. We are concerned with the
probability that, in an independent sequence of identical wagers of this type, the gambler
loses L or more betting units (i.e., the gambler is “ruined”) before he wins W or more
betting units. Using an idea of Markov, Feller established upper and lower bounds on
the probability of ruin, bounds that are often very close to each other. However, his
formulation depends on finding a positive nontrivial root of the equation φ(ρ) = 1, where
φ is the probability generating function for the wager in question. Here we give simpler
bounds, which rely on the first few moments of the specified wager, thereby making such
gambler’s ruin probabilities more easily computable.

1. Introduction. Let X be an integer-valued random variable representing the result
of a gambling opportunity, in betting units (positive, negative, and zero values correspond
respectively to a win, loss, and tie for the gambler). We assume that

P{−ν ≤ X ≤ µ} = 1, P{X = −ν} > 0, P{X = µ} > 0, (1.1)

where µ and ν are positive integers, and that

E[X ] 6= 0. (1.2)

Letting
φ(ρ) := E[ρX ] (1.3)

denote the probability generating function, we note that φ(1) = 1, φ′(1) = E[X ], and,
by (1.1), φ(ρ) > 1 for sufficiently small ρ ∈ (0, 1) and for sufficiently large ρ ∈ (1,∞).
Since X(X − 1) ≥ 0, it follows that φ is convex on (0,∞), and so there exists a unique
ρ0 ∈ (0, 1) ∪ (1,∞) such that

φ(ρ0) = 1. (1.4)

If E[X ] < 0, then ρ0 > 1. If E[X ] > 0, then ρ0 < 1.
Now let X1, X2, . . . be independent and identically distributed (i.i.d.) with common

distribution that of X , representing the results of repeated independent trials of the given
gambling opportunity. Then

Sn := X1 + · · ·+ Xn (1.5)
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represents the gambler’s profit after n such trials. We suppose that the gambler’s final bet
is on trial

N(−L, W ) := min{n ≥ 1 : Sn ≤ −L or Sn ≥ W}, (1.6)

where W and L are positive integers, that is, he stops betting as soon as he wins at least
W betting units or loses at least L betting units.

Following Markov (1912) and Uspensky (1937), Feller (1950) obtained bounds on the
probability of ruin or, equivalently, the probability of success:

ρL
0 − 1

ρL+W+µ−1
0 − 1

≤ P{SN(−L,W ) ≥ W} ≤ ρL+ν−1
0 − 1

ρL+W+ν−1
0 − 1

. (1.7)

(See Feller (1968), Eq. (8.12) of Chapter XIV.) In particular, if P{X = 1} = p > 0,
P{X = −1} = q > 0, and P{X = 0} = r ≥ 0, where p + q + r = 1 and p 6= q, then
ρ0 = q/p and µ = ν = 1, so (1.7) becomes

P{SN(−L,W ) = W} =
(q/p)L − 1

(q/p)L+W − 1
, (1.8)

which is of course well known.
Uspensky (1937) treated the special case in which P{X = −ν} + P{X = µ} = 1.

However, his formulation required that the gambler avoid overshooting the boundaries −L
and W . This is natural if one assumes, as did Uspensky, that initially the gambler has L
units and his opponent has W units. On the other hand, Feller’s model can be regarded
as that of a gambler (perhaps in a casino) whose goal is to win W or more units before
losing L or more units. We prefer the latter approach.

Notice that ρ0 is a root of a polynomial of degree µ + ν, so, except in a few special
cases, some numerical scheme is usually needed to evaluate ρ0. Furthermore, when ρ0 is
close to 1, as it frequently is, one may need to use high-precision arithmetic to prevent
serious roundoff error.

Our aim in this paper is to find bounds on the success probability P{SN(−L,W ) ≥ W},
expressible solely in terms of the first four moments of X (and of course W , L, µ, and ν),
that are often nearly as accurate as those in (1.7) and much easier to compute. We also
bound E[N(−L, W )], the expected duration of the session, in a similar way.

In addition, we relax Feller’s assumptions a bit, still requiring that X be bounded,
but no longer requiring that X be integer-valued or even discrete. The point is that, if a
game has fractional payoffs (see Section 4 for examples of this), one should not be forced
to rescale the basic monetary unit in order to apply these results.

