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1. Introduction.

For local times of one–dimensional Brownian motion, there is a huge body of literature
for both the modulus of joint continuity and for invariance principles. However, when one
turns to d–dimensional Brownian motion, much less is known. Local times at points do
not exist, and the appropriate analogue to study is additive functionals Lµt corresponding
to certain measures µ. For continuity, there are a few results concerning joint continuity
in t and µ, such as [B] and [Y]. There are some results on the convergence of functionals
of random walks to a single additive functional (see [Dy]), but nothing, as far as we know,
on uniform convergence to a family of additive functionals.

The purpose of this paper is to study continuity properties and invariance principles
which are uniform over large families M of measures µ. We use the term “local times on
curves” instead of “additive functionals” because (1) most of the examples we look at have
µ’s supported on curves and (2) the term “additive functional” is strongly associated with
probabilistic potential theory; we make no use of this deep subject, but instead rely on
stochastic calculus methods.

Our first set of results concerns the continuity of Lµt as a function of t and µ. If M is
a family of measures µ, each of which satisfies a very mild regularity condition, we show
that Lµt is jointly continuous in t and µ, even when M is a very large family. Largeness,
here, is measured by the metric entropy of M with respect to a certain metric for the space
of measures on R

d with the topology of weak convergence.
The majority of the paper is concerned with invariance principles. We suppose that

X1, X2, . . . is a sequence of mean 0, lattice valued i.i.d. random variables with finite vari-
ance, and possibly satisfying additional moment conditions. We let Sn denote the partial
sums. We suppose that for each µ ∈ M, there is a sequence of measures µn converging
weakly to µ. Since the Xi are lattice valued, we suppose the µn are supported on n−1/2

Z
d.

Then, if the µn satisfy the same mild regularity condition as we imposed on the µ and the
metric entropy of the µn is suitably bounded, then the local time for Sj/

√
n corresponding

to µn converges weakly to Lµt , uniformly over µ ∈ M. The size of the family M that is
allowed is determined by the number of moments of the Xi.

Although our theorems are quite general, they also seem to be quite powerful, as a
number of examples show. For example, in the case of classical additive functionals, where
the µ’s have densities with respect to Lebesgue measure, we get continuity results and
invariance principles over a large class of functions, with minimal smoothness assumptions.
If µ is a measure supported on a curve and we approximate µ by curves containing the
support of Sj/

√
n, we get an invariance principle that is uniform over a large family of

curves.
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One of the most interesting examples is that of intersection local times. If α(x, s, t)
is the intersection local time of two independent Brownian motions, then α measures the
amount of time that the two Brownian motions differ by x, x ∈ R

2 . LeGall [LG] and
Rosen [Ro] have shown that the number of intersections of two independent random walks
converges to the intersection local time of two independent Brownian motions at a single
level x when the random walk has two moments. This result can also be obtained as a
corollary of our methods. In addition, if the random walk has 2 + ρ moments for some
ρ > 0, we get the new result that weak convergence holds uniformly at all levels x. LeGall
and Rosen also have results for invariance principles for k–multiple points. Again, with
2 + ρ moments, we can get the corresponding uniform invariance principle.

To get some idea of the relative sharpness of our theorems, we look at the case of local
times of one–dimensional Brownian motion. A problem that has been studied by a number
of people is the question of an invariance principle that is uniform over all the levels x; see
[Bo2] and the references therein. As an immediate corollary of our theorems, we get an
invariance principle, uniform over all levels x, provided the Xi have 2+ρ moments for some
ρ > 0. The reader should compare this with the results of [Bo1]; there, using techniques
highly specific to one–dimensional Brownian motion, the uniform invariance principle is
obtained under the assumption of finite variance.

Our results on the joint continuity of local times of curves with respect to t and the
measure µ are given in Section 2. We also remark there that many of the results have
analogues for symmetric stable processes.

In Section 3 we prove a local central limit theorem. The theorem is that of Spitzer
[S]; we derive an estimate of the error term that may be of independent interest.

In Sections 4 and 5, we derive exponential estimates for the tails of the difference of
two local times for the random walk. Some of these ideas seem likely to have applications
elsewhere: the theme is that if one wants weak convergence or exponential estimates for
additive functionals, one only has to compute first moments.

In Section 6, we give our invariance principles, with different versions depending on
how well–behaved the tails of the Xi are. The fewer moments, the smaller the family M
that is allowed. If one has only finite variance, one can still get convergence of the finite
dimensional distributions if d ≤ 3, but not (by our techniques) uniform results.

Finally, we give our examples, already discussed above, in Section 7.

2. Construction and Joint Continuity.

Let Zt be Brownian motion on d–dimensional Euclidean space Rd . Let g be the Green
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function of Zt if d ≥ 3. If d = 1 or 2, g shall denote the 1–potential density of Zt. So

g(x, y) =
{∫∞

0
ps(x, y)ds if d ≥ 3∫∞

0
e−sps(x, y)ds if d=1 or 2

where ps(x, y) is the transition function of Z. We define the potential of a measure µ by

gµ(x) =
∫
g(x, y)µ(dy).

Then it is well–known [Br] that if the map x 7→ gµ(x) is bounded and continuous, then
there is a continuous additive functional {Lµt } so that

Mµ
t = gµ(Zt)− gµ(Z0) + Lµt (2.1)

is a mean zero martingale. Lµt is called a local time of Z on the support of µ.

If M is a family of positive measures on R
d , define

dG(µ, ν) = sup
x∈Rd

|gµ(x)− gν(x)| , µ, ν ∈M.

Define HG(ε) = HMG (ε) to be the metric entropy of M with respect to the norm dG.
In other words, HG(ε) = logNG(ε), where NG(ε) is the minimum number of dG–balls of
radius ε required to cover M. If

HG(x) ≤ c2.1x
−r, x < 1, (2.2)

for some r, we say that the exponent of metric entropy of HG is ≤ r.
We then have

Proposition 2.1. If gµ is bounded and continuous for each µ ∈ M and if dG(µ, ν) ≤ 1,

then

P
y(sup
t≤1

|Lµt − Lνt | ≥ λ) ≤ c2.2 exp(−λ/c2.3
√
dG(µ, ν)), µ, ν ∈M, y ∈ R

d ,

where c2.3 depends only on supµ∈M ‖gµ‖∞.

Proof. Let Uµt = gµ(Zt) − gµ(Z0) and similarly for Uνt . Note |Uµt − Uνt | ≤ 2dG(µ, ν).
Write Nt for Mµ

t −Mν
t . Applying Itô’s formula,

(Uµt − Uνt )2 = 2
∫ t

0

(Uµs − Uνs ) dNs − 2
∫ t

0

(Uµs − Uνs ) d(Lµs − Lνs )

+ [Uµ − Uν , Uµ − Uν ]t.
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Since [Uµ − Uν , Uµ − Uν ]t is [N,N ]t, we take expectations to get

E
yN2

τ = E
y [N,N ]τ ≤ 4(dG(µ, ν))2 + 2dG(µ, ν)Ey (Lµτ + Lντ )

≤ c2.4dG(µ, ν) (2.3)

for bounded stopping times τ .
Consider arbitrary bounded stopping times T ≥ S. Then denoting the shift operator

by θt,

E
y {|NT −NS | | FS} ≤

[
E
y

{|NT −NS|2|FS
}]1/2

= [Ey {[N,N ]T − [N,N ]S|FS}]1/2

≤ [E y {[N,N ]∞ ◦ θS|FS}]1/2 ≤
[
sup
x
E
x [N,N ]∞

]1/2

≤ c
1/2
2.4 (dG(µ, ν))1/2 (by (2.3).)

Using (2.1), we get

E
y{|(LµT − LνT )− (LµS − LνS)| |FS} ≤ (4 + c

1/2
2.4 )(dG(µ, ν))1/2.

An application of [DM] p. 193, completes the proof. �

Theorem 2.2. Let M be a family of positive measures on R
d . Suppose

(i) supx∈Rd supµ∈M gµ(x) <∞, and for all µ ∈M, x 7→ gµ(x) is continuous;

(ii) HG has exponent of metric entropy < r < 1/2.

Then (t, µ) 7→ Lµt is almost surely jointly continuous. Moreover,

lim sup
δ→0

sup
0≤t≤1

sup
µ,ν∈M

dG(µ,ν)≤δ

|Lµt − Lνt |
δ1/2−r

<∞, a.s.

Remark 2.3. One could give an integral condition that HG needs to satisfy and also a
more precise modulus of continuity, but even in the case of one–dimensional local times
our result here is not sharp. This reflects the fact that Proposition 2.1 yields exponential
tails for Lµt − Lνt and not Gaussian ones.

