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Summary. A new approach to intersection local times of Brownian motion is given, using
additive functionals of a single Markov process and stochastic calculus. New results include
the Tanaka formula for the k–multiple points of self–intersection local time and the joint
Hölder continuity in all variables of renormalized self–intersection local time for k–multiple
points, k ≥ 4.

Résumé Nous donnons une nouvelle approche à l’étude des temps locaux d’intersection
du mouvement brownien. Elle se sert de la théorie de fonctionelles additives d’un seul
processus de Markov et de calcul stochastique. Parmi les resultats nouveaux sont la formule
de Tanaka pour les points de multiplicité k de temps locaux d’ intersection et la continuité
dans toutes les variables du temps locaux d’intersection renormalizés pour les points de
multiplicité k, k ≥ 4.
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Key words: Intersection local times, Tanaka formula, renormalization, Brownian motion,
diffusions, multiple points



ANNALES DE L’INSTITUTE HENRI POINCARÉ, 29(3), 419–451. (1993)

1. Introduction. It has been known for quite some time that 3–dimensional Brownian
motion has double points and that 2–dimensional Brownian motion has k–multiple points
for every positive integer k. It has been known for not quite as long a time that one
can construct a local time for these multiple points, that is, a functional that increases
only at the times when Brownian motion has a multiple point and that measures in some
sense how many of these times there are. These intersection local times (ILTs) have been
constructed by means of Fourier analysis, by means of stochastic calculus, and by the study
of additive functionals of several Markov processes. Through the work of Dynkin, LeGall,
Rosen, Yor, and others, a great deal is now known about ILTs; see [D1], [L], [R3], [RY],
and the references therein.

One of the main purposes of this paper is to introduce a new method of approaching the
study of ILTs, via a combination of the theory of additive functionals for a single Markov
process and stochastic calculus. This new method allows us to obtain, if not easily, at
least systematically, many of the known results about ILTs. We concentrate primarily on
Brownian motion in this paper, but the method also works for other diffusions and, to
some extent, stable processes (see Section 10).

In addition to discussing our method, we obtain some new results as well. For example,
we obtain the Tanaka formulas for self-intersections of 2–dimensional Brownian motion of
order k for any k (Sections 7, 8). These had previously been known only when k = 2, 3;
see [Y], [RY]. (While we were writing up this paper, we learned of the preprint of Shieh
[Sh] who had also obtained the Tanaka formulas for any k by using white noise analysis.)

Using these Tanaka formulas we prove that one can renormalize ILT for k-multiple
points in terms of lower order ILTs in such a way that the renormalized ILT is jointly
Hölder continuous in every variable almost surely. This had been previously known only
when k = 2, 3 (see [D2, R1]). For other k various sorts of renormalizations were known,
but the almost sure joint continuity of any of these renormalizations had been an open
problem.

We also can obtain both weak and strong invariance principles that are uniform over
all levels x for the convergence of ILTs of lattice valued random walks satisfying suitable
moment conditions; these can be found in [BK1] and [BK2]. Finally, we mention that one
can use our method to construct a local time for intersections that occur in certain random
sets (see Section 10).

The basic idea is simple. Let us first consider the intersection of two independent
Brownian motions Xt, Yt. Fix u and define the (random) measure

µ(A) =
∫ u

0

1A(Xs) ds.
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Note µ is supported on the path of Xs. Elementary estimates show that a.s. the measure µ
is sufficiently regular so that there is an additive functional of Brownian motion associated
to it. That additive functional (for Yt) is ILT for intersections of Xt and Yt. Slightly more
complicated measures give rise to ILTs for 3 or more Brownian motions. To get self–ILT
for a single Brownian motion, we partition [0, u] by points s0, s1, . . . , sn, we look at the
intersections of Xt, si ≤ t < si+1, with Xr, 0 ≤ r < si, we sum over i, and we then prove
we get convergence as we let the partition become finer.

In Section 2, we construct ILTs for the intersection of 2 independent Brownian mo-
tions, while in Section 3 we do the same for the intersection of k independent Brownian
motions. In Section 4 we obtain the Tanaka formula for these ILTs. Section 5 has some
estimates on certain potentials, and Section 6 contains some preliminaries on the Hölder
continuity of processes. Section 7 has the construction of ILTs for double points of a sin-
gle Brownian motion and also the derivation of the Tanaka formula; Section 8 considers
multiple points of a single Brownian motion. The proof of the a.s. joint continuity of
renormalized ILTs is in Section 9. Finally, in Section 10, we discuss other diffusions, stable
processes, and ILTs in random sets.

The letter c, with or without subscripts, will denote constants whose exact value is
unimportant and may change from line to line. The open ball of radius s about the point
y is denoted B(y, s).

2. Intersections of 2 Brownian Motions. Let Xt, Yt be two independent Brownian
motions in R

d , d = 2 or 3. If d = 3, let g(x, y) denote the Green function of Brownian
motion. If d = 2, let gR(x, y) denote the Green function of Brownian motion killed on
exiting the ball B(0, R).

Let
TR = TR(X) = inf{t: | Xt | >R}.

For each x ∈ R
d and u6 1, define the random measure µx,u by

(2.1) µx,u(A) =
∫ u

0

1A(Xr + x) dr.

Lemma 2.1. For each ε ∈ (0, 1], for almost all ω there exists Kε(ω) such that

(2.2) µx,u (B(y, s)) (ω)6Kε(ω)
(
s2−ε ∧ 1

)
for all y ∈ R

d .

Proof. Since µx,u(Rd)6u, we may assume s6 1/2. Let R> 2 + 2 | x | and let

At =
∫ t∧TR

0

1B(y,s)(Xr + x)dr.

2



ANNALES DE L’INSTITUTE HENRI POINCARÉ, 29(3), 419–451. (1993)

If d = 2, gR(w, z)6 c(1 ∨ log (1/ | w − z |)) dz, and so if w ∈ B(0, R),

EwATR
6 c

∫
B(y−x,s)

(1 ∨ log(1/ | w − z |))dz6 c
∫

B(0,s)

log(1/ | z |)dx6 cs2 log(1/s).

A similar calculation for d = 3 gives EwATR
6 cs2.

Since At is an additive functional, the above implies

E0[ATR
−At|Ft] ≤ EXtATR

6 sup
w
EwATR

≤ cs2−ε/2.

By [DM, p. 193], E0 exp(λATR
)6 2 if λ6 1/8 supw E

wATR
. Using Chebyshev, we get

(2.3) P 0
(
ATR

> c1s
2−ε

)
6 2 exp

(
−c2s−ε/2

)
.

Now B(0, 3R) can be covered by N = cs−d balls of radius 2s, say B1, · · · , BN , so that
every ball B(y, s), y ∈ B(0, 2R), is contained in one of the Bi’s. Writing

DR = {sup
t6 1

| Xt | 6R},

(2.3) yields

P 0(µx,u(B(y, s))> c1s2−ε for some y ∈ B(0, 2R);DR)

6P 0(µx,u(Bi)> c1s2−ε for some i = 1, · · · , N ;DR)

6 c2s
−d exp(−c3s−ε/2).

By a straightforward Borel-Cantelli argument with s = 2−i, i = 0, 1, 2, · · ·,

P 0(for some y ∈ B(0, 2R), µx,u(B(y, 2−i))/(2−i)2−ε > c, i.o. ;DR) = 0.