Our original goal was to estimate the error in an approximation to the gambler’s ruin
formula due to Griffin (1981). That approximation can be described as follows. Given X
as above, consider a random variable Y with

P{Y = α} = p and P{Y = −α} = 1− p, (1.9)

where α > 0 and p ∈ (0, 1
2 ) ∪ ( 1

2 , 1) are chosen so that

E[Y ] = E[X ] and E[Y 2] = E[X2]. (1.10)
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Specifically, α(2p− 1) = E[X ] and α2 = E[X2], so

α =
√

E[X2] and p =
1
2

+
E[X ]

2
√

E[X2]
. (1.11)

Let Y1, Y2, . . . be i.i.d. with common distribution that of Y , and put

S∗n = Y1 + · · ·+ Yn. (1.12)

Because of (1.10), Sn and S∗n should have similar distributions for large n. Therefore, if

N∗(−L, W ) := min{n ≥ 1 : S∗n ≤ −L or S∗n ≥ W}, (1.13)

we would expect that

P{SN(−L,W ) ≥ W} ≈ P{S∗N∗(−L,W ) ≥ W} ≈ ((1− p)/p)L/α − 1
((1− p)/p)(L+W )/α − 1

, (1.14)

where α and p are as in (1.11) and the second approximation is based on (1.8). (The
second approximation could be made an equality by replacing L/α [resp., W/α] by the
smallest integer greater than or equal to L/α [resp., W/α], but the given expression seems
to be a more accurate approximation to the probability of interest.)

However, the first approximation in (1.14) is difficult to justify, so we take a different
approach. Although our formulation lacks the simplicity of (1.14), it makes up for it in
accuracy.

2. Bounds on ρ0. We replace (1.1) by

P{−ν ≤ X ≤ µ} = 1, P{X < 0} > 0, P{X > 0} > 0, (2.1)

where µ and ν are positive numbers (not necessarily integers). It is no longer assumed
that X is integer-valued or even discrete.

Lemma 1. Suppose that X satisfies (2.1) and (1.2), where µ and ν are positive
numbers. Let φ be the probability generating function of X , i.e.,

φ(ρ) := E[ρX ], 0 < ρ < ∞. (2.2)

Then there exists a unique ρ0 ∈ (0, 1) ∪ (1,∞) such that (1.4) holds. If E[X ] < 0, then
ρ0 > 1. If E[X ] > 0, then ρ0 < 1.

Proof. If X assumes no values in the interval (0, 1), then φ is convex and the argument
of Section 1 works. If general, φ need not be convex, but the moment generating function
M , defined by M(t) = φ(et), is always convex. Noting that M(0) = 1, M ′(0) = E[X ],
and, by (2.1), M(t) > 1 for |t| sufficiently large, we see that there exists a unique t0 6= 0
such that M(t0) = 1. Moreover, t0 > 0 if E[X ] < 0 and t0 < 0 if E[X ] > 0. We obtain
the stated conclusions with ρ0 = et0 . ♦
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In this section we find upper and lower bounds on ρ0 in terms of the first four moments
of X , which we denote by

mk := E[Xk], k = 1, 2, 3, 4. (2.3)

By Taylor’s theorem with integral remainder term, we have for all real x

ex = 1 + x +
1
2
x2 +

1
6
x3 +

1
24

x4ζ(x), (2.4)

where

ζ(x) := 4
∫ 1

0

(1− t)3etx dt ∈ [ex ∧ 1, ex ∨ 1]. (2.5)

It follows that, for all ρ > 0,

φ(ρ) = E[e(log ρ)X ] = 1 + (log ρ)m1 +
1
2
(log ρ)2m2 +

1
6
(log ρ)3m3

+
1
24

(log ρ)4E[X4ζ((log ρ)X)]. (2.6)

Now suppose that ρ1 > 0 is such that log ρ1 satisfies the quadratic equation

m1 +
1
2
(log ρ1)m2 +

1
6
(log ρ1)2m3 = 0, (2.7)

which is the case if

ρ1 := exp
{
− 3

(
m2 −

√
(m2)2 − (8/3)m1m3

)/
(2m3)

}
(2.8)

and if m1m3 ≤ 3m2
2/8. Then log ρ1 6= 0 since m1 6= 0, so

φ(ρ1) = 1 +
1
24

(log ρ1)4E[X4ζ((log ρ1)X)] > 1. (2.9)

Also, by (2.8) and regardless of the sign of m3, ρ1 > 1 if m1 < 0 and ρ1 < 1 if m1 > 0. It
follows from (2.9) that 1 < ρ0 < ρ1 if m1 < 0 and ρ1 < ρ0 < 1 if m1 > 0.