Proof of Theorem 2.2. The theorem follows from the estimates of Proposition 2.1 by a
standard metric entropy argument (cf. [Du]). �

Define another metric on our family of measures M by

dL(µ, ν) = sup
ψ∈L

∣∣∣∣
∫
ψdµ−

∫
ψdν

∣∣∣∣ , µ, ν ∈M,
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where L is the collection of all functions ψ : Rd 7→ R
1
+ such that ‖ψ‖∞∨‖∇ψ‖∞ ≤ 1. It is

not hard to show that the dL metric metrizes weak convergence of probability measures.
(This metric is equal to what is sometimes known as the bounded Lipschitz metric.)

Example 2.4. Suppose d = 1. Consider point masses, δx and δy, on x and y, respectively.
Then dL(δx, δy) = sup

ψ∈L
|ψ(x)−ψ(y)| ≤ |x−y| ∧2. This is actually an equality. To see this,

assume without loss of generality that y = 0, x > y. Then define

ψ0(α) = (α ∨ 0) ∧ 2.

Then ψ0 ∈ L and we have that |ψ0(x)−ψ0(y)| = |x−y|∧2. So dL(δx, δy) ≥ |ψ0(x)−ψ0(y)|,
and hence we obtain

dL(δx, δy) = |x− y| ∧ 2 x, y ∈ R
1 .

Example 2.5. Fix two maps Fi : [0, 1] → R
d , i = 1, 2. Define for all Borel sets A, the

measures

µi(A) = |{0 ≤ t ≤ 1 : Fi(t) ∈ A}| , i = 1, 2,

where | · | denotes Lebesgue measure.

Choose ψ ∈ L. Then

∣∣∣∣
∫
ψdµ1 −

∫
ψdµ2

∣∣∣∣ =
∣∣∣∣
∫ 1

0

ψ(F1(t))dt−
∫ 1

0

ψ(F2(t))dt
∣∣∣∣ ,

and so dL(µ1, µ2) ≤
∫ 1

0

(|F1(t)− F2(t)| ∧ 2) dt,

much as in Example 2.4. The right hand side is equivalent to the L0-metric corresponding
to convergence in measure.

Definition 2.6. Let M be a family of positive finite measures on R
d such that for some

γ ∈ R
1 and constant c2.5 = c2.5(γ),

sup
µ∈M

sup
x∈Rd

µ (B(x, r)) ≤ c2.5r
d−2+γ , r ≤ 1.

We call the largest such γ the index of M. If M = {µ0}, then we say that γ is the index
of µ0.
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Proposition 2.7. If index(M) > 0 and supM µ(Rd) <∞, then ‖gµ‖∞ <∞ and gµ(·) is

continuous for each µ ∈ M. In particular, for every µ ∈ M, Lµt is a continuous additive

functional.

Proof. The second statement is a well–known consequence of the first. For the first
statement, consider the d ≥ 3 case first. Then g(x, y) = cd|x− y|2−d for some cd. So

gµ(x) =
∫
g(x, y)µ(dy) =

∫
B(x,1)

g(x, y)µ(dy) +
∫

B(x,1)c

g(x, y)µ(dy)

≤ cdµ(Rd) +
∫

B(x,1)

g(x, y)µ(dy),

where B(x, r) is the ball of radius r centered about x.
But if 0 < γ < index(M),

∫
B(x,1)

g(x, y)µ(dy) =
∞∑
j=0

∫
2−(j+1)≤|x−y|<2−j

g(x, y)µ(dy)

≤ cd

∞∑
j=0

|2−(j+1)|2−dµ(B(x, 2−j)),

≤ c2.6

∞∑
j=0

2−jγ <∞.

The d = 2 case is similar, since g(x, y) ≤ − c2.7 log |x− y| for |x− y| < 1. The d = 1
case is also easy and is done in a similar fashion.

To show continuity, consider the d ≥ 3 case again. Then for ε > 2|x− y|,

|gµ(x)− gµ(y)| ≤ ∣∣ ∫
B(x,ε)

g(x, y)µ(dy)−
∫

B(x,ε)

g(y, z)µ(dz)
∣∣

+
∣∣ ∫
B(x,ε)c

(
g(x, z)− g(y, z)

)
µ(dz)

∣∣ = I2.4 + II2.4. (2.4)

The second term is estimated as follows.

II2.4 ≤
∫

B(x,ε)c

|g(x, z)− g(y, z)|

≤ c2.8|x− y|
∫

B(x,ε)c

(|x− z| ∨ |y − z|)1−d µ(dz) ≤ c2.9ε
1−d|x− y|. (2.5)
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For the first term of (2.4),

I2.4 ≤
∫
B(x,ε)

(g(x, y) + g(y, z))µ(dz)

=
∞∑
j=0

∫
2−(j+1)ε≤|x−z|<2−jε

(g(x, z) + g(y, z))µ(dz)

≤ 2 sup
α

∞∑
j=−1

∫
2−(j+1)ε≤|α−z|<2−jε

∫
g(α, z)µ(dz)

≤ c2.10 sup
α

∞∑
j=−1

(
2−(j+1)ε

)2−d
µ

(
B(α, 2−jε)

)
≤ c2.11

∑
j≥−1

2−jγεγ ≤ c2.12ε
γ . (2.6)

Putting (2.4), (2.5), and (2.6) together gives the existence of a constant c2.13 such that

sup
|x−y|≤δ

|gµ(x)− gµ(y)| ≤ c2.13|δε1−d + εγ | ε > 2δ.

Therefore letting ε = c2.14δ
1/(γ+d−1), we get,

sup
|x−y|≤δ

|gµ(x)− gµ(y)| ≤ c2.15δ
γ/(d+γ−1)

→ 0 as δ → 0.

This proves the proposition for d ≥ 3. The cases when d ≤ 2 are quite similar. �

The following relates the two metrics, dL and dG:

Proposition 2.8. If µ and ν are two positive finite measures on R
d so that index(µ, ν)

> γ > 0, then for some constant c2.16 depending only on γ,

dG(µ, ν) ≤ c2.16[dL(µ, ν)]`

where ` = γ/(d+ γ − 1).

Proof. Take d ≥ 3:

dG(µ, ν) = sup
x∈Rd

|gµ(x)− gν(x)|

≤ sup
x∈Rd

∣∣ ∫
B(x,ε)

g(x, y)(µ− ν)(dy)
∣∣ + sup

x∈Rd

∣∣ ∫
B(x,ε)c

g(x, y)(µ− ν)(dy)
∣∣

= I2.7 + II2.7. (2.7)
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We proceed to estimate each term on the right hand side of (2.7) separately. Consider
the second term first.

II2.7 = sup
x∈Rd

cd
∣∣ ∫
B(x,ε)c

|x− y|2−d(µ− ν)(dy)
∣∣.

But ψ0(y) ≡ |x − y|2−d ∧ ε2−d satisfies ‖ψ0‖∞ ≤ ε2−d and ‖∇ψ0‖∞ ≤ c2.17ε
1−d for a

constant c2.17. So

II2.7 ≤ c2.18 sup
x∈Rd

{∣∣∣∣
∫
ψd(µ− ν)

∣∣∣∣ : ‖ψ‖∞ ≤ ε2−d, ‖∇ψ‖∞ ≤ c2.17ε
1−d

}

≤ c2.19ε
1−ddL(µ, ν), ε ≤ 1. (2.8)

We estimate the first term that appears in (2.7) exactly as in (2.6) to get

I2.7 ≤ c2.20ε
γ . (2.9)

Putting (2.9), (2.8), and (2.7) together, and letting ε = dL(µ, ν)1/(d+γ−1),

dG(µ, ν) ≤ c2.21
[
εγ + dL(µ, ν)ε1−d

]
= c2.22 [dL(µ, ν)]` .

The cases when d ≤ 2 are much the same. �

Now let HL(ε) be the metric entropy with respect to metric dL. Then Proposition 2.8
and Theorem 2.1 together yield the following

Theorem 2.9. Let M be a family of positive finite measures on R
d . Assume that

index(M) > γ, and let ` = γ/(γ + d − 1). If the exponent of metric entropy of HL is

< r < `/2, then almost surely,

lim sup
δ→0

sup
0≤t≤1

sup
µ,ν∈M

dL(µ,ν)≤δ

|Lµt − Lνt |
δ`/2−r

<∞.

Remark 2.10. Theorem 2.2 holds for many other Markov processes as well as for Brow-
nian motion. For example, if Zt is a symmetric stable process of order α the statements
and proofs of Proposition 2.1 and Theorem 2.2 go through with only minor changes.

In the stable case, g(x) = c2.23|x|α−d. Just as above, gµ will be continuous and
bounded if µ(B(x, r)) ≤ c2.24r

d−α+γ uniformly for x ∈ R
d , r ≤ 1. Proposition 2.8 still

holds provided we here define ` by ` = γ/(γ + d − α + 1). Similarly, with this change in
the definition of `, Theorem 2.9 holds as well.
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3. A local central limit theorem.

In this section, we derive a local central limit theorem, which is that of Spitzer [S]
pp. 76–78, but we use the additional moments to get better estimates of the error terms.
We apply this to the problem of estimating the potential kernel of a random walk (cf. [NS]).