Hence, if ω ∈ DR, then for some KεR(ω),

µx,u(B(y, 2−i))6KεR(ω)(2−i)2−ε

for all y ∈ B(0, 2R), i = 0, 1, 2, · · ·. If s ∈ (0, 1], then s ∈ (2−(i+1), 2−i] for some i. So,
provided ω ∈ DR,

(2.4) µx,u(B(y, s))6KεR(ω)(2−i)2−ε
6 cKεR(ω)s2−ε.

for all y ∈ B(0, 2R), all s ∈ (0, 1]. If ω ∈ DR, µx,u(B(y, s)) = 0 if y /∈ B(0, 2R).
Finally, each ω ∈ DR for some R sufficiently large (except for a null set). This

observation with (2.4) yields (2.2).

Define L = {ψ:ψ maps Rd to [−1, 1], ‖ψ‖∞ ≤ 1, and ψ is Lipschitz with Lipschitz
constant 1}. Define dL(µ, ν) = sup{| ∫ ψdµ− ∫

ψdν|:ψ ∈ L}.
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Lemma 2.2.

(a) dL(µx,u, µx,v)6 | u− v |;
(b) dL(µx,u, µy,u)6u | x− y | .
Proof. (a) is obvious. For (b), notice

|
∫
ψ d(µx,u − µy,u)| = |

∫ u

0

[ψ(Xt + x)− ψ(Xt + y)]dt|6u | x− y |

since ψ ∈ L.

Let α2(x, ·, u) be the continuous additive functional of Yt associated with µx,u, that
is, the continuous additive functional such that Ezα2(x, TR(Y ), u) = gRµx,u(z) for all z
and R (see [BG]). In stochastic calculus terms, α2(x, ·, u) is the increasing part of the
supermartingale gRµx,u(Yt∧TR(Y )).

We will show that α2 is jointly Hölder continuous in each variable. Before doing so,
we need

Proposition 2.3. Suppose c, γ > 0 and µ is a positive measure satisfying µ(B(y, s))6 c(sd−2+γ∧
1) for all s ∈ (0,∞), y ∈ R

d . Let Lµ
t be the associated continuous additive functional. Then

Lµ
t is Hölder continuous in t, a.s.

Remark. See [BK1, Section 2] for the contruction of Lµ
t .

Proof. That Lµ
t is nondecreasing and continuous follows from its construction. So we

only need the Hölder continuity. Let g be the Green function if d> 3, the Green function
killed at an independent exponential if d = 2. By [BK1, Proposition 2.7], gµ is Hölder
continuous. Hence,

Ex | gµ(Xt)− gµ(X0) | 6 cEx | Xt −X0 |α 6 ctα/2

for some α > 0, using the Burkholder–Davis–Gundy inequalities [ReY, p. 151] Since
gµ(Xt) − gµ(X0) + Lµ

t is a mean 0 martingale, ExLµ
h 6 ch

α/2, independent of x. By the
argument of the first part of Lemma 2.1,

P x(Lµ
h > c1h

α/2−ε)6 c2 exp(−c3h−ε).

Using the Markov property,

P x(Lµ
t+h − Lµ

t > c1h
α/2−ε)6 c2 exp(−c3h−ε).

Our result now follows by standard metric entropy (i.e., chaining) arguments.
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Theorem 2.4. There is a version of α2(x, r, u) that is jointly Hölder continuous in x, r, u.

Proof. It is enough to let R> 1 be arbitrary and to show Hölder continuity for | x | 6R.
In view of Lemma 2.2, the dL–metric entropy H(δ) of {µx,u: x ∈ B(0, R), u ∈ (0, 1]}
satisfies H(δ)6 c log(1/δ). By applying Theorem 2.9 of [BK1], there exists a version of
α2(x, r, u) that is jointly Hölder continuous in x and u. The Hölder continuity in r follows
by Proposition 2.3.

The question that remains is whether α2(x, r, u) is actually what one means by ILT.

Theorem 2.5. There exists a null set N such that if ω /∈ N , then

(2.5)
∫
Rd

f(x)α2(x, r, u)(ω)dx =
∫ u

0

∫ r

0

f(Ys(ω)−Xt(ω))ds dt

for all bounded measurable f.

Proof. Suppose d = 2 and suppose f, h are continuous with compact support. Let

Bx,h
u =

∫ u

0

h(Xt − x) dt.

The potential of Bx,h
u on the ball of radius R is

EzBx,h
TR

=
∫
gR(z, y)h(y − x) dy.

So the potential of
∫
f(x)Bx,h

u dx is
∫ ∫

gR(z, y)f(x)h(y− x) dy dx =
∫ ∫

gR(z, y)h(x)f(y− x) dy dx,

which is the potential of
∫
h(x)Bx,f

u dx. If two additive functionals of Brownian motion
have the same potential, they are equal ([BG]). Hence

∫
f(x)Bx,h

u dx =
∫
h(x)Bx,f

u dx, a.s.,

or

(2.6)
∫
f(x)

(∫
h(y)µ−x,u(dy)

)
dx =

∫
h(x)

(∫
f(y)µ−x,u(dy)

)
dx.

Now the right-hand side of (2.5) equals
∫ r

0

(∫
f(−y)µ−Ys,u(dy)

)
ds. So its potential in

B(0, R), considered as a continuous additive functional of Y , is
∫
gR(z, y)

(∫
f(−w)µ−y,u(dw)

)
dy.

5



ANNALES DE L’INSTITUTE HENRI POINCARÉ, 29(3), 419–451. (1993)

By (2.6), this equals
∫
f(−x)

∫
gR(z, y)µ−x,u(dy)dx =

∫
f(x)gRµx,u(z)dx,

which is the potential of the left-hand side of (2.5). Since R is arbitrary, this proves (2.5)
when d = 2 for this particular f. The case d = 3 is similar but easier. Let Nf be the null
set.

Let {fi} be a countable dense subset of the bounded continuous functions on R
d and

let N =
⋃

iNfi
. If ω /∈ N , then by taking limits, (2.5) holds for bounded continuous f. It

then holds for all bounded measurable f by a monotone class argument.

3. Intersections of k Brownian Motions. In this section, we require d = 2. We
construct ILTs for k Brownian motions by induction. Denote the measures µx,u of Section 2
by µ2

x,u. Suppose k> 3. LetX1
t , · · · , Xk−1

t be k−1 independent Brownian motions and let Yt

be an additional independent Brownian motion. Suppose we have measures µk−1
xk−1,r1,···,rk−2

(denoted µk−1 when no confusion results) and associated continuous additive functionals
αk−1(x1, · · · , xk−2, r1, · · · , rk−2, rk−1) satisfying

(3.1) for each ε there exists Kε(ω) such that

µk−1(B(y, s))6Kε(ω)(s2−ε ∧ 1)

for all y ∈ R
2 , s ∈ (0,∞), and

(3.2 )αk−1(x1, · · · , xk−2, r1, · · · , rk−2) is Hölder continuous in each variable.

Define the random measure µk = µk
xk−1,r1,···,rk−1

by

µk(A) =
∫ rk−1

0

1A(Xk−1
t + xk−1)αk−1(x1, · · · , xk−2, r1, · · · , rk−2, dt).