Of course, in the rare situation in which m3 = 0, we can replace (2.8) by ρ1 :=
e−2m1/m2 , and the inequality (2.9) as well as the conclusions following it will remain true.
In fact, even when m3 6= 0,

ρ0 ≈ e−2m1/m2 (2.10)

is an elegantly simple, albeit somewhat crude, approximation. An alternative approxima-
tion based on two moments is

ρ0 ≈
(

1−m1/
√

m2

1 + m1/
√

m2

)1/
√

m2

, (2.11)
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which can be inferred from (1.14) and (1.11). (This has the advantage over (2.10) of
being exact in the case of an even-money proposition.) Sileo (1992) observed that (2.10)
follows from (2.11) and the fact that log(1 + x) ≈ x for small x. See Kozek (1995) and
Canjar (2000) for further discussion of (2.10) and its relative in which m2 is replaced by
the variance.

Next, let
γ := m4(log ρ1)2/6 (2.12)

and suppose that ρ2 > 0 is such that log ρ2 satisfies the quadratic equation

m1 +
1
2
(log ρ2)m2 +

1
6
(log ρ2)2m3 = −1

2
(log ρ2)γ, (2.13)

which is the case if

ρ2 := exp
{
− 3

(
m2 + γ −

√
(m2 + γ)2 − (8/3)m1m3

)/
(2m3)

}
. (2.14)

(Of course, ρ2 := e−2m1/(m2+γ) if m3 = 0.) Then, by (2.6),

φ(ρ2) = 1− 1
12

m4(log ρ1)2(log ρ2)2 +
1
24

(log ρ2)4E[X4ζ((log ρ2)X)] < 1, (2.15)

provided ζ((log ρ2)X) < 2 with probability 1, which by (2.1) is the case if ρ−ν
2 ∨ ρµ

2 < 2.
Here we are using the facts that, by (2.8) and (2.14) and regardless of the sign of m3,
1 < ρ2 < ρ1 if m1 < 0 and ρ1 < ρ2 < 1 if m1 > 0, with the result that, in either case,
0 < (log ρ2)2 < (log ρ1)2. It follows from (2.15) that 1 < ρ2 < ρ0 if m1 < 0 and ρ0 < ρ2 < 1
if m1 > 0.

We summarize the main conclusions of this section in the form of a lemma.

Lemma 2. With the assumptions and notation of Lemma 1, suppose also that
m1m3 ≤ 3m2

2/8, where mk is as in (2.3). Define ρ1 by (2.8) and ρ2 by (2.14) with γ
as in (2.12). (If m3 = 0, then ρ1 := e−2m1/m2 and ρ2 := e−2m1/(m2+γ).) Assume that
ρ−ν
2 ∨ ρµ

2 < 2.
If m1 < 0, then 1 < ρ2 < ρ0 < ρ1. If m1 > 0, then ρ1 < ρ0 < ρ2 < 1.

Remark. Part of this lemma was independently discovered by Canjar (2000). In our
notation, he showed that ρ1 < ρ0 < 1 if m1 > 0 and m1m3 ≤ 3m2

2/8.

3. Bounds on success probability and expected duration. Given positive
numbers W and L (not necessarily integers), the function

fL,W (ρ) :=
ρL − 1

ρL+W − 1
(3.1)

is strictly decreasing on (0, 1) as well as on (1,∞), because the inequality f ′L,W (ρ) < 0 is
equivalent to

1 <
L

L + W
ρ−W +

W

L + W
ρL, (3.2)
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which holds for all ρ ∈ (0, 1) ∪ (1,∞) by the strict convexity of the function h(x) := ρx.
(See Kozek (1995) for an alternative argument.)