Let X1, X2, · · · be i.i.d. Rd–valued random vectors. Here Xj = (X1
j , . . . , X

d
j ). We

consider the case d ≥ 3 for a random walk, Sn =
∑n
j=1Xj . Assume the Xi’s take values in

Z
d, are mean 0, have the identity for covariance matrix, are strongly aperiodic, and have

finite third moments. Let φ(u) = E exp(iu · X1), where a · b is the usual inner product.
Also let pn(x, y) = P

x{Sn = y}. Then we have the following local central limit theorem:

Proposition 3.1. There is a constant c3.1 such that for all n,

sup
x
|pn(x, 0)− (2πn)−d/2e−|x|

2/2n| ≤ c3.1(1 + E |X1 |3)n−(d+1)/2(log+ n)(d+3)/2.

(Here log+(n) = log(n) ∨ 1.).

Proof. We follow the proof of P9 given in [S] pp. 76–78 closely. Let

E(n, x) = |pn(0, x)− (2πn)−d/2e−|x|
2/2n|.

Then

sup
x

(2πn)d/2E(n, x) ≤ (2π)−d/2
4∑
j=1

I
(n)
j

where

I
(n)
1 = sup

x

∣∣∣∣∣
∫
|α|≤An

(
φn(αn−1/2)− e−|α|

2/2
)
e−ix·α/

√
ndα

∣∣∣∣∣ ,
I
(n)
2 = sup

x

∣∣∣∣∣
∫
|α|≥An

e−|α|
2/2−ix·αn−1/2

dα

∣∣∣∣∣ ,
I
(n)
3 = sup

x

∣∣∣∣∣
∫
An≤|α|≤r

√
n

φn(αn−1/2)e−ix·α/
√
ndα

∣∣∣∣∣ , and

I
(n)
4 = sup

x

∣∣∣∣∣∣
∫
|α|>r√n
α∈√nC

φn(αn−1/2)e−ix·α/
√
ndα

∣∣∣∣∣∣ .
Here C = {x ∈ R

d : maxi≤d |xi| ≤ π} is the unit cube of side π. Furthermore, An =√
2β logn for some large β and r > 0 is a constant that is small. We proceed to estimate

each term separately. Take n > 1.

I
(n)
1 ≤ n

∫
|α|≤An

∣∣∣φ(αn−1/2)− e−|α|
2/2n

∣∣∣ dα
9
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since for all a, b ∈ R
d ,

||a|n − |b|n| ≤ n|a− b| (|a| ∨ |b|)n−1
.

By definition, An/
√
n→ 0. So a Taylor expansion implies

φ(αn−1/2) = 1− |α|2
n

+E1(α, n)

e−|α|
2/2n = 1− |α|2

n
+E2(α, n)

and for all |α| ≤ An, Ei(α, n) ≤ c3.2(1 + E |X1 |3)(|α|3/n3/2), i = 1, 2.
Therefore there exists a constant c3.3, independent of α ∈ {x ∈ R

d : |x| ≤ An}, so
that

sup
|α|≤An

∣∣∣φ(αn−1/2)− e−|α|
2/2n

∣∣∣ ≤ c3.3(1 + E |X1 |3)A3
nn

−3/2

≤ c3.3
√

8β3/2(1 + E |X1 |3)n−3/2(logn)3/2.

Therefore,

I
(n)
1 ≤ c3.4(1 + E |X1 |3)nAdnn−3/2(logn)3/2|B(0, 1)|

= c3.5(1 + E |X1 |3)n−1/2(logn)(d+3)/2. (3.1)

Next,

I
(n)
2 ≤

∫
|α|≥An

e−|α|
2/2dα ≤ c3.6n

−β . (3.2)

The upper bound for I(n)
3 and I(n)

4 is done exactly as in [S]: for r small enough

I
(n)
3 ≤ 2n−β. (3.3)

Also, for r small enough, there exists δ ∈ (0, 1) so that

I
(n)
4 ≤ (1− δ)n

∣∣{α : |α| > r
√
n; α ∈ √nC}∣∣

≤ c3.7n
−β , (3.4)

where |B| is the Lebesgue measure of the Borel set B. Putting (3.1)–(3.4) together, the
proposition is proved. �

Recall that X1 is subgaussian if there exists r > 0 such that for all t > 0,

Eet|X1 | ≤ 2et
2r. (3.5)
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Define the potential kernel for the random walk:

G(x, y) =
∑
n

pn(x, y).

Recall d ≥ 3 and hence G is well–defined and finite. Also recall that for some constant cd,
g(x, y) = cd|x− y|2−d. Then the above proposition implies:

Proposition 3.2. Assume the X ’s are subgaussian. Then there is a constant c3.8 so that

for every x, y ∈ Z
d,

|G(x, y)− g(x, y)| ≤ c3.8|x− y|1−d (
log+ |x− y|)1+d

.

Proof. By translation, it is enough to do this for y = 0. Clearly we shall only need to
consider the case |x| ≥ 1. By Chebyshev’s inequality and (3.5), for all x ∈ R

d ,

P {|Sn| ≥ |x|} ≤ 2 exp(−|x|2/4nr). (3.6)

Let f(x) = [ |x|2
k log |x| ], k large. Then

f(x)∑
n=1

E(n, x) ≤
f(x)∑
n=1

pn(0, x) +
f(x)∑
n=1

(2πn)−d/2e−|x|
2/2n. (3.7)

We bound each term on the right hand side of (3.7) separately:

f(x)∑
n=1

pn(0, x) ≤
f(x)∑
n=1

P{|Sn| ≥ |x|}

≤
f(x)∑
n=1

2e−|x|
2/4nr ( by (3.6) )

≤ 2f(x) exp(− |x|2
4rf(x)

) ≤ c3.9
|x|2

k log |x| · |x|
−k/4r

≤ |x|1−d if k is large enough. (3.8)

Similarly,

f(x)∑
n=1

(2πn)−d/2e−|x|
2/2n ≤ |x|1−d if k is large enough, |x| ≥ 1. (3.9)

Then (3.7), (3.8), and (3.9) imply that if k is large enough,

f(x)∑
n=1

E(n, x) ≤ 2|x|1−d. (3.10)

11
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Now we estimate
∑∞
n=f(x)E(n, y) as follows:

∑
n≥f(x)

E(n, x) ≤ c3.10
∑

n≥f(x)

n−(d+1)/2(log+ n)
(d+3)/2

(Proposition 3.1)

≤ c3.11|x|1−d(log+ |x|)d+1. (3.11)

Putting (3.11) and (3.10) together implies

∑
n≥1

E(n, x) ≤ c3.12|x|1−d(log+ |x|)d+1.

This in turn implies

∣∣∣∣∣∣G(0, x)−
∑
n≥1

(2πn)−d/2e−|x|
2/2n

∣∣∣∣∣∣ ≤ 1 + c3.12|x|1−d(log+ |x|)d+1.

However, it is easy to show that

|
∑
n≥1

(2πn)−d/2e−|x|
2/2n − g(x, 0)| ≤ c3.13|x|1−d(log+ |x|)d+1.

This proves the proposition. �

Corollary 3.3. If d ≥ 3 and the Xi’s are subgaussian,

(a) G(0, x) ≤ c3.14(1 ∧ |x|2−d);
(b) For each β ∈ (0, 1), there exists c3.15 = c3.15(β) such that

|G(0, x)−G(0, y)| ≤ c3.15
|x− y|

(|x| ∧ |y|)d−1
+ c3.15

|x− y|1−β
(|x| ∧ |y|)d−1−β . (3.12)

Proof.

G(0, 0) = p0(0, 0) +
∞∑
n=1

pn(0, 0) ≤ 1 +
∞∑
1

c3.16n
−d/2 ≤ c3.17.

by Proposition 3.1. So part (a) follows by this equation if x = 0 and by Proposition 3.2 if
|x| ≥ 1.

Note that part (b) is trivial if x = y or if x = 0 or y = 0. So let us exclude these
cases. By Proposition 3.2, if β ∈ (0, 1),

|G(0, x)− g(0, x)| ≤ c3.18|x|−(d−1−β),

12
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and similarly for |G(0, y)− g(0, y)|. But

|g(0, x)− g(0, y)| ≤ c3.19|y − x|/(|x| ∧ |y|)1−d.
Since |x− y| ≥ 1, part (b) follows by the triangle inequality. �

Remark 3.4. Note that if Cov(X1) = Q for Q any positive definite matrix, Corollary 3.3
still holds. To see this, one merely needs to replace the proofs of Propositions 3.1 and 3.2
with ones where the identity matrix I is replaced by Q (cf. [S]).

Remark 3.5. The assumption that the random walk be strongly aperiodic may be re-
moved by the method of Spitzer.

4. Moment Bounds.

In this section we consider the analogues of some of the results of Section 2 with
random walk in place of Brownian motion. Fix n. Let µn be a finite measure supported
on n−1/2

Z
d. Let Mn be a family of such measures.