We need the analog of Lemma 2.1.

Lemma 3.1. Suppose (3.1) and (3.2) hold. If ε > 0, there exists K1(ω) such that

µk(B(y, s))6K1(ω)(s2−ε ∧ 1)

for all s ∈ (0,∞), y ∈ R
2 .

Proof. Define the additive functional At of Xk−1
t by

(3.3) At =
∫ t

0

1B(y,s)

(
Xk−1

r + xk−1

)
αk−1 (x1, · · · , xk−2, r1, · · · , rk−2, dr) .
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Since the potential of αk−1 on B(0, R) (considered as an additive functional of Xk−1
t ) is

gRµ
k−1, then the potential of At (conditional on the processes X1, . . . , Xk−1) is

∫
gR(w, z)1B(y,s)(z)µk−1(dz).

By Hölder’s inequality with p−1 + q−1 = 1, this is less than or equal to

(3.4)
(∫

gR(w, z)pµk−1(dz)
)1/p (∫

1B(y,s)(z)µk−1(dz)
)1/q

.

The second term in the product is bounded by (Kε/3(ω)(s2−ε/3 ∧ 1))1/q, using (3.1). For
the first term in the product, we write
∫
gR(w, z)pµk−1(dz)6 c

∫
(1 ∨ log | w − z |)pµk−1(dz)

6 c
∞∑

j=0

∫
2−j 6|w−z|6 2−j+1

(1 ∨ log | w − z |)pµk−1(dz) + cµk−1(R2)

6 c

∞∑
j=0

(j + 1)pµk−1(B(w, 2−j)) + cµk−1(R2)

6 c(ω),

using (3.1). Taking q sufficiently close to 1, we get that the potential of A, conditional on
the processes X1, . . . , Xk−1, is bounded by c(ω)(s2−ε/2 ∧ 1).

Using this estimate, we now proceed in a fashion very similar to Lemma 2.1.

Theorem 3.2. For each k, a version of αk exists that is jointly Hölder continuous in each

variable.

Proof. The proof is by induction. Suppose (3.1) and (3.2) hold. The measures µk are
Hölder continuous with respect to dL as a function of x1, · · · , xk−2 and r1, · · · , rk−1 by the
Hölder continuity of αk−1. The Hölder continuity in xk−1 follows as in the proof of Lemma
2.2.

Let αk(x1, · · · , xk−1, r1, · · · , rk−1) be the continuous additive functional of Yt corre-
sponding to the measure µk. The metric entropy of the set {µk: x1, · · · , xk−1,∈ B(0, R),
r1, · · · , rk−1 ∈ [0, 1]} still is bounded by c log(1/δ). So as in the proof of Theorem 2.4, there
is a version of αk that is jointly Hölder continuous in each variable. This establishes (3.2)
with k − 1 replaced by k. Lemma 3.1 establishes (3.1) with k − 1 replaced by k. So by
induction, (3.1) and (3.2) hold for all k.
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Theorem 3.3. Except for a null set independent of f ,∫
· · ·

∫
f(x1, · · · , xk−1)αk(x1, · · · , xk−1, r1, · · · , rk)dx1 · · ·dxk−1

=
∫ rk

0

· · ·
∫ r1

0

f(X2
t2
−X1

t1
, · · · , Ytk

−Xk−1
tk−1

)dt1 · · ·dtk,

for f bounded and measurable on (R2)k−1, a.s.

The proof of Theorem 3.3 is very similar to that of Theorem 2.5 and is left to the
reader.

4. Tanaka Formulas. The Tanaka formulas for ILTs of independent Brownian motions
are actually quite simple. We do the case d = 2. Let us suppose k = 2 first. Define

(4.1) G(x) ≡ 1
π

log(1/ | x |).

Note G(−x) = G(x).
By a formula of Brosamler [Br]

(4.2). gRµx,u (Yt∧TR
)− gRµx,u(Y0) =

∫ t∧TR

0

∇gRµx,u(Ys) · dYs − α2(x, t ∧ TR, u).

Since G(· − y)− gR(·, y) is harmonic in B(0, R) for each y, so is Gµx,u(·)− gRµx,u(·), and
we also have by [Br]
(4.3)

(Gµx,u − gRµx,u) (Yt∧TR
)− (Gµx,u − gRµx,µ) (Y0) =

∫ t∧TR

0

∇(Gµx,u − gRµx,u) (Ys) · dYs.

Here

(4.4) Gµx,u(y) =
∫
G(y − z)µx,u(dz).

Adding (4.2) and (4.3) and letting R→∞,

Gµx,u(Yt)−Gµx,u(Y0) =
∫ t

0

∇Gµx,u(Ys) · dYs − α2(x, t, u).

Finally, recalling the definition of µx,u, this and (4.4) yield
∫ u

0

G(Yt −Xr − x)dr −
∫ u

0

G(Y0 −Xr − x)dr(4.5)

=
∫ t

0

[
∫ u

0

∇G(Ys −Xr − x)dr] · dYs − α2(x, t, u).

The argument for ILTs of k Brownian motions is the same, and we get
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Theorem 4.1.

(4.6)∫ rk

0

[G(Yt −Xk−1
r − xk−1)−G(Y0 −Xk−1

r − xk−1)]αk−1(x1, · · · , xk−2, r1, · · · , rk−2, dr)

=
∫ rk−1

0

[
∫ rk

0

∇G(Ys −Xk−1
r − xk−1)αk−1(x1, · · · , xk−1, r1, · · · , rk−2, dr)] · dYs

− αk(x1, · · · , xk−1, r1, · · · , rk).

Remark. Recall that the way Brosamler’s formulas are proved is by using Ito’s formula
and taking limits (see also [B1]). Therefore, provided µ is a sufficiently nice measure, we
have

Gµ(Yt)−Gµ(Y0) =
∫ t

0

∇Gµ(Ys) · dYs − Lµ
t

whenever Y0 ∈ F0(Y ), that is, if Y0 is independent of σ(Ys − Y0: s> 0). We will apply this
fact in Sections 7 and 8 with µ taken to be µk.

5. Some Estimates. Before proceeding to the construction of ILT of double and multiple
points of a single Brownian motion, we need some preliminary estimates.

Proposition 5.1. Suppose a > 0. Suppose β(t) is a nondecreasing continuous process

with β(0) ≡ 0. Suppose for each p> 1 there exists c(p) such that

(5.1) E[β(t)− β(s)]p6 c(p) | t− s |ap, s, t6 1.

Let Yr be 2-dimensional Brownian motion. Then there exists b > 0 (not depending on p)

and constants c(p) such that if p> 1, x ∈ R
2 , and σ < 1, then

(5.2) P

[ ∫ 1

0

1B(x,σ)(Yr)β(dr) > λ

]
6 c(p)

σbp

λbp
.