Before stating the main result, we need to introduce some new parameters. Let X
satisfy (2.1) and (1.2). Let X1, X2, . . . be i.i.d. with common distribution that of X , define
Sn for n = 1, 2, . . . by (1.5), and define N(−L, W ) by (1.6). Let W ∗ ≥ W and L∗ ≥ L be
positive numbers satisfying

P{SN(−L,W ) ∈ [−L∗,−L] ∪ [W, W ∗]} = 1. (3.3)

W ∗ and L∗ are the maximum win and loss amounts, taking overshoot into account. They
should be chosen as close to W and L, respectively, as possible. To determine their values,
let ε ∈ [0, µ ∧W ] and δ ∈ [0, ν ∧ L] be chosen as large as possible so that

P{Sn ∈ [−(L− δ), W − ε] whenever 1 ≤ n < N(−L, W )} = 1. (3.4)

In words, ε and δ measure how close the gambler’s accumulated profit can get to W and
−L without actually achieving these values. We can then take

L∗ = L + ν − δ, W ∗ = W + µ− ε. (3.5)

If W and L are integers and X is integer-valued, then (3.4) holds with ε = δ = 1, though
this may not be the optimal choice for ε and δ (see Example 1 in Section 4).

Theorem. Under the assumptions and notation of Lemmas 1 and 2 and the preceding
two paragraphs, we have the following conclusions. If m1 < 0, then

fL,W ∗(ρ1) < fL,W ∗(ρ0) ≤ P{SN(−L,W ) ≥ W} ≤ fL∗,W (ρ0) < fL∗,W (ρ2). (3.6)

If m1 > 0, then

fL,W ∗(ρ2) < fL,W ∗(ρ0) ≤ P{SN(−L,W ) ≥ W} ≤ fL∗,W (ρ0) < fL∗,W (ρ1). (3.7)

Remarks. 1. The inner (non-strict) inequalities reduce to Feller’s bounds (1.7) if X
is integer-valued, W and L are positive integers, and ε = δ = 1 in (3.5). However, the
inner bounds above involving ρ0 have two advantages over Feller’s bounds. First, they do
not require that X be integer-valued or that W and L be integers, and second, they are
scale invariant. This means that, if X , W , L, W ∗, and L∗ are all multiplied by the same
positive constant, which merely amounts to a change in the monetary unit, the bounds
remain unchanged. Of course, the same is true of the outer bounds involving ρ1 and ρ2.

2. We allow the possibility that P{X = 0} > 0. Some authors, however, prefer to
regard a tie as a momentary delay in the resolution of the bet, in effect replacing the
distribution of X by the conditional distribution of X given X 6= 0. Whether or not one
adopts this practice, the constants ρ0, ρ1, and ρ2, as well as the bounds in (3.6) and (3.7),
are unaffected.
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3. Suppose m1 < 0 and the gambler has no loss limit and unlimited wealth or credit.
Then 1 < ρ2 < ρ0 < ρ1, so we can let L →∞ in (3.6) to obtain

ρ−W ∗
1 < ρ−W ∗

0 ≤ P{SN(−∞,W ) ≥ W} ≤ ρ−W
0 < ρ−W

2 , (3.8)

where N(−∞, W ) is as in (1.6) with inf ∅ = ∞, and S∞ = −∞.
4. Suppose m1 > 0 and the gambler has no win limit and an adversary with unlimited

wealth or credit. Then ρ1 < ρ0 < ρ2 < 1, so we can let W →∞ in (3.7) to obtain

ρL∗
1 < ρL∗

0 ≤ P{SN(−L,∞) ≤ −L} ≤ ρL
0 < ρL

2 , (3.9)

where N(−L,∞) is as in (1.6) with inf ∅ = ∞, and S∞ = ∞. It is often the case that
L∗ = L, and in such situations the bounds in (3.9) reduce to

ρL
1 < P{SN(−L,∞) = −L} = ρL

0 < ρL
2 . (3.10)

The equality in (3.10) is well known and is related to the formula for the extinction prob-
ability of a supercritical Galton–Watson branching process. It was recently rediscovered
by Evgeny Sorokin and posted on the Internet (see Dunbar and B. (1999)).