Let us define indexn(Mn) to be the largest γ such that there exists c4.1 with

µn(B(x, s)) ≤ c4.1s
d−2+γ , x ∈ R

d , s ∈ [1/2
√
n, 1], µn ∈Mn. (4.1).

Note, taking x ∈ n−1/2
Z
d and s = 1/2

√
n, then in particular

µn({x}) ≤ c4.1n
1−(d+γ)/2 ≤ c4.1n

1−d/2. (4.2)

Define

Ln,µn

k = nd/2−1
k∑
j=0

µn({Sj/
√
n}). (4.3)

Proposition 4.1. If indexn(µn) > γ, then supx ExLn,µn∞ ≤ c4.2, where c4.2 depends only

on µn(Rd), γ, and the constant c4.1 of (4.1).

Proof. By translation invariance, it suffices to suppose x = 0.

E
0Ln,µn∞ = nd/2−1

∞∑
j=0

∑
y∈Zd

µn({y/√n})pj(0, y)

= nd/2−1
∑
y∈Zd

G(0, y)µn({y/
√
n})

≤ c4.3n
d/2−1

∞∑
k=0

∑
2k≤|y|<2k+1

|y|2−dµn({y/
√
n}) + nd/2−1G(0, 0)µn({0})

≤ c4.4n
d/2−1

∞∑
k=0

2k(2−d)µn(B(0, 2k+1/
√
n)) + nd/2−1G(0, 0)µn({0})

= I4.5 + II4.5 (4.5)

13
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II4.5 is bounded using (4.2) and Corollary 3.3(a). For I4.5, note

∞∑
k=0

2k(2−d)µn(B(0, 2k+1/
√
n)) =

∑
2k≤√n

+
∑

2k>
√
n

≤ c4.1
∑

2k≤√n
2k(2−d)(2k+1/

√
n)d−2+γ + c4.5

∑
2k>

√
n

2k(2−d)

≤ c4.6n
1−d/2. (4.6) �

Corollary 4.2. Let y ∈ n−1/2
Z
d. If µrn is µn restricted to B(y, r)− {y}, then E

yL
n,µr

n∞ ≤
c4.7r

γ .

Proof. The proof is very similar to that of Proposition 4.1, except that we may omit II4.5
and in estimating I4.5 in (4.6), we need only look at

∑
2k≤r√n. �

Recalling the definition of dL from Section 2, notice that

dL(µn, νn) = sup{
∑
y∈Zd

ψ(y/
√
n)(µn − νn)({y/

√
n}) : ψ ∈ L}.

Taking ψ = c4.8/
√
n at x ∈ n−1/2

Z
d and 0 on B(x, 1/2

√
n)c, we see

µn({x})− νn({x}) ≤ c4.9
√
ndL(µn, νn). (4.7)

Lemma 4.3. Suppose ‖ψ‖∞ ≤ 1, µ(Rd), ν(Rd) ≤ c4.10, and |ψ(x) − ψ(y)| ≤ |x − y|α.

Then | ∫ ψ(y)(µ− ν)(dy)| ≤ c4.11(dL(µ, ν))α.

Proof. Let ϕ be a smooth, nonnegative, radially symmetric function with compact support
and

∫
Rd ϕ(x) dx = 1. Let ϕε(x) = ε−dϕ(x/ε), ψε = ψ ∗ ϕε for ε > 0.

First,

|ψε(x)− ψ(x)| = |
∫

[ψ(x− y)− ψ(x)]ϕε(y) dy|

≤
∫
|y|αϕε(y) dy = εα

∫
|y|αϕ(y) dy ≤ c4.12ε

α.

Next, let u be a unit vector, ∇uf = ∇f ·u. Without loss of generality, we may assume
u = (1, 0, . . . , 0). Then∫

∇uϕε(y) dy =
∫
· · ·

∫
∇uϕε(y1, . . . , yd) dy1 . . . dyd

=
∫
· · ·

∫
0 dy2 . . . dyd = 0

14
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since ϕε has compact support. So

|∇uψε(x)| = |
∫
ψ(x− y)∇uϕε(y) dy| = |

∫
[ψ(x− y)− ψ(x)]∇uϕε(y) dy|

≤
∫
|y|αε−(d+1)ϕ(y/ε) dy ≤ c4.13ε

α−1.

Hence,

|
∫
ψd(µ− ν)| ≤

∫
|ψ − ψε| d(µ+ ν) + |

∫
ψε d(µ− ν)|

≤ c4.12ε
α(µ(Rd) + ν(Rd)) + c4.13ε

α−1dL(µ, ν).
.

Now take ε = dL(µ, ν). �

Let Mn be a family of measures supported on n−1/2
Z
d with indexn(Mn) > γ. We

now obtain:

Proposition 4.4. For each β > 0,

sup
µn,νn∈Mn

sup
x
E
x(Ln,µn∞ − Ln,νn∞ ) ≤ c4.14(dL(µn, νn))`β ,

where

`β = γ(1− β)/(d+ γ − 1− β) (4.8)

and c4.14 depends on c4.1, γ, β, and supMn
µn(Rd).

Proof. By translation invariance we may suppose x = 0. Write δ for dL(µn, νn), ` for `0.
Let GK(y) = G(0, y) ∧K. As in (4.5),

E
0Ln,µn∞ − E

0Ln,νn∞

= nd/2−1
∑
y 6=0

[G(0, y)−GK(y)](µn − νn)({y/
√
n}) + nd/2−1

∑
y

GK(y)(µn − νn)(y/
√
n)

+ nd/2−1[G(0, 0)−GK(0)](µn − νn)({0})
= I4.9 + II4.9 + III4.9 (4.9).

Note G(0, y)−GK(y) = 0 if |y| > c4.15K
1/(2−d). So, writing ζ = K1/(2−d),

I4.9 ≤ nd/2−1
∑

0<|y|<c4.15ζ

G(0, y)(µn + νn)({y/
√
n})

= 2(E 0L
n,µr

n∞ + E
0L

n,νr
n∞ ) ≤ 4c4.16rγ ,

15
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where r = c4.15ζ/
√
n.

¿From Corollary 3.3 it follows easily that if x, y ∈ n−1/2
Z
d, then

|GK(x
√
n)−GK(y

√
n)| ≤ c4.17n

1−d/2
( |x− y|1−β

ζd−1−β +
|x− y|
ζd−1

)

and

|GK(x
√
n)| ≤ c4.18n

1−d/2ζ2−d.

Define ψ(x) = nd/2−1GK(x
√
n) for x ∈ n−1/2

Z
d and define ψ(x) by some suitable

interpolation procedure if x 6∈ n−1/2
Z
d. Looking at the cases ζ > |x− y| and ζ ≤ |x− y|

separately, we see

|ψ(x)− ψ(y)| ≤ c4.19

( |x− y|1−β
ζd−1−β ∧ ζ2−d

)
.

Applying Lemma 4.3 to c−1
4.19ζ

d−1−βψ, we get

II4.9 ≤ c4.20
δ1−β

ζd−1−β .

Finally, by (4.7) and (4.2)

III4.9 ≤ c4.21

(
nd/2−1/2δ ∧ n−γ/2

)
. (4.10)

Looking at the cases when n(d−1)/2 is greater than and less than n−γ/2 separately,

III4.9 ≤ c4.22δ
`.

Choose K so that ζ = (δ1−βnγ/2)1/(γ+d−1−β). So

I4.9 + II4.9 + III4.9 ≤ c4.23n
(γ/2)[γ/(d−1+γ−β)−1]δγ(1−β)/(d−1+γ−β) + c4.22δ

`

≤ c4.24δ
`β ,

since n ≥ 1 and γ/(d− 1 + γ − β)− 1 < 0. �

5. Martingale Calculus estimates.

As in Sections 2–4, we restrict attention to the case d ≥ 3. Let Mn be as in Section
4. Fix µn, νn ∈Mn and let

Ank = Ln,µn

k − Ln,νn

k , Un(x) = E
xAn∞.

16
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There exists a mean 0 martingale Mn
k so that

Unk ≡ Un(Sk)− Un(S0) = Mn
k −Ank .

Define Bnm = maxk≤m |Ank |. Fixing n allows us to drop the n subscript. We proceed to
estimate EyB2

∞ with this convention in mind.

Proposition 5.1. There is a constant c5.1 = c5.1(Mn) so that

sup
n≥1

sup
µn,νn∈Mn

dL(µn,νn)≤δ

E
y |Bn∞|2 ≤ c5.1δ

`β

where `β is defined in (4.8).

Proof. Fix n. We shall temporarily drop the n superscripts. Notice that

|Ak|2 ≤ 2|Uk|2 + 2|Mk|2

≤ 2c24.14δ
2`β + 2|Mk|2 (Proposition 4.4).

where δ = dL(µ, ν). Hence

E
y |B∞|2 ≤ 2c24.14δ

2`β + 2Ey sup
k
|Mk|2

≤ 2c24.14δ
2`β + 8Ey |M∞|2 (Doob’s inequality). (5.1)

But
|M∞|2 ≤ 2|U∞|2 + 2|A∞|2

≤ 2c24.14δ
2`β + 2|A∞|2 (Proposition 4.4).