Proof. Let us assume λ > 2σ, for otherwise the result is trivial. Fix x and define Rt =
| Yt − x | . Let ε = 1/16. Let S1 = inf{t:Rt6σ}, T1 = inf{t > S1:Rt>σ

1−ε}, Si+1 =
inf{t > Ti:Rt6σ}, and Ti+1 = inf{t > Si+1:Rt>σ

1−ε}. Let Du = inf{i:Si > u}. So Du

is greater than or equal to the number of upcrossings of [σ, σ1−ε] by Rt up to time u.
Since logRt is a martingale, by the upcrossing inequality (see, e.g., [Ch, p. 332])

sup
z
EzD1 = EσD16

Eσ | logR1 | + | log σ |
| log σ1−ε − log σ | 6 c1.

By Chebyshev,
sup

z
P z(D1> 2c1)6 1/2.

9
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So by the strong Markov property applied at inf{t:Dt> 2nc1},
sup

z
P z (D1> 2c1(n+ 1))6

1
2

sup
z
P z (D1> 2c1n) ,

which leads to

(5.3) P (D1>n)6 c2 exp(−c3n), n> 1.

By the strong Markov property applied at Si and standard estimates on Brownian
motion,

(5.4) P
(
Ti − Si > Kσ2−3ε

)
6P 0

(
T1 > Kσ2−3ε

)
6 c4 exp (−c5K) .

Let h ∈ [0, 1]. If β((t+h)∧1)−β(t)>Lha/2 for some t ∈ [0, 1], then β((j+2)h∧1)−
β(jh)>Lha/2 for some j6[1/h] + 1. Equation (5.1) implies

P
(
β(t)− β(s)>L | t− s |a/2

)
6 c(p) | t− s |ap/2 /Lp,

and so if p > p0 = 8/a,

(5.5) P

(
sup
t6 1

[β((t+ h) ∧ 1)− β(t)]>Lha/2

)
6 c(p)

2
h

hap/2

Lp
6 c(p)

2hap/4

Lp
.

Note RTi
>σ1−ε and Rt does not return to the interval [0, σ] until time Si+1. So if

Yr ∈ B(x, σ), then r ∈ [Si, Ti] for some i. Hence

(5.6)
∫ 1

0

1B(x,σ)(Yr)β(dr)6
∞∑

i=1

[β(Ti ∧ 1)− β(Si ∧ 1)].

Let n = [λd/σd], K = nd, h = Kσ2−5ε, L = λ/2ha/2n, where d will be chosen in a
moment. If the sum on the right-hand side of (5.6) is bigger than λ, then either (a) D1 > n

or (b) Ti − Si>Kσ
2−3ε for some i6n or (c) β(Ti ∧ 1)− β(Si ∧ 1) > λ/2n for some i6n.

So

P (
∫ 1

0

1B(x,σ)(Yr)β(dr) > λ)6P (D1 > n) + n sup
i
P (Ti − Si>Kσ

2−3ε)

+ P (sup
t6 1

[β((t+ h) ∧ 1)− β(t)] > λ/2n)

6 c2e
−c3n + nc4e

−c5K + 2hap/4/Lp.

If we substitute for n,K, h, and L, recall that λ > 2σ and σ < 1, and take d sufficiently
small, we obtain our result for p> p0. The result (with the same b) for p ∈ [1, p0) follows
since σ < λ.

Define, for ζ ∈ (0, 1),

(5.7) Gζ(x) = G(x) ∧ 1
π

log(1/ζ), Hζ(x) = G(x)−Gζ(x).

A consequence of Proposition 5.1 is

10
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Proposition 5.2. Suppose a > 0 and β satisfies the hypotheses of Proposition 5.1. There

exists d > 0 and ζ0 < 1 such that if p> 1, q> 1, then

E
[ ∫ u

0

|Hζ(Xu −Xr − x)|qβ(dr)
]p
6 c(p, q)ζdp

if u ∈ [0, 1], and ζ 6 ζ0.

Proof. Write V =
∫ u

0
| Hζ(Xu − Xr − x) |q β(dr). Let Yr = Xu − Xr. This is again 2-

dimensional Brownian motion. Let n = [4/b] + 4, where b is the constant in the conclusion
of Proposition 5.1.

Note

Hq
ζ (z + x)6 c1

∞∑
{j:2−j≤ζ}

jq1B(x,2−j)(z).

Note also that if λ> ζ1/4, ζ is sufficiently small, and 2−j ≤ ζ, then λ/40c1j2+q > 2−j/2. So,
using Proposition 5.1,

P [V > λ]6
∞∑

{j:2−j≤ζ}
P

(
c1j

q

∫ u

0

1B(x,2−j)(Yr)β(dr)>λ/20j2
)

6 c(np)
∞∑

{j:2−j≤ζ}

(2−j)bnp

(λ/20jq+2)bnp

= c(p, q)
∞∑

{j:2−j≤ζ}

2−jp/2

λbnp

6 c(p, q)ζd1p/λp+2

if ζ is sufficiently small.
Multiplying by pλp−1 and integrating from ζ1/4 to ∞ gives

E[V p;V > ζ1/4]6 c(p, q)ζd′p.

Since E[V p;V 6 ζ1/4]6 ζp/2, adding gives our result.

6. Stochastic Calculus. When we get to double points and multiple points of a single
Brownian motion, the joint Hölder continuity will take some work. In preparation for this,
we derive some stochastic calculus results.

Suppose Ut = Mt − Bt, where Mt is mean zero martingale, Bt is a nondecreasing
process, B0 ≡ 0, and U,M , and B have right continuous paths with left limits and are
adapted to a filtration satisfying the usual conditions.

11
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Proposition 6.1. Let a > 0. Suppose for each p ≥ 1 there exists K(p) such that

(6.1) E | Ut |p 6K(p), t6 1

and

(6.2) E | Ut − Us |p 6K(p) | t− s |ap, s, t6 1.

Let K ′(p) = K(p) ∨K(p + 1). Then there exists b > 0 (independent of p) and constants

c(p) such that if p ≥ 1, then

(6.3) EBp
1 6 c(p)K

′(p)

and

(6.4) E(Bt −Bs)p
6 c(p)K ′(p) | t− s |bp, s, t6 1.

Remark. Applying (6.4) with p > 1/b implies that there is a dense subset of [0, 1] on
which Bt is Hölder continuous, a.s. Since Bt is increasing, this implies Bt is continuous,
a.s.

Proof. It suffices to prove the result for p> p0 = 2/a, since we can get the result for
p < p0 by using Jensen’s inequality.

By a standard chaining argument as in the proof of Kolmogorov’s theorem (see the
remark following the proof of Theorem 9.3), (6.1) and (6.2) imply that we can find a version
of Ut such that E supt6 1 | Ut |p 6 c(p)K ′(p). Since Ut and −Bt differ by a martingale, for
all t ≤ 1

E(B1 −Bt | Ft) = E(Ut − U1 | Ft)6 2E(sup
s
| Us | | Ft).

By a standard inequality (see, for example, [B2, Lemma 2.3]),

EBp
1 6 c(p)E sup

t
| Ut |p .

This and (6.1) proves (6.3).
Similarly, E sups6 r6 t | Ur − Us |p 6 c(p)K ′(p) | t − s |ap . To get (6.4), apply the

above argument to B′
r = Bs+r −Bs, U

′
r = Us+r − Us,M

′
r = Ms+r −Ms, r6 t− s.

Now suppose U i
t = M i

t − Bi
t, i = 1, 2, with Bi

0 ≡ 0, Bi
t nondecreasing, and M i

t a
martingale. Let Bt = B1

t −B2
t , and similarly for Mt, Ut.