5. The results of the preceding paragraph can be used by casino gamblers playing
favorable games. If a gambler wants to ensure that the probability that he goes broke
while betting at a constant rate is at most α, then it is sufficient that his bank-to-bet ratio
L satisfy ρL

0 ≤ α, or

L ≥ log α

log ρ0
. (3.11)

The slightly stronger condition L ≥ log α/ log ρ2 is of course also sufficient.

Proof of Theorem. The outer inequalities in (3.6) and (3.7) are immediate from Lemma
2 and the monotonicity in (3.1).

As for the inner inequalities, notice that {ρSn
0 , n ≥ 0} is a martingale, hence by

optional stopping
E[ρ

SN(−L,W)
0 ] = 1. (3.12)

Because of (3.3), (3.12) implies that, if m1 < 0 (and hence ρ0 > 1), then

ρ−L∗
0 (1− P{SN(−L,W ) ≥ W}) + ρW

0 P{SN(−L,W ) ≥ W}
≤ 1 ≤ ρ−L

0 (1− P{SN(−L,W ) ≥ W}) + ρW ∗
0 P{SN(−L,W ) ≥ W}, (3.13)

while, if m1 > 0 (and hence ρ0 < 1), then the opposite inequalities hold in (3.13). In any
case, we obtain (3.6) and (3.7). ♦

Next, using the notation of (3.1), we define

g1(ρ) = m−1
1

(
(L∗ + W )fL,W ∗(ρ)− L∗

)
(3.14)

and
g2(ρ) = m−1

1

(
(L + W ∗)fL∗,W (ρ)− L

)
. (3.15)
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Corollary. Under the notation and assumptions of the theorem and the preceding
paragraph, we have the following conclusions. If m1 < 0, then

g2(ρ2) < g2(ρ0) ≤ E[N(−L, W )] ≤ g1(ρ0) < g1(ρ1). (3.16)

If m1 > 0, then

g1(ρ2) < g1(ρ0) ≤ E[N(−L, W )] ≤ g2(ρ0) < g2(ρ1). (3.17)

Remarks. 1. These bounds, just like those in (3.6) and (3.7), are scale invariant.
However, conditioning to eliminate ties effectively multiplies the bounds in (3.16) and
(3.17) by P{X 6= 0}.

2. Limiting cases include the following. If m1 < 0, then

|m1|−1L ≤ E[N(−L,∞)] ≤ |m1|−1L∗. (3.18)

If m1 > 0, then
m−1

1 W ≤ E[N(−∞, W )] ≤ m−1
1 W ∗. (3.19)

3. In the special case in which P{X = 1} = p > 0, P{X = −1} = q > 0, and
P{X = 0} = r ≥ 0, where p + q + r = 1 and p 6= q, and W and L are positive integers,
we have ρ0 = q/p, W ∗ = W , and L∗ = L, so the inner inequalities in (3.16) and (3.17)
become

E[N(−L, W )] = (p− q)−1

(
(L + W )

(q/p)L − 1
(q/p)L+W − 1

− L

)
, (3.20)

which is of course well known.

Proof of Corollary. Again, the outer inequalities in (3.16) and (3.17) are immediate
from Lemma 2 and the monotonicity in (3.1).

As for the inner ones, {Sn −nm1, n ≥ 0} is a martingale, hence by optional stopping

E[SN(−L,W )] = m1E[N(−L, W )]. (3.21)

(Actually, apply the optional stopping theorem with N(−L, W )∧n in place of N(−L, W ),
and then let n →∞.) Because of (3.3), (3.21) implies that

−L∗(1− P{SN(−L,W ) ≥ W}) + WP{SN(−L,W ) ≥ W}
≤ m1E[N(−L, W )]

≤ −L(1− P{SN(−L,W ) ≥ W}) + W ∗P{SN(−L,W ) ≥ W}, (3.22)

and the desired conclusions follows from these inequalities and the theorem. ♦

4. Examples. We consider two examples, one with negative expectation and one
with positive expectation.
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Example 1. Pass line bet at craps with β-times odds. Here β is a positive integer
specified by the casino, typically 1, 2, 3, 5, 10, 20, or 100. (1-, 2-, and 3-times odds are
called single, double, and triple odds.)