Therefore (5.1) yields

E
y |B∞|2 ≤ 18c24.14δ

2`β + 16Ey |A∞|2. (5.2)

Letting ∆Ak ≡ Ak+1 −Ak, note that

A2
∞ =

∞∑
k=0

(A2
k+1 − A2

k) =
∑
k

∆Ak(Ak+1 + Ak)

=
∑
k

∆Ak (2Ak+1 −∆Ak)

= 2
∑
k

Ak+1∆Ak −
∑
k

(∆Ak)2

17
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So

A2
∞ = 2

∑
k

(A∞ − Ak+1)∆Ak +
∑
k

(∆Ak)2. (5.3)

= I5.3 + II5.3

E
y I(5.3) =

∑
k

E
y

{
E (A∞ − Ak+1|F̂k+1)∆Ak

}
(F̂i = σ{X1, . . . , Xi})

=
∑
k

E
y

{
E
Sk+1 [A∞]∆Ak

}
≤ 2c4.14δ`β

∑
k

E
y |∆Ak| (Proposition 4.4)

≤ 2c4.14δ`βE y (Ln,µ∞ + Ln,ν∞ )

≤ 4c4.14c4.1δ`β . (Proposition 4.1). (5.4)

Next, using (4.2) and (4.7),

sup
x
|(µn − νn)({x}) ≤ c5.2(

√
nδ ∧ n1−(d+γ)/2).

So
E
y II5.3 = nd−2

E
y

∑
j

[(µn − νn)({Sj+1/
√
n})]2

≤ nd/2−1 sup
x
|(µn − νn)({x})Eynd/2−1

∑
j

(µn + νn)({Sj+1/
√
n}))

≤ c5.2[n(d−1)/2δ ∧ n−γ/2][EyLn,µn∞ + E
yLn,νn∞ ].

By the argument following (4.10) and Proposition 4.1,

E
y II5.3 ≤ c5.3δ

`.

Adding, we get Proposition 5.1. �

Using this, we prove the following exponential estimate:

Proposition 5.2. For all x ∈ (0,∞), all β ∈ (0, 1),and all δ ≤ 1,

sup
n≥1

sup
µn,νn∈Mn

dL(µn,νn)≤δ

P
y

{
sup
k
|Ln,µn

k − Ln,νn

k | ≥ x

}
≤ 2 exp

{
− x√

c5.4δ`β

}
.

18
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Proof. Define An(t) = An[t] and Bnt = sups<t |An(t)|. Then t 7→ Bnt is predictable and
increasing. Since t 7→ Bnt is also a sub-additive functional, Proposition 5.1 and Cauchy–
Schwarz show that

E
y{Bn∞ −BnT |FT} ≤

√
c5.1δ`β .

Therefore, by [DM] p. 193, for every δ ≤ 1, all x > 0, and λ ∈ (0, (c5.1δ`β )−1/2/8),

sup
n≥1

sup
µn,νn∈Mn

dL(µn,νn)≤δ

E
yeλ|B

n
∞| ≤

(
1− λ

√
c5.1δ`β

)−1

.

Hence
sup
n≥1

sup
µn,νn∈Mn

dD(µn,νn)≤δ

P
y {|Bn∞| ≥ x} ≤ e−λx

(
1− λ

√
c5.1δ`β

)−1

.

Letting λ = 1/16
√
c5.1δ`β , we get the result. �

6. Invariance Principles.

Throughout this section assume that X1, X2, · · · are mean zero random vectors taking
values in Zd and that Cov(X1) = I, the identity matrix. Further moment conditions will be
imposed later. Let Sn =

∑n
j=1Xj. LetM be a family of positive measures on Rd . Suppose

for each µ ∈M there exists a sequence of positive measures, µn = µ(n) converging weakly
to µ, and for each n, µn is supported on n−1/2

Z
d. Let

Mn = {µ(n) : µ ∈M}.

Hypothesis 6.1.

(a) There exists c6.1, independent of n, such that µn(Rd) ≤ c6.1, µn ∈Mn;

(b) for some γ > 0, there exists c6.2 ∈ (0,∞), independent of n, such that

sup
x
µn(B(x, s)) ≤ c6.2s

d−2+γ if 1/2
√
n ≤ s ≤ 1, n ≥ 1, µn ∈Mn;

(cβ) there exists c6.3 and ε > 0, independent of n, such that if Hn
L is the metric entropy of

Mn with respect to dL, then

Hn
L(x) ≤ c6.3x

−(`β/2−ε), HL(x) ≤ c6.3x
−(`β/2−ε), x ∈ (0, 1).

In what follows we will formulate a number of invariance principles. See [Bi] for the
appropriate definitions concerning weak convergence on metric spaces. But perhaps the
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simplest way to describe what converging weakly uniformly over a family means is to say:
one can find a probablility space supporting a Brownian motion Zt and a random walk with
the same distribution as the Sn’s such that S[nt]/

√
n converges uniformly to Zt, t ∈ [0, 1],

a.s., and Ln,µn

[nt] converges uniformly to Lµt , t ∈ [0, 1], µ ∈M, a.s.

A. Subgaussian case.

In this subsection, assume d ≥ 3 and assume that theXi’s are subgaussian. The follow-
ing proposition follows from Proposition 5.2 just as Theorem 2.2 followed from Proposition
2.1, by standard metric entropy arguments.

Proposition 6.2. If Hypothesis 6.1 holds for some β ∈ (0, 1), then for each η > 0

lim sup
δ→0

sup
n≥1

P


sup
k≥1

sup
µn,νn∈Mn

dL(µn,νn)≤δ

|Ln,µn

k − Ln,νn

k | ≥ η


 = 0.

Theorem 6.3. If Hypothesis 6.1 holds for some β ∈ (0, 1), then the process

{(n−1/2S[nt], L
n,µn

[nt] ) : 0 ≤ t ≤ 1 , µ ∈M}

converges weakly to the process {(Xt, L
µ
t ) : 0 ≤ t ≤ 1 , µ ∈M}.

Proof. In order to keep things as simple as possible, we will prove that Ln,µn

[nt] ⇒ Lµt . A
standard modification to our argument will show the joint convergence of the local time
together with the random walk.

We start by showing the convergence of the finite dimensional distributions. We give
the proof for the one dimensional marginals, the general case being entirely analogous.

Define ϕ and ϕε as in the proof of Lemma 4.3. Recall ϕε ∗µn(x) =
∫
ϕε(x−y)µn(dy).

Define µεn to be the measure on n−1/2
Z
d that puts mass n−d/2ϕε ∗ µn({z/√n}) on the

point z/
√
n, z ∈ Z

d.
First, we show dL(µ, µ ∗ ϕε) → 0 as ε→ 0. We write

dL(µ, µ ∗ ϕε) = sup
ψ∈L

|
∫
ψ(y)µ(dy)−

∫
ψ(y)µ ∗ ϕε(y)dy|

= sup
ψ∈L

|
∫
ψ(y)µ(dy)−

∫
ψ ∗ φε(y)µ(dy)|. (6.1)

Since ψ ∈ L, ψ ∗ ϕε converges uniformly to ψ as ε→ 0. Hence the right hand side of (6.1)
tends to 0. A similar argument shows that dL(µn, µn ∗ ϕε) → 0 as ε→ 0, uniformly in n.
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Secondly, we calculate, using Hypothesis 6.1(b),

µn(B(x, s)) = n−d/2
∑

|z−x|≤s√n

∑
y

ϕε(y/
√
n)µn({(z − y)/

√
n})

≤ c6.4n
−d/2 ∑

y

ϕε(y/
√
n)sd−2+γ

≤ c6.4n
−d/2ε−d||ϕ||∞sd−2+γ#{y : y/ε

√
n ∈ support(ϕ)}

≤ c6.5s
d−2+γ , (6.2)

if 1/2
√
n ≤ s ≤ 1. A similar calculation shows that supn µ

ε
n(Rd) ≤ c6.6, independently of

n and ε.
Thirdly, we show that for each ε > 0, µεn converges to µ ∗ ϕε uniformly on compacts,

as n → ∞. Since µεn(x) =
∫
ϕε(x − y)µn(dy), the µn are uniformly bounded, and ϕε is

smooth, then {µεn : n ≥ 1} is an equicontinuous family of functions of x. For each fixed
x, µεn(x) →

∫
ϕε(x− y)µ(dy) = µ ∗ ϕε(x), since µn

w→µ.

In view of (6.1), (6.2), and Propositions 5.2, 2.1, and 2.8, to show {Ln,µn

[nt] : 0 ≤ t ≤ 1}
converges weakly to {Lµt : 0 ≤ t ≤ 1}, it suffices to show that Ln,µn

[nt] ⇒ Lµ∗ϕε
t for each ε.