12
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Proposition 6.2. Let a, b, δ ∈ (0, 1). Suppose for each p there exists K(p) such that

E | U i
t |p 6K(p), t6 1, i = 1, 2,

E | U i
t − U i

s |p 6K(p) | t− s |ap, s, t6 1, i = 1, 2,

and

(6.5) E | Ut |p 6K(p)δbp, s, t6 1, i = 1, 2

Let K ′(p) = K(p) ∨K(p+ 1). Then there exists d > 0 such that

(6.6) E | Bt |p 6 c(p)K ′(p)δdp, t6 1.

Proof. We may again suppose p > 2/a+ 2. As in the proof of Proposition 6.1,

E sup
s6 t6 s+h

| U i
t − U i

s |p 6 c(p)K ′(p)hap.

If n> 1,

sup
t6 1

| Ut | 6 sup
j6n

| Uj/n | +
2∑

i=1

sup
j6n

sup
j/n6 t6 (j+1)/n

| U i
t − U i

j/n | .

Hence

E sup
t
| Ut |p6 c(p)n sup

j6n
E | Uj/n |p +2c(p)n max

1≤i≤2
sup
j6n

E( sup
j/n6 t6 (j+1)/n

| U i
t − U i

j/n |p)

6 c(p)nK ′(p)δbp + 2nc(p)K ′(p)(1/n)ap.

Since ap > 2, take n = [δ−b/2] + 1 to get

(6.7) E sup
t
| Ut |p 6 c(p)K ′(p)δabp/2.

Let Z = supt | Ut | and W = 1 + B1
1 + B2

1 . By Proposition 6.1, W ∈ Lp for all p.
Observe that if t6 1,

|E (B1 −Bt|Ft) | = |E (Ut − U1|Ft) |6 2E (Z|Ft) .

So as in the proof of [B2, Lemma 2.3],

(6.8)

E[(B1 −Bt)2|Ft] = 2E[
∫ 1

t

(B1 −Bs)dBs|Ft]

= 2E[
∫ 1

t

E(B1 −Bs|Fs)dBs|Ft]

6 2E[
∫ 1

t

E(Z|Fs)d(B1
s +B2

s )|Ft]

6 2E[Z(B1
1 +B2

1)|Ft]6 2E[ZW |Ft].

13
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Next, let Vt = E(B1 − Bt|Ft), and Nt = E(B1|Ft), so that Vt = Nt − Bt (take the
right continuous version of V and N). By Jensen’s inequality,

V 2
t = (E(B1 −Bt|Ft))26E[(B1 −Bt)2|Ft]6 2E[ZW |Ft].

Also, by Ito’s lemma,

V 2
1 − V 2

t = 2
∫ 1

t

VsdVs+ < N >1 − < N >t

Therefore,

E[< N >1 − < N >t |Ft]6 |E[V 2
1 − V 2

t |Ft]|+ 2|E[
∫ 1

t

VsdVs|Ft]|

6 4E[ZW |Ft] + 2|E[
∫ 1

t

VsdBs|Ft]|

6 4E[ZW |Ft] + 2E[
∫ 1

t

2E(Z|Fs)d(B1
s +B2

s )|Ft]

6 8E[ZW |Ft].

Finally, by [B2, Lemma 2.3] and Proposition 6.1,

E < N >p
1 6 c(p)E(ZW )p

6(EZ2p)1/2(EW 2p)1/2

6 c(2p)K ′(2p)δ2abp/2)1/2(K ′(2p))1/2

6 c(p)K ′(2p)δabp/2.

By Jensen again,

E | Vt |2p
6E[(2E[ZW |Ft]p)]6 c(p)E[(ZW )p]6 c(p)K ′(2p)δabp/2.

Therefore,

E | Bt |2p
6 c(p)E | Nt |2p +c(p)E | Vt |2p

6 c(p)E < N >p
1 +c(p)E | Vt |2p

6 c(p)K ′(2p)δabp/2.

Letting d = ab/4 completes the proof.

7. Double Points. We now want to construct self-ILT for double points for a single
Brownian motion Xt and derive the associated Tanaka formula. These results were first
obtained by Yor [Y]. For concreteness, we restrict ourselves to 2-dimensional Brownian
motion. Write β(s) = s so that β(ds) = ds.

14
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Fix t, let ∆n = 2−n, and let si = ti∆n, i = 0, · · · , 2n. We want to apply the results of
Sections 2 and 4 with u = si and Yr = (Xsi+r−Xsi

)+Xsi
= Xsi+r, 06 r6∆. For x ∈ R

2 ,
let µx,u(A) =

∫ si

0
1A(Xr)dr. As in Section 2, there exist continuous additive functionals of

Yr, say αni
2 (x, ·), that if An,i,x = αni

2 (x,∆n), then

(7.1)

∫ si

0

[G(Xsi+1 −Xr − x)−G(Xsi
−Xr − x)]β(dr)

=
∫ si+1

si

[
∫ si

0

∇G(Xs −Xr − x)β(dr)] · dXs − An,i,x,

An,i,x> 0, An,i,x is continuous in x, and

(7.2)
∫
f(x)An,i,xdx =

∫ si+1

si

∫ si

0

f(Xr −Xs) ds dr.

Note that Xsi+r−Xsi
is independent of Y0 = Xsi

and recall the remark following Theorem
4.1.

Let

Un
t = Un

t (x) =
2n−1∑
i=0

∫ si

0

[G(Xsi+1 −Xr − x)−G(Xsi
−Xr − x)]β(dr),

Mn
t = Mn

t (x) =
2n−1∑
i=0

∫ si+1

si

[
∫ si

0

∇G(Xs −Xr − x)β(dr)] · dXs,

βn
t (x) =

2n−1∑
i=0

An,i,x,

Ut = Ut(x) =
∫ t

0

[G(Xt −Xr − x)−G(−x)]β(dr),

and

Mt = Mt(x) =
∫ t

0

[
∫ s

0

∇G(Xs −Xr − x)β(dr)] · dXs,

Summing (7.1) over i, we get

(7.3) Un
t = Mn

t − βn
t (x).

15
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Proposition 7.1. Suppose x 6= 0. Then Un
t → Ut in Lp, p > 1.

Proof. We have

Un
t =

2n−1∑
i=0

i−1∑
j=0

∫ sj+1

sj

[G(Xsi+1 −Xr − x)−G(Xsi
−Xr − x)]β(dr)

=
2n−1∑
j=0

2n−1∑
i=j+1

∫ sj+1

sj

[G(Xsi+1 −Xr − x)−G(Xsi
−Xr − x)]β(dr)

=
2n−1∑
j=0

∫ sj+1

sj

[G(Xt −Xr − x)−G(Xsj+1 −Xr − x)]β(dr).

So to prove the proposition, it suffices to prove

∫ t

0

hn
r β(dr) → 0 in Lp,

where

hn
r =

2n−1∑
j=0

[G(−x)−G(Xsj+1 −Xr − x)]1(sj,sj+1)(r).