First, the gambler makes a one-unit pass line bet. A pair of dice is rolled. This is
called the come-out roll. If a 7 or 11 appears, the bet is won. If a 2, 3, or 12 appears, the
bet is lost. If any other number appears (4,5,6,8,9,10), that number becomes the gambler’s
point. The dice are then rolled repeatedly until either the point is repeated (the point is
“made”), in which case the bet is won, or a 7 appears (the point is “missed”), in which
case the bet is lost. The pass line bet pays even money.

Second, if a point is established on the come-out roll, the gambler makes an additional
β-unit odds bet (so-named because it pays fair odds). This is in effect a side bet that the
as-yet-unresolved pass line bet will be won. The odds bet pays 2-to-1 if the point is 4 or
10; 3-to-2 if the point is 5 or 9; 6-to-5 if the point is 6 or 8.

The case β = 1 is summarized in Table 1.
With (Y, Z) as in Table 1, the result of a one-unit pass line bet with β-times odds can

be represented by
X := Y + βZ, (4.1)

which has moments

m1 = − 7
495

(4.2i)

m2 = 1 +
784
495

β + β2 (4.2ii)

m3 = − 7
495

+
103
165

β2 +
17
30

β3 (4.2iii)

m4 = 1 +
1568
495

β + 6β2 +
538
99

β3 +
599
300

β4. (4.2iv)

Table 1

The joint distribution of profit Y from a one-unit pass line bet
and profit Z from an associated one-unit odds bet

result Y Z probability probability
× 990

7 or 11 1 0 8
36

220
2, 3, or 12 −1 0 4

36 110
point 4 or 10; make point 1 2 6

36
3
9

55
point 5 or 9; make point 1 3

2
8
36

4
10 88

point 6 or 8; make point 1 6
5

10
36

5
11 125

point 4, 5, 6, 8, 9, or 10;
miss point −1 −1 6

36
6
9 + 8

36
6
10 + 10

36
6
11 392
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We would now like to illustrate our results with some numerical computations. Con-
sider three gamblers, A, B, and C, who each start with $50,000 and decide to play until
they either double it or lose it. Gambler A bets strictly on the pass line without taking
odds. Gambler B bets the pass line and takes double odds. Gambler C bets the pass line
and takes 100-times odds. Suppose C bets $1 on each come-out roll and backs up each
point with $100 in odds. Since a point is established 2/3 of the time, the expected amount
bet by C per decision is $1 + (2/3)$100 = $67.67. Keeping in mind the fact that the larger
one’s bets are in a subfair game, the better one’s chances are of reaching a goal, we ensure
a fair comparison by arranging a similar average bet size for the other two players. We
assume that A bets $70 on each come-out while B bets $30 on each come-out with $60 in
odds on each point ($30 + (2/3)$60 = $70). What is the probability of success for each
player?

For gambler A it can be evaluated exactly using (1.8). Here p = 244/495, q = 1− p,
and 1 unit is $70, so W = L = 715. (We allow overshoot, meaning in particular that
gambler A is prepared to risk $50,050.) We can also evaluate the moment bounds, taking
W ∗ = L∗ = 715 as well (overshoot is nonrandom). We find that

1.64600× 10−9 < P (A succeeds) = 1.64822× 10−9 < 1.65044× 10−9, (4.3)

the bounds having been obtained from (3.6), so the relative error is at most 0.135 percent.
(Of course, in this case the bounds would not ordinarily be evaluated.)

For gambler B we take 1 unit to be $30, so X is as in (4.1) with β = 2. Notice the
possibility of a fractional payoff. With W = L = 5000/3, µ = 5, ν = 3, and ε = δ = 1/15
in (3.5), we deduce from (3.6) that

0.00307093 < 0.00307116 ≤ P (B succeeds) ≤ 0.00312412 < 0.00312435. (4.4)

(We used Newton’s method to evaluate ρ0.) The outer probabilities are our moment
bounds (relative error at most 1.7397 percent) and the inner ones are essentially Feller’s
bounds (relative error at most 1.7245 percent). Most of the inaccuracy in our moment
bounds is already found in Feller’s bounds and is due to overshoot. Of course, we could
have taken 1 unit to be $1, in which case X is 30 times that in (4.1) with β = 2. Here
W = L = 50,000, µ = 150, ν = 90, and ε = δ = 2 in (3.5). The results are identical to
(4.4) by virtue of the scale invariance.