But

L
n,µε

n

[nt] = n−1

[nt]∑
j=0

ϕε ∗ µn(n−1/2Sj). (6.3)

Since ϕε ∗ µn converges to ϕε ∗ µ uniformly on compacts, the desired convergence follows
immediately by Donsker’s theorem.

To complete the proof, it remains to establish tightness of {Ln,µn

[nt] : 0 ≤ t ≤ 1, µn ∈
Mn}. But this follows from Proposition 6.2. �

B. 3+ρ moments.

We still assume d ≥ 3, but now only require that E |X1 |3+ρ <∞, for some ρ > 0.

Theorem 6.4. If Hypothesis 6.1 holds for some β ∈ (0, 1), then the conclusion of Theorem

6.3. is still valid.

Proof. Let α = 1/8, an = n1/2−α. If Xj = (X1
j , . . . , X

d
j ), define X̃j = (X̃1

j , . . . , X̃
d
j ) by

X̃ i
j = X i

j1(|Xi
j
|<an), i = 1, . . . , d.

Let ei = EX̃ i
1 and define X ′

j by (X i
j)
′ = X̃ i

j − Y ij , where Y ij is a random variable
independent of the X ’s that takes the value [an]sgn(ei) with probability |ei|/[an], and the
value 0 with probability 1− |ei|/[an].
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Since EX i
1 = 0,

|ei| = |
∫

[−an,an]c
xP(X i

1 ∈ dx)| ≤ 2
∫ ∞

an

P(|X i
1| ≥ x)dx

≤ 2a−(2+ρ)
n

∫ ∞

an

x2+ρ
P(|X i

1| ≥ x)dx

≤ c6.7a
−(2+ρ)
n E |X i

1 |3+ρ. (6.4)

If n is large enough, |ei| < 1.
Note that the X ′

j are mean 0, have finite 3 + ρ moments (with a bound independent
of n), have covariance close to the identity matrix, are bounded by 2an for n large, and
still take values in Z

d (which is why we did not simply define X ′ by X̃ − E X̃ ). We have
by Chebyshev’s inequality

P(X ′
j 6= Xj) ≤ P(X̃j 6= Xj) +

d∑
j=1

|ej |/[an] ≤ c6.8a
−(3+ρ)
n E |Xj |3+ρ

= o(1/n). (6.5)

Let S′k =
∑k
j=1X

′
j . By Bernstein’s inequality,

P(|S′n| ≥ |x|) ≤ 2exp
( −|x|2

2n+ 4an|x|/3
)
, |x| ≥ 1.

The expression on the right hand side is largest when n is the largest, and so if f(x) =
[|x|2/klog|x|],

f(x)∑
j=1

P(|S′n| ≥ |x|) ≤ 2f(x) exp
( −|x|2

2f(x) + 4af(x)|x|/3
)

≤ c6.9|x|1−d (6.6)

if k is large enough.
We now use (6.3) in place of (3.8), and proceeding exactly as in the proofs of Propo-

sition 3.2 and Corollary 3.3, we conclude that

|G′(0, x)| ≤ c6.10(1 ∧ |x|2−d) (6.7)

and that for each β ∈ (0, 1), there exists a c6.11 = c6.11(β) such that

|G′(0, x)−G′(0, y)| ≤ c6.11

( |x− y|1−β
(|x| ∧ |y|)d−1−β +

|x− y|
(|x| ∧ |y|)d−1

)
, (6.8)
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where G′ is defined in terms of X ′ just as G was defined in terms of X .
All the estimates of Sections 4 and 5 and of Proposition 6.1 are still valid, provided

we replace Ln,µn

k by (Ln,µn

k )′ = nd/2−1
∑k
j=1 µn({S′j/

√
n}). Then for all η > 0,

P(sup
t≤1

sup
µn,νn∈Mn

dL(µn,νn)≤δ

|Ln,µn

[nt] − Ln,νn

[nt] | ≥ η)

≤ P(sup
t≤1

sup
µn,νn∈Mn

dL(µn,νn)≤δ

|(Ln,µn

[nt] )′ − (Ln,νn

[nt] )′| ≥ η)

+ P(Xj 6= X ′
j for some j ≤ n). (6.9)

The first term on the right hand side of (6.9) can be made small, uniformly in n, by taking
δ small and using Proposition 6.1 (applied to L′). To bound the second term, we write

P(Xj 6= X ′
j for some j ≤ n) ≤ nP(X1 6= X ′

1) → 0

as n→∞ by (6.5). Tightness follows readily.
The proof of the convergence of the f.d.d.’s given in Theorem 6.3 goes through without

change. �

C. 2 + ρ moments.

Still assuming d ≥ 3, we now assume only that E |X1 |2+ρ <∞, for some ρ > 0.

Theorem 6.5. Suppose Hypothesis 6.1 holds with β = 1 − ρ. Then the conclusion of

Theorem 6.3 holds.

Proof. Let α = ρ/8, an = n1/2−α. Define X̃, X ′ as in subsection B. As in the proof of
Theorem 6.4,

|ei| ≤ ca−(1+ρ)
n E |X1 |2+ρ,

and in place of (6.5) we get

P(X ′
j 6= Xj) ≤ P(X̃j 6= Xj) +

d∑
j=1

|ej |/[an] ≤ ca−(2+ρ)
n E |X1 |2+ρ = o(1/n). (6.10)

Using Bernsteins’s inequality, we get (6.6) as before. However,

E |X̃ i
j |3 ≤ 3

∫ an

0

x2
P(|X | ≥ x)dx

≤ 3a1−ρ
n

∫ an

0

x1+ρ
P(|X | ≥ x)dx ≤ c6.12a

1−ρ
n
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and
E |Y i

j |3 = [an]3|ei|/[an] ≤ c6.13a
1−ρ
n .

So
E |X ′

j |3 ≤ c6.14a
1−ρ
n .

Hence in Proposition 3.1 we can only conclude

sup
x∈Zd

|Px(S′n = 0)− (2πn)−d/2e−|x|
2/2n| ≤ c6.15n

−(d+ρ)/2−ε

for some small ε > 0. Using this estimate in (3.11),

∑
n≥f(x)

E(n, x) ≤ c6.16|x|−d−ρ+2. (6.11)

Following the proofs of Proposition 3.2 and Corollary 3.3, but using (6.6) in place of (3.8)
and (6.11) in place of (3.11), we get (6.7) and (6.8) with β = 1− ρ.

As in the 3 + ρ moment case, using (6.10), we get tightness. No changes are needed
to the proofs of the convergence of the f.d.d.’s. �

D. Second moments.

When the Xj ’s have only finite second moments, our methods do not give uniform
invariance principles. But we still can prove the convergence of the f.d.d.’s when d = 3.

Theorem 6.6. Suppose d = 3, E |Xj |2 < ∞, and Hypothesis 6.1(a), (b) hold. For mea-

sures µ1, . . . , µN ∈M,

(Ln,µ
i
n

[nt] : 0 ≤ t ≤ 1, i = 1, . . . , N)

converges weakly to (Lµ
i

t : 0 ≤ t ≤ 1, i = 1, . . . , N).

Proof. We give the argument for N = 1, the general case being analogous. Examining
the proof of Theorem 6.3, we see that we need only show that for each η > 0

P(sup
k≤n

|Ln,µn

k − L
n,µε

n

k | ≥ η) → 0 (6.12)

as ε→ 0, uniformly for n ≥ n0(η).
Let θ > 0, ζn = θn1/2, and Kn = ζ2−d

n = (θn1/2)2−d. As in the proof of Proposition
4.4, define

ψn(x) = nd/2−1GKn
(xn1/2)
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for x ∈ n−1/2
Z
d and by a suitable interpolation procedure for x 6∈ n−1/2

Z
d. Write νn for

µεn. By Spitzer [S], |G(0, z)| ≤ c6.17(1∧ |z|2−d) and G(0, z) = g(0, z)(1+o(1)), as |z| → ∞.
So given a, there exists M1 such that |G(0, x) − g(0, x)| ≤ a|x|2−d if x ∈ Z

d, |x| ≥ M1.
Hence if |w|, |z| ≥M1, w, z ∈ Z

d,

|G(0, w)−G(0, z)| ≤ c6.18|w − z|
(|w| ∧ |z|)d−1

+
2a

(|w| ∧ |z|)d−2
. (6.13)

Now |ψn(y) − ψn(z)| will be largest if |y|, |z| ≥ c6.19θ, y, z ∈ n−1/2
Z
d for some con-

stant c6.19 independent of n. So suppose |y|, |z| ≥ c6.19θ. Then for n large enough,
|y|√n, |z|√n ≥M1. So by (6.13), for n large enough,

|ψn(y)− ψn(z)| ≤ nd/2−1

[
c6.18|y − z|√n

(|y| ∧ |z|)d−1n(d−1)/2
+

2a
(|y| ∧ |z|)d−2n(d−2)/2

]

≤ c6.20|y − z|
θd−1

+
2a
θd−2

. (6.14)

Let b > 0. Choose θ small enough so that θγ < b. Since the sequence {µn} is tight,
we choose M2 large so that µn(B(0,M2)c) ≤ b. By the estimate (6.14),

|ψn(y)− ψn ∗ ϕε(y)| ≤
∫
|ψn(y)− ψn(y − εx)|ϕ(x)dx

≤ c6.20ε|x|
θd−1

+
2a
θd−2

≤ b

if we take a and ε small, and n sufficiently large. Therefore,

|
∫
ψn(y)(µn − νn)(dy)| = |

∫
[ψn(y)− ψn ∗ ϕε(y)]µn(dy)| ≤ c6.21b.