By Hölder’s inequality and then Cauchy–Schwarz,

E|
∫ t

0

hn
r β(dr)|p6

(
E

∫ t

0

| hn
r |2p β(dr)

)1/2

(Eβ(t)2p−1)1/2,

and since Eβ(t)2p−1 = t2p−1, it suffices to prove

(7.4) E

2n−1∑
j=0

∫ sj+1

sj

|G(−x)−G(Xsj+1 −Xr − x)|2pβ(dr) → 0.

Choose ζ small enough so that Gζ(z) = G(z) for z ∈ B(x, | x | /2). Note

E
2n−1∑
j=0

∫ sj+1

sj

|Gζ(−x)−Gζ(Xsj+1 −Xr − x)|2pβ(dr)(7.5)

6 ‖ ∇Gζ ‖2p E[
∑

j

∫ sj+1

si

β(dr) sup
u,v6 1

|u−v|6∆n

|Xu −Xv|2p]

6 cζ−2p(Eβ(1)2)1/2(E( sup
|u−v|6∆n

u,v6 1

| Xu −Xv |4p))1/2
6 c(p)ζ−2p∆p

n.
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Let
V = { sup

|u−v|6∆n

u,v6 1

|Xu −Xv| >| x | /2}.

By our choice of ζ,Hζ(−x) = 0 and

(7.6) E[
2n−1∑
j=0

∫ sj+1

sj

|Hζ(−x)−Hζ(Xsj+1 −Xr − x)|2pβ(dr);V c] = 0.

On the other hand, noticing the inequality

E(
2n−1∑
j=0

Zj)2 ≤ 2nE
∑

Z2
j ≤ 22n sup

j
EZ2

j ,

we get

(7.7)

E[
∑∫ sj+1

sj

|Hζ

(
Xsj+1 −Xr − x

) |2pβ(dr);V ]

6

(
E

(∑∫ sj+1

sj

|Hζ

(
Xsj+1 −Xr − x

) |2pβ(dr)
)2)1/2

(PV )1/2

6 c2n

(
sup

j
E

(∫ sj+1

0

|Hζ

(
Xsj+1 −Xr − x

) |2pβ(dr)
)2)1/2

exp(− | x |2 /16∆n)

6 c2n exp(− | x |2 /16∆n),

using Proposition 5.2. If we add (7.5), (7.6), and (7.7), and let ζ = ζn → 0 as n → ∞ so
that ∆

1
2
n 6 ζ2

n, we get our desired result.

Proposition 7.2. βn
t (x) increases as n → ∞. If we call the limit β2(x, t), and if f is

continuous with compact support, then a.s.

(7.8)
∫
f(x)β2(x, t)dx =

∫ t

0

∫ s

0

f(Xr −Xs) dr ds.

Proof. If ϕε is a nonnegative symmetric approximation to the identity with compact
support, then by (7.2),

(7.9)
∫
ϕε(x− x0)βn

t (x)dx =
2n−1∑
i=0

∫ si+1

si

∫ si

0

ϕε(Xr −Xs − x0) dr ds.

For each n, the left-hand side converges a.s. to βn
t (x0) as ε → 0 since each An,i,x is

continuous in x. And for each fixed ε, the right-hand side of (7.9) is increasing in n. We
conclude that for each x0 6= 0, βn

t (x0) increases as n→∞. Call the limit β2(x0, t).
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By monotone convergence

∫
f(x)β2(x, t)dt = lim

n→∞

∫
f(x)βn

t (x)dx

= lim
n→∞

∫ t

0

∫ s

0

f(Xr −Xs)1(r6 si if si6 s<si+1)
dr ds

=
∫ t

0

∫ s

0

f(Xr −Xs) dr ds,

and (7.8) is proved.

We define β′2(x, t) to be the limit of βn
t (x) for each x ∈ R

2 − {0}, t rational. By the
argument of Proposition 7.2, it is easy to see that β′2(x, t)>β

′
2(x, s), a.s., if t> s. For

t ∈ [0, 1], let

β2(x, t) = inf
u> t,u rational

β′2(x, u).

Recall G(−x) = G(x).

Lemma 7.3. For each p ≥ 1, there exists ν(p) such that

(a) E | Ut(x) |p 6 c(p)(1 ∨ |G(x)|)ν(p), t6 1;

(b) There exists a > 0 such that

E | Ut(x)− Us(x) |p 6 c(p)(1 ∨ |G(x)|)ν(p) | t− s |ap, s, t6 1.

Proof. G(x)β(t) trivially has moments of all orders. Take ζ small but fixed. Note that∫ t

0
Hζ(Xt −Xr − x)β(dr) has pth moments by Proposition 5.2, while

|
∫ t

0

Gζ(Xt −Xr − x)β(dr)|6 c log (1/ζ)β(t).

This proves (a).

For (b),

|Ut − Us|6 |G(x)|[β(t)− β(s)] + |
∫ t

0

Hζ (Xt −Xr − x)β(dr)|

+ |
∫ s

0

Hζ(Xs −Xr − x)β(dr)|+ |
∫ t

s

Gζ(Xt −Xr − x)β(dr)|

+ |
∫ s

0

[Gζ (Xt −Xr − x)−Gζ(Xs −Xr − x)]β(dr)|

18
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So by Proposition 5.2,

(7.10)

E|Ut − Us|p6 c(p)|G(x)|pE|β(t)− β(s)|p

+ c(p)ζdp + c(p)ζdp + c(p)| log (1/ζ)|pE|β(t)− β(s)|p

+ ‖∇Gζ‖pE

(∫ s

0

β(dr) | Xt −Xs |
)p

6(1 ∨ |G(x)|)p | t− s |p +c(p)ζdp + | log (1/ζ)|p | t− s |p

+ c | t− s |p/2 /ζp,

using Cauchy–Schwarz to get the last term on the right of (7.10). Taking ζ =| t− s |b for
suitable b proves (b).

Proposition 7.4. For each p ≥ 1 there exists ν(p) such that

(a) Eβ2(x, t)p6 c(p)(1∨ | G(x) |)ν(p), t6 1,
(b) There exists a > 0 such that

E|β2(x, t)− β2(x, s)|p6 c(p)(1 ∨ |G(x)|)ν(p) | t− s |ap, s, t6 1.

Proof. We have
E[βn

1 (x)− βn
t (x)|Ft] = E[Un

t (x)− Un
1 (x)|Ft].

Using the monotone convergence of βn
t (x) to β′2(x, t) for t rational, the monotonicity of

β2(x, t) in t, and the Lp convergence of Un
t (x) to Ut(x), we get E[β2(x, 1)− β2(x, t)|Ft] =

E[Ut(x)−U1(x)|Ft]. So Mt = Ut(x)+β2(x, t) is a martingale. Our result now follows from
Proposition 6.1.

Remark. Since β2 is increasing, Proposition 7.4(b) implies β2(x, t) is Hölder continuous
in t. As a consequence βn

t (x) → β2(x, t), uniformly for t ∈ [0, 1], a.s., for each x.

Proposition 7.5. The Tanaka formula

(7.11)∫ t

0

[G (Xt −Xr − x)−G(−x)]β(dr) =
∫ t

0

[
∫ s

0

∇G (Xs −Xr − x) β(dr)] · dXs − β2(x, t)

holds.