For gambler C we take 1 unit to be $1, so X is as in (4.1) with β = 100. With
W = L = 50,000, µ = 201, ν = 101, and ε = δ = 1 in (3.5), we deduce from (3.6) that

0.464195 ≤ P (C succeeds) ≤ 0.465722. (4.5)

Our moment bounds differ from Feller’s bounds only in the tenth significant digit and
beyond. The relative error is at most 0.329 percent and is due almost entirely to overshoot.

The results (4.3)–(4.5), which first appeared informally in the Las Vegas Advisor
(October 1996), tell us something remarkable about the effect of odds bets in craps. We
leave it as an exercise for the interested reader to determine which gambler finishes earliest
on average (see the corollary).
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We mention in passing that we could have just as well considered the don’t pass bet
with β-times odds. This bet is exactly the opposite of the pass line bet with β-times odds
(i.e., the criteria for winning and losing are reversed), except that a 12 on the come-out
roll results in a tie instead of a win for the gambler. Also, the odds bet can be made not
just for β units, but for an amount sufficient to win β units. An unusual feature of this
bet is that m3 < 0 for all β ≥ 0, that is, its distribution is skewed to the left. Gamblers do
not usually like to make bets in which the potential loss exceeds the potential win, which
may help to explain why this bet is relatively unpopular.

Example 2. Video poker, “Deuces Wild.” In video poker, the player inserts several
coins into the machine and receives 5 cards, with each of the

(
52
5

)
hands equally likely. He

then has the option of holding or discarding each of his 5 cards (25 ways to play the hand).
If he discards k of the 5 initial cards, he draws k additional cards, with each of the

(
47
k

)
possibilities equally likely. He then receives a certain specified return based on the number
of coins played and the rank of his final hand. Surprisingly, several versions of this game
offer a positive expectation to the player with a nearly optimal drawing strategy.

Once a drawing strategy is fully specified, the probabilities in such a game can in
theory be computed exactly, with

(
52
5

)(
47
5

)
being a common denominator. In practice,

however, they are usually presented as rounded decimal expansions. Consequently, it is
important to determine whether the ruin probabilities are robust under small perturbations
in the probabilities with which the values of X are assumed.

With this in mind, suppose that x0 < x1 < · · · < xl are the values of X and that

pi := P{X = xi}, i = 0, 1, . . . , l, (4.6)

are the exact but unknown probabilities determining the distribution of X . Suppose further
that we can bound these probabilities (except p0) above and below by known probabilities:

0 ≤ p−i ≤ pi ≤ p+
i , i = 1, . . . , l, (4.7)

where
∑l

i=1 p+
i ≤ 1. We define p−0 = 1 − ∑l

i=1 p−i and p+
0 = 1 − ∑l

i=1 p+
i , and let X−

and X+ satisfy P{X− = xi} = p−i and P{X+ = xi} = p+
i for i = 0, 1, . . . , l. Let {X−

j }
and {X+

j } be i.i.d. sequences distributed as X− and X+, respectively. Let S−n and S+
n be

as in (1.5) and N−(−L, W ) and N+(−L, W ) be as in (1.6), with W and L being positive
numbers. The following lemma shows that the success probability based on X lies between
the success probability based on X− and the one based on X+.

Lemma 3. Under the assumptions of the preceding paragraph,

P{S−
N−(−L,W )

≥ W} ≤ P{SN(−L,W ) ≥ W} ≤ P{S+
N+(−L,W )

≥ W}. (4.8)

Proof. The result is intuitively clear, but a proof requires a coupling argument. Define
(X−, X, X+) by

(X−, X, X+) =




(xi, xi, xi) with probability p−i , i = 1, . . . , l,
(x0, xi, xi) with probability pi − p−i , i = 1, . . . , l,
(x0, x0, xi) with probability p+

i − pi, i = 1, . . . , l,
(x0, x0, x0) with probability p+

0 .