As in the proof of Proposition 4.4 (see (4.9)),

|ExLn,µn∞ − E
xLn,νn∞ | ≤ θγ + |

∫
ψn(y)(µn − νn)(dy)|+ c6.22(dL(µn, νn))`. (6.15)

So taking ε smaller if necessary, we can make the right hand side of (6.15) less than
(2 + c6.21)b. Plugging the estimate (6.15) into the proof of Proposition 5.2 and using
Chebyshev’s inequality, we get finally

P
0(sup

k
|Ln,µn

k − L
n,µε

n

k | ≥ η) ≤ η−2
E

0 [sup
k
|Ln,µn

k − L
n,µε

n

k |2]

≤ c6.23η
−2b

if n is sufficiently large, which is precisely what we wanted. �
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E. d = 1, 2.

The results for d = 1, 2 follow by the usual projection argument.

Theorem 6.7. Theorems 6.3, 6.4, 6.5, and 6.6 hold for d = 1 and 2.

Proof. Fix M > 0. Given µ defined on R
d , d = 1 or 2, define µ̂ on R

3 by

µ̂(A×B) = µ(A)|B ∩B(0,M)|, A ⊆ R
d , B ⊆ R

3−d ,

B(0,M) the ball in R
3−d . Similarly, given µn defined on n−1/2

Z
d, define µ̂n on n−1/2

Z
3.

Define X̂j = (Xj, Yj), where Yj is simple random walk on Z
3−d, independent of the

Xj ’s. Define

L̂n,µ̂n

k = n1/2
k∑
j=1

µ̂n({Ŝj/
√
n}).

Then by Theorem 6.3, 6.4, or 6.6, L̂n,µ̂n

[nt] converges weakly to L̂µ̂t , where L̂ is the additive
functional associated to µ̂.

But it is clear that for all µn, L̂
n,µ̂n

k = Ln,µn

k up until the first time n−1/2|∑k
i=1 Yj|

exceeds M , and for all µ, L̂µ̂t = Lµt up until the first time (3 − d)–dimensional Brownian
motion exceeds M in absolute value. Since M is arbitrary, the weak convergence of Ln,µn

[nt]

to Lµt follows easily. �

7. Examples.

A. Classical additive functionals – Lp functionals.

Suppose p > d/2, and p−1 + q−1 = 1. Let F be a subset of {f ∈ Lp(B(0, 1)) : f ≥ 0}.
Let Hp denote the metric entropy of F with respect to dp(f1, f2) = ||f1 − f2||p. Note in
what follows we do not assume our f ’s are continuous.

Theorem 7.1. If supf∈F ||f ||p <∞ and the exponent of metric entropy of Hp is less than

1/2, then
∫ t
0
f(Zs)ds is jointly continuous in t ∈ [0, 1] and f ∈ F (with respect to the dp

metric.)

Proof. Here M = {µ : µ has a density f(x) with respect to Lebesgue measure, f ∈ F},
and Lµt =

∫ t
0
f(Zs)ds. By Hölder’s inequality,

µ(Rd) =
∫
B(0,1)

f(x)dx ≤ c7.1||f ||p,

26



PROB. THEORY REL. FIELDS 92, 465–492 (1992)

and µ(B(x, s)) =
∫
B(0,1)

1B(x,s)(y)f(y)dy ≤ ||1B(x,s)||q ||f ||p ≤ c7.2s
d/q, for s ≤ 1 and

f ∈ F.

So the total mass of the µ’s is uniformly bounded and the index of M is d/q−d+2 =
2− d/p > 0. If µ(dx) = f(x)dx and ν(dx) = h(x)dx, then

dG(µ, ν) = sup
x
|
∫
g(0, x)[f(x)− h(x)]dx| ≤ ||f − h||p ||g(0, ·)||q ≤ c7.3dp(f, h),

since g ∈ Lq(B(0, 1)) when p > d/2.

Our result now follows by Theorem 2.2. �

Since changing f on a set of measure 0 does not affect Lµt (here µ(dx) = f(x)dx), but
can have a drastic effect on n−1

∑
j f(n−1/2Sj), for an invariance principle one must have

some additional regularity for f (cf. the next example).

B. Classical additive functionals – indicators.

Let A be a subset of {A : A ⊆ B(0, 1)}. Suppose that for almost every y ∈ R
d ,

r ∈ (0, 1], and A ∈ A, as n→∞,

n−d/2#{n−1/2
Z
d ∩ A ∩B(y, r)} → |A ∩B(y, r)|. (7.1)

Define dS(A,B) = |A4B|.

Theorem 7.2. Suppose the Xi satisfy the assumptions of Section 6 and have 2 + ρ mo-

ments. Let β = 1−ρ and let `β be defined by (4.8). Suppose A satisfies (7.1) and the expo-

nent of metric entropy of A with respect to dS is less than `β/2. Then n−1
∑[nt]
i=1 1A(Sj/

√
n)

converges weakly to
∫ t
0

1A(Zs)ds, uniformly over t ∈ [0, 1] and A ∈ A.

Proof. For A ∈ A, define µA by µA(dx) = 1A(dx). Define µA,n by µA,n({n−1/2x}) =
n−d/21A(n−1/2x). That µA,n converges to µA follows by (7.1) and [Bi]. That Hypothesis
6.1 (a) and (b) hold is easy. Hypothesis 6.1 (c) follows from the crude estimate

|
∫
ψ(x)[1A(x)− 1B(x)]dx| ≤ |A4B|, ψ ∈ L,

and a similar formula for dL(µA,n, µB,n). Now apply Theorem 6.5. �

C. Local times on curves.
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This example works for hypersurfaces in R
d for any dimension d, but for simplicity

we restrict ourselves to d = 2 and the curves of form

C = {(t, f(t)) : t ∈ [0, 1], ||f ||∞ ≤ c7.4}. (7.2)

We will use C to denote the graph of C. Let C be a collection of such curves. Let
µC(A) = |{t : (t, fC(t)) ∈ A}|.

For such C ∈ C, we let fC,n be a function from [0, 1] to [−2c7.4, 2c7.4], such that fC,n
takes values in n−1/2

Z, has jumps only at t’s in n−1/2
Z, and fn → f in L1–norm. Denote

the curve and graph of {(t, fC,n(t)) : t ∈ [0, 1]} by Cn. If C1 and C2 denote two curves of
the form (7.2) (corresponding to f1, and f2, resp.), let dC(f1, f2) = ||fC1 − fC2 ||1.

Theorem 7.3. Suppose the Xi satisfy the assumptions of Section 6 and have 2 + ρ mo-

ments. Suppose that for some c7.4 and ε independent of n

Hn
C(x) ≤ c7.4x

−(`β/2−ε), HC(x) ≤ c7.4x
−(`β/2−ε), x ∈ (0, 1),

wher Hn
C(x) (resp. HC(x)) is the metric entropy of C (resp. Cn = {Cn : C ∈ C}) with

respect to dC . Then n−1/2
∑[nt]

i=1 1Cn
(n−1/2Sj) converges weakly to LµC

t , uniformly over

t ∈ [0, 1], C ∈ C.

Proof. Define µC,n(A) = n−1/2#{k ≤ √
n : (n−1/2k, fC,n(n−1/2k)) ∈ A}. Since

fC,n → f in L1, µC,n
w→µC . Note that µC,n(Rd) ≤ 1, while

µC,n(B(x, r)) ≤ c7.5r,

so the index of Cn is 1. The result follows from Theorem 6.5. �

D. Local times in R
1 .

Even for local times in R
1 , our results are fairly strong. For x ∈ R

1 , let µx be the
point mass at x. The Lµx

t (usually written as Lxt ) is just local time at x. Clearly the µx
are uniformly bounded with index 1. By Example 2.2, HL(δ) ≤ c7.6| log(δ)|.

Define Γ(n, x) to be n−1/2 times the unique integer lying in the interval [x
√
n, x

√
n+1].

Theorem 7.4. If the Xi have finite 2 + ρ moments for some ρ > 0, and are as in Section

6, then n−1/2
∑[nt]
j=1 1[

√
nx,

√
nx+1)(Sj) converge weakly to Lxt , uniformly over all levels x.