Proof. Since βn
t (x) ↑ β2(x, t) and β2(x, t) is in Lp, p> 1, then the convergence is in

Lp. Since Un
t (x) → Ut(x) in Lp, we conclude Mn

t (x) converges in Lp, say to Nt. Since
Mn

t (x) =
∫ t

0
hn

s · dXs, where

hn
s =

∫ s

0

∇G(Xs −Xr − x)1
(r6 si if si6 s<si+1)

β(dr),
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then
∫ t

0
| hn

s − hm
s |2 ds =< Mn −Mm >t→ 0. Since hn

s converges for each s to hs =∫ s

0
∇G(Xs − Xr − x)β(dr), then

∫ t

0
| hn

s − hs |2 ds → 0. It follows that Nt must equal
Mt(x). We then get (7.11) by taking a limit in (7.3).

Proposition 7.6. There exists a > 0 such that if x, x′ 6= 0,

E | β2(x, t)− β(x′, t) |p 6 c(p)(| x | ∧ | x′ |)−p | x− x′ |ap .

Proof. We can connect x to x′ by an arc of length less than c | x− x′ | which never gets
closer to the point 0 than | x | ∧ | x′ | . Along this arc, ∇G is bounded by c(| x | ∧ | x′ |)−1.

So
| G(−x)−G(−x′) | β(t)6

c

| x | ∧ | x′ | | x− x′ | β(t),

which has pth moments of the desired form.
E| ∫ t

0
Hζ(Xt−Xr − x)β(dr)|p6 cζbp by Proposition 5.2 and similarly with x replaced

by x′. And finally,

E|
∫ t

0

[Gζ(Xt −Xr − x)−Gζ(Xt −Xr − x′)]β(dr)|p

6 c‖∇Gζ‖p | x− x′ |p Eβ(t)p
6 c | x− x′ |p /ζp.

So if we let ζ =| x− x′ |1/2 and sum, we get

(7.12) E|Ux
t − Ux′

t |p6 c(p) (| x | ∧ | x′ |)−p |x− x′|ap.

Now apply Proposition 6.2, using Lemma 7.3.

Remark. The G(−x)β(t) term is what contributes the highly singular (| x | ∧ | x′ |)−p

term.

We finally can prove

Theorem 7.7. There exists a version of β2(s, t) which is jointly Hölder continuous in

t ∈ [0, 1] and x ∈ R
2 − {0} and that satisfies (7.8) and (7.11). Moreover, outside a single

null set, (7.8) holds for all bounded and measurable f.

Proof. By Propositions 7.4 and 7.6, there is a countable dense subset D of R2 and
a countable dense subset T of [0, 1] so that β2(x, t) is uniformly continuous on (x, t) ∈
(D ∩B(0, δ−1)−B(0, δ))× T a.s. for each δ ∈ (0, 1). For x 6= 0, define

β̂2(x, t) = lim
xn∈D,tn∈T

xn→x,tn→t

β2(xn, tn).
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By the uniform continuity of β2(xn, tn), we see that β̂2(x, t) is jointly continuous in x and
t on (R2−{0})× [0, 1]. By Propositions 7.4 and 7.6, in fact β̂2(x, t) = β2(x, t), a.s., the null
set depending on x and t. Since both β2 and β̂2 are continuous in t, β̂2(x, t) = β2(x, t), t6 1,
a.s., the null set depending on x. Hence (7.11) holds with β2 replaced by β̂2.

By Fubini, there is a null set N such that if ω /∈ N, β̂2(x, t) = β2(x, t) for a.e. x. If f
is smooth with compact support in R

2 − {0} and ω /∈ N, then

(7.13)
∫
f(x)β̂2(x, t)dx =

∫
f(x)β2(x, t) =

∫ t

0

∫ s

0

f(Xr −Xs) dr ds.

This shows that (7.8) holds for each f with β2 replaced by β̂2. We now proceed as in the
last paragraph of the proof of Theorem 2.5 to obtain the last assertion of our theorem.

Remark. Using (7.12), it is not hard to show we can find a version of Ut(x) that is jointly
continuous in x and t provided x 6= 0. Defining M̂t(x) = Ut(x) + β̂(x, t), we see that we
can find a single null set outside of which (7.11) holds for all x 6= 0 and all t.

For the purposes of the next section, we need

Proposition 7.8. If x 6= 0, there exists K(ω) and γ > 0 such that

(7.14)
∫ 1

0

1B(y,s)(Xr)β2(x, dr)6K(ω)(s ∧ 1)γ, y ∈ R
2 , s ∈ (0,∞).

Proof. By the finiteness of β2(x, 1), we may assume s6 1/2. By Proposition 7.4(b) and
Proposition 5.1 with Yr = Xr, β = β2,

P [
∫ 1

0

1B(y,s)(Xr)β2(x, dr) > λ]6 c(p)sap/λap

for each p> 1. With this estimate for p> 8/a in place of (2.3), we may proceed very much
as in the proof of Lemma 2.1.

8. Multiple Points.

We now want to construct ILT for k-multiple points of a single Brownian motion.
Here d = 2. The proof is by induction. Recall G(−x) = G(x). We let G∨ denote the
quantity 1∨ | G(x1) | ∨ · · · ∨ | G(xk−1) | .
Theorem 8.1. Suppose k> 2. Suppose xi 6= 0, i = 1, · · · , k− 1. There exist positive reals

a, γ, ν(p) for p> 1 and nondecreasing processes βk(x1, · · · , xk−1, t) such that

(8.1) E|βk(x1, · · · , xk−1, t)|p6 c(p)(G∨)ν(p);
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(8.2) E|βk(x1, · · · , xk−1, t)− βk(x1, · · · , xk−1, s)|p6 c(p)(G∨)ν(p) | t− s |ap;

E|βk(x1, · · · , xk−1, t)− βk(x′1, · · · , x′k−1, t)|p(8.3)

6 c(p)(G∨)ν(p)|(x1, · · · , xk−1)− (x′1, · · · , x′k−1)|ap;

there exists K(ω) such that(8.4) ∫ 1

0

1B(y,s)(Xr)βk(x1, · · · , xk−1, dr)6K(ω)(s ∧ 1)γ

for y ∈ R
2 , s ∈(0,∞);

(8.5) βk is jointly Hölder continuous on (R2 − {0})k−1 × [0, 1];

∫ t

0

[G(Xt −Xr − x1)−G(−x1)]βk−1(x2, · · · , xk−1, dr)(8.6)

=
∫ t

0

[
∫ s

0

∇G(Xs −Xr − x1)βk−1(x2, · · · , xk−1, dr)] · dxs − βk(x1, · · · , xk−1, t);

except for a null set independent of f ,(8.7) ∫
· · ·

∫
βk(x1, · · · , xk−1)dx1 · · ·dxk−1

=
∫ t

0

∫ s1

0

· · ·
∫ sk−2

0

f(Xs1 −Xt, · · · , Xsk−1 −Xsk−2)dsk−1 · · ·ds1
for all bounded measurable f .

Remark. (8.6) was independently obtained by Shieh ([Sh]).

Proof. If we write β1(t) = t, (8.1) – (8.7) for the case k = 2 follow by Section 7. We use
induction: we suppose we have the result for k and prove it for k+ 1. We write x for x1, y

for (x2, · · · , xk−1).
Let ∆n = 2−n and let si = ti∆n. Fix u = si for the moment and set

µx,u(A) =
∫ u

0

1A(Xr + x)βk(y, dr).