(4.9)
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Then P{X− = xi} = p−i , P{X = xi} = pi, and P{X+ = xi} = p+
i for i = 1, . . . , l, hence

also for i = 0, and
P{X− ≤ X ≤ X+} = 1. (4.10)

This leads to
P{S−n ≤ Sn ≤ S+

n for all n ≥ 1} = 1, (4.11)

from which (4.8) follows. ♦
Now let us consider a specific video poker game known as “Deuces Wild.” Ruin

probabilities for this game were studied by Dunbar and B. (1999) and by Canjar (2000).
As the name of the game suggests, each of the four 2’s is a wild card. The payoff structure
is listed in Table 2, as are the probabilities of the various payoffs, assuming the optimal
drawing strategy, which is too complicated to describe here. The probabilities, or actually
their reciprocals, come from Panamint Software’s Video Poker Tutor, and it appears that
they have been rounded to five significant digits. We assume that to be the case.

The player’s profit from a one-unit bet is

X := Y − 1 (4.12)

with Y as in Table 2. (Typically, to qualify for the 800-for-1 payoff listed in Table 2, one
must bet five coins, so 1 unit is 5 times the value of one coin.) Let us apply Lemma 3 to
this game. Here l = 9 (the straight and flush probabilities are combined) and the bounding
probabilities in (4.7) can be determined from Table 2 as follows:

p−1 =
1

3.51275
, p+

1 =
1

3.51265
, . . . , p−9 =

1
45281.5

, p+
9 =

1
45280.5

. (4.13)

We observe first that this is a positive-expectation game:

0.00760848 = E[X−] ≤ E[X ] ≤ E[X+] = 0.00765100. (4.14)

¿From (3.10) and Lemma 3 we find that

(ρ+
1 )L < (ρ+

0 )L ≤ P{SN(−L,∞) = −L} ≤ (ρ−0 )L < (ρ−2 )L (4.15)

for all positive integers L, where the plus and minus superscripts refer to the use of X+

and X− as the underlying random variables. In particular, with L = 1, this reduces to

ρ+
1 < ρ+

0 ≤ ρ0 ≤ ρ−0 < ρ−2 , (4.16)

which in the case of our example becomes

0.999334094 < 0.999343595 ≤ ρ0 ≤ 0.999347772 < 0.999359827. (4.17)

The maximum relative error from the inner bounds (i.e., the error due to roundoff in Table
2) is 0.640 percent. The maximum relative error from the outer bounds (i.e., the error
from both roundoff in Table 2 and the use of the moment bounds of Lemma 2) is 4.02
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percent. Evidently, the highly skewed nature of this example makes the moment bounds
less accurate than they are in Example 1.

Table 2

The distribution of return Y from a one-unit bet
on the video poker game “Deuces Wild.”

Assumes optimal drawing strategy.

result Y rounded reciprocal
of probability

natural royal flush 800 45281.
four deuces 200 4909.1

wild royal flush 25 556.84
five of a kind 15 312.34
straight flush 9 240.01
four of a kind 5 15.399

full house 3 47.105
flush 2 59.516

straight 2 17.836
three of a kind 1 3.5127

other 0 1.8285

If we use (3.11) to determine the necessary bankroll to achieve a 5 percent probability
of ruin, the inner bounds in (4.17) tell us that we would need between 4562.3 and 4591.6
betting units. The outer bounds in (4.17) put the figure between 4497.2 and 4678.1 betting
units.

Finally, as first pointed out by Dunbar and B. (1999), we can also take into account
“cash back,” an incentive offered by many casinos to the video poker player. Specifically,
a certain percentage of the amount bet (typically, less than 1 percent) is returned to the
player once it has reached a certain threshhold. Let β denote the fraction of each bet
returned to the player. Then the player’s profit from a one-unit bet on “Deuces Wild”
becomes

X := Y − 1 + β (4.18)

with Y being the instantaneous return from such a bet as in Table 2. This example
illustrates why we do not want to restrict X to be an integer-valued random variable
(although we could achieve this if necessary by rescaling, since β is rational). The first
four moments of X can be expressed in terms of β and the first four moments of Y − 1,
so the outer bounds in the β-dependent version of (4.15) provide bounds on the ruin
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probability as explicit functions of β. Note that, even if the exact probabilities in Table 2
were known, the equality in (3.10) would not apply.

Acknowledgment. We thank R. M. Canjar for bringing his work on this topic to
our attention.
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