Proof. It suffices to prove the result uniformly over x ∈ [−M,M ] for each M . Define
µn,x to be point mass at Γ(n, x). Clearly µn,x

w→µx as n → ∞, the µn,x are uniformly
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bounded, have index 1, and entropy is of order | log(x)|. The result follows by Theorem
6.5 and the observation that Sj ∈ [

√
nx,

√
nx+ 1] if and only if µn,x({n−1/2Sj}) = 1. �

The question of invariance principles for local time has a long history, dating back to
[CH]. Using techniques highly specific to one–dimensional Brownian motion, Borodin [Bo1]
has proved Theorem 7.4 when the Xi’s have finite second moments. For a slightly different
notion of local time, [P] has a uniform invariance principle if the Xi have 1 +

√
2 ≈ 2.732

moments.

E. Fractals.

For simplicity, we confine ourselves to d = 2 and fractals of the following form: let
F0 = [0, 1]2, let F1 be the union of R closed squares of with sides ofsize a, such that the
interiors are pairwise disjoint. To form F2, replace each of the squares making up F1 by
replicas of F1, and continue.

To be more precise, if S is any square, let ΨS be the orientation preserving affine map
that takes S to F0. Let

F2 =
⋃
{ Ψ−1

S (F1) : S is one of the R squares with sides of size a making up F1},
Fk+1 =

⋃
{ Ψ−1

S (F1) : S is one of the Rk squares with sides of size ak making up Fk}.

Let F =
⋂∞
k=0 Fk.

For example, if F1 = [0, 1]2 − (1/3, 2/3)2, F will be the Sierpinski carpet. If F1 =
( [0, 1/3] ∪ [2/3, 1] )2, we get the 2–dimensional Cantor set.

Let µ be the Hausdorff–Besicovitch measure on F , normalized to have total mass 1.

Theorem 7.5. If the Hausdorff dimension of F > 0,

1
|Fn|

∫ t

0

1Fn
(Zs)ds

a.s.→ Lµt .

Remark 7.6. The convergence in probability is a consequence of results in [B].

Proof. It is not hard to see that supx µ(B(x, s)) ≤ c7.7s
γ , where γ is the Hausdorff

dimension of F .

Suppose ψ ∈ L, and let S1, . . . , SR be the squares making up F1. Let µn(dx) =
|Fn|−11Fn

(x)dx. Let xi be the lower left corner of Si.
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Since µ2, µ1 both have total mass 1,∫
Si

ψ(x)[µ2(dx)− µ1(dx)] = |F1|−1

∫
Si

[ψ(x)− ψ(xi)][|F1|−11F2(x)− 1F1(x)]dx

= |F1|−1a2

∫
F0

ψi(x)[µ1(dx)− µ2(dx)], (7.2)

where ψi(x) = ψ ◦ Ψ−1
Si

(x) − ψ ◦ Ψ−1
Si

(xi). Since |∇ψi(x)| ≤ a, and ψi(0) = 0, then
||ψi||∞ ≤ √

2a. So the right hand side of (7.2) is bounded above by |F1|−1
√

2a3dL(µ0, µ1).
Summing over i, and taking the supremum over ψ ∈ L,

dL(µ2, µ1) ≤
√

2a3R|F1|−1dL(µ2, µ1) =
√

2adL(µ1, µ0).

By an induction argument,

dL(µk+1, µk) ≤ (
√

2a)kdL(µ1, µ0). (7.3)

If R = 1, so that F1 is a single square, then F is a single point. This case is ruled out
by the assumption that the dimension of F is strictly bigger than 0. So R > 1, and hence
a < 1/2.

Let M = {µn}∞n=1 ∪ {µ}. To cover M with dL–balls of radius δ, first put a ball B of
radius δ around µ. Since µk

w→µ, (7.3) shows that dL(µk, µ) ≤ c7.8(
√

2a)k. So B covers all
but | log(δ/c7.8)/ log(

√
2a)|+ 1 of the µn’s. So at most c7.9| log(δ)| balls are needed, hence

HL(δ) ≈ | log | log(δ)| |.
By Theorem 2.2, Lνt is continuous with respect to dL, for ν ∈ M. This implies our

result. �

F. Intersection local time – double points.

Let S1
n and S2

n be two independent identically distributed random walks converging
in law to two independent Brownian motions, Z1

t , and Z2
t . By redefining these processes

on a suitable probability space, we may assume that the convergence is almost sure.
Define µu,x(A) = |{t ∈ [0, u] : Z2

t + x ∈ A}|. In [BK], it is shown that α(x, s, u) =
L
µu,x
s is the intersection local time for (Z1, Z2). Let us consider the corresponding invari-

ance principle. We discuss the case d = 3 first. (If d ≥ 4, the paths of Z1 and Z2 do not
intersect.)

If x = (x1, x2), let Γ2(n, x) = (Γ(n, x1),Γ(n, x2)), where Γ is defined in subsection D.
Define

µu,x,n(A) = n−1

[nu]∑
k=1

1A(S2
j /
√
n+ Γ2(n, x)).

30



PROB. THEORY REL. FIELDS 92, 465–492 (1992)

Lemma 7.7. There exists γ > 0 such that for each M , with probability one,

µu,x,n(B(y, s)− {y}) ≤ c7.10s
1+γ, x, y ∈ B(0,M), s ≤ 1,

where c7.10 depends on M and ω.

Proof. For simplicity, we prove this when x = 0, the general case being similar.

E
zµ∞,0,n(B(y, s)− {y}) ≤ n−1

∑
w 6=y

G(z, w)1B(y,s)(n−1/2w)

≤ n−1
∞∑
k=0

∑
2k≤|w−z|<2k+1

2−kn−1/2#{B(y
√
n, s

√
n) ∩ Zd ∩ [B(z, 2k+1)−B(z, 2k)]}

≤ c7.11s
1+γ,

for γ = 1/2.
This estimate is uniform in z, hence the potential of µ∞,0,n(B(y, s)−{y})/a is bounded

above by 1, where a = supz E zµ∞,0,n(B(y, s)− {y}). By [DM], p. 193,

P
z{µ∞,0,n(B(y, s)− {y}) > c7.11s

9/8} ≤ c7.12 exp(−c7.13s−1/8).

For each k, we can choose Nk = c7.1423k balls, each of radius 2−k+2, so that for every
y ∈ B(0,M) and every s ≤ 2−k+1, B(y, s) is covered by one of these Nk balls. Hence,

P
z{µ∞,0,n(B(y, s)− {y}) > c7.11s

9/8 for some y ∈ B(0,M) and some s ∈ [2−k, 2−k+1]}
≤ Nkc7.12 exp(−c7.132k/8).

Summing over k and using the Borel–Cantelli lemma, we conclude

sup
y∈B(0,M)

0<s≤1

µ∞,0,n(B(y, s)− {y}) ≤ c7.14s
9/8, a.s.

�

Theorem 7.8. Let X1
i , X

2
i be two independent sequences of i.i.d. r.v.’s, identically dis-

tributed, and satisfying the assumptions of Section 6 with 2 + ρ moments. If d = 3,

L
n,µu,n,x

[ns] converges weakly to α(x, s, u), uniformly over x ∈ R
3 , s, u ∈ [0, 1].

Proof. We apply Theorem 6.5. Since supy,n Py{supj≤n |S2
j /
√
n| ≥M} → 0 as M →∞,

it suffices to look at the µu,n,x restricted to B(0,M).
For each u, the metric entropy of {µu,x,n : x ∈ B(0,M)} is bounded above by

c7.15δ
−3. For each x, the total variation of µu2,x,n − µu1,x,n is bounded above by u2 − u1.
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So Hypothesis 6.1 (cβ) holds for every β > 0. Hypothesis 6.1 (a) is clear and 6.1 (b) is
Lemma 7.7.

Since S2
n/
√
n converges uniformly to Z2

t , µu,n,x
w→µu,x. The result follows. �

To handle the case d = 2, we use the projection technique of Section 6 E, and get
Theorem 7.8 for the case d = 2 as well.

For both the d = 2 and d = 3 cases, weak convergence at a single level x follows by
Theorem 6.6 or 6.7 under the assumption of finite variance only.

G. Intersection local time – multiple points.

In [BK], we gave a method for constructing intersection local time for the intersection
of k+1 independent Brownian motions in R2 from the intersection local time of k indepen-
dent planar Brownian motions. A completely analogous construction can be made for the
number of intersections of k random walks. We then can get the analogue of Theorem 7.8:
for d = 2 only, the number of intersections converges weakly to the k–tuple intersection
local time, uniformly over all the variables, provided the X ’s have 2 + ρ moments. As in
the proof of Theorem 7.8, the only work is in finding the index of the family of measures,
and as in [BK], the estimates needed for k + 1–intersection local time follow from those
obtained for k–intersection local time.

For multiple points, we cannot use a projection argument, and must work with 2–
dimensional random walks killed off at a geometric rate. So it is necessary to rework the
results of Section 3 for d = 2 with G replaced by the λ–resolvent of Sn. We leave the
(numerous) details to the interested reader.
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