If Ys = (Xu+s −Xu) +Xu = Xu+s, s6∆n, then by Sections 2 and 4 and the remark
following Theorem 4.1, there is a continuous additive functional, An,x,i(s) say, associated
to µx,u. By Section 4,∫ si

0

[G(Xsi+1 −Xr − x)−G(Xsi
−Xr − x)]βk(y, dr)

=
∫ si+1

si

[
∫ si

0

∇G(Xsi+1 −Xr − x)βk(y, dr)] · dXs −An,x,i(∆n).
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If we let An,x =
∑2n−1

i=0 An,x,i(∆n) and we sum over i, we get

(8.8)

2n−1∑
i=0

[
∫ si

0

[G(Xsi+1 −Xr − x)−G(Xsi
−Xr − x)]βk(y, dr)

=
2n−1∑
i=0

∫ si+1

si

[
∫ si

0

∇G(Xsi+1 −Xr − x)] · dXs − An,x.

We set β = βk(y, dr) and then proceed as in Section 7: using (8.5), An,x increases as
n →∞. We let βk+1(x, y, t) denote the limit. As in Proposition 7.1, the left-hand side of
(8.8) converges in Lp to

(8.9) Ut(x, y) =
∫ t

0

[G(Xt −Xrx)−G(−x)]βk(y, dr).

Continuing exactly as in Section 7, we obtain (8.1), (8.2), (8.4), (8.6), and (8.7). (8.5) will
follow, then, once we obtain (8.3).

We have E|βk+1(x, y, t)− βk+1(x′, y, t)|p6 c(p)(G∨)ν(p) | x − x′ |ap by arguing as in
Proposition 7.6. So it remains to show
(8.10)
E|βk+1(x, y, t)− βk+1(x, y′, t)|p6 c(p)(G∨)ν(p) | y − y′ |ap, y, y′ ∈ (R2 − {0})k−1.

By Section 6, this will follow if we show

(8.11) E|Ut(x, y)− Ut(x, y′)|p6 c(p)(G∨)ν(p) | y − y′ |bp

for some b.
Now G(−x)[βk(y, t)− βk(y′, t)] has pth moments of the desired form by the induction

hypothesis. By Proposition 5.2,

(8.12) E|
∫ t

0

Hζ(Xt −Xr − x)βk(y, dr)|p6 c(p)(G∨)ν(p)ζap,

and similarly with y replaced by y′.
Let

V = {|Xs+u −Xu|>u1/4/ζ for some s ∈ [0, 1], u ∈ [0, 1]}.
By standard estimates on the Brownian path,

(8.13)

E[
∫ t

0

|Gζ(Xt −Xr − x)|βk(y, dr);V ]p

6(E(
∫ t

0

|Gζ(Xt −Xr − x)|βk(y, dr))2p)1/2(PV )1/2

6 c(p)(G∨)ν(p)ζdp
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for some d > 0 independent of p.
On V c, f(r) = Gζ(Xt −Xr − x) is Hölder continuous of order 1/4:

|Gζ(Xt −Xr − x)−Gζ(Xt −Xs − x)|6(1/ζ)|Xr −Xs|6 | r − s |1/4 /ζ2.

Hence for each ω ∈ V c, we can find fh(r) such that | f − fh | 6 ch1/4 and fh is Lipschitz
with constant ‖f‖∞/h6 c log(1/ζ)/h6 c/ζh, namely by letting

fh(t) =
1
h

∫ t+h

t

f(u)du.

Set h = ζ. Then

(8.14) E[
∫ t

0

|Gζ(Xt −Xr − x)− fh|(r)βk(y, dr)p;V c]6 c(p)(G∨)ν(p)ζp/4,

and similarly with y replaced by y′.
Finally, by integration by parts and the induction hypothesis,

(8.15)

E[|
∫ t

0

fh(r)[βk(y, dr)− βk(y′, dr)]|p;V c]

6 c(p)E|fh(t)|p|βk(y, t)− βk(y′, t)|p

+ E|
∫ t

0

[βk(y, r)− βk(y′, r)]fh(dr)|p

6 c(p)(G∨)ν(p)ζ−2p | y − y′ |ap .

(Since fh is Lipschitz in r ∈ [0, 1], it is of bounded variation.)
Adding (8.12) – (8.15) and letting ζ =| y − y′ |a/4 yields (8.11).

9. Renormalization. Again, d = 2. For x 6= 0, let

ξ2(x, t) = G(x)t, γ2(x, t) = β2(x, t)− ξ2(x, t).

Hence, since G(−x) = G(x),
∫ t

0

G(Xt −Xr − x)dr =
∫ t

0

[∇G(Xs −Xr − x)dr] · dXs − γ2(x, t).

If y = (x2, · · · , xk−1) with xi 6= 0, i = 2, · · · , k − 1, define by induction

(9.1)
ξk+1(x, y, t) = G(x)βk(y, t)−

∫ t

0

G(Xt −Xr − x)ξk(y, dr)

+
∫ t

0

[
∫ s

0

∇G(Xs −Xr − x)ξk(y, dr)] · dXs,
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and

(9.2) γk+1(x, y, t) = βk+1(x, y, t)− ξk+1(x, y, t).

By (8.6),

(9.3) γk+1(x, y, t) =
∫ t

0

[
∫ s

0

G(Xs−Xr−x)γk(y, dr)] ·dXs−
∫ t

0

G(Xt−Xr−x)γk(y, dr).

We call γk+1 renormalized ILT.
Define ϕki: (R2)k × {1, · · · , k}i → (R2)k−1 by letting ϕki(x1, · · · , xk, j1, · · · , ji) be the

sequence x1, · · · , xk with the j1, j2, . . ., and ji entries deleted. For example,

ϕ4,2(x1, x2, x3, x4; 2, 4) = (x1, x3).

Let β1(t) = t.

Proposition 9.1.

ξk+1(x1, · · · , xk, t)

=
k∑

i=1

(−1)i+1
∑

j1<···<ji

G(xj1) · · ·G(xji
)βk+1−i(ϕki(x1, · · · , xk, j1, · · · , ji), t).

Remark. The proposition says, for example,

ξ3(x, y, t) = G(x)β2(y, t) +G(y)β2(x, t)−G(x)G(y)t;

ξ4(x, y, z, t) = G(x)β3(y, z, t) +G(y)β3(x, z, t) +G(z)β3(x, y, t)

−G(x)G(y)β2(z, t)−G(x)G(z)β2(y, t)−G(y)G(z)β2(x, t)

+G(x)G(y)G(z)t,

and so on. Recall γk = βk − ξk.

Proof. The proof is by induction: the (k + 1)st formula follows from the kth formula,
(8.6), (9.1), (9.2), and some routine calculations.

Set

(9.4)

γ+
k+1(x1, · · · , xk, t) = βk+1(x1, · · · , xk, t) +

∑
i6 k,i even

∑
j1<···<ji

G(xj1) · · ·G(xji
)

× βk+1−i(ϕki(xi, · · · , xk, j1, · · · , ji), t),
γ−k+1(x1, · · · , xk, t) = −(γk+1 − γ+

k+1).
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If G∨ = 1 ∨ |G(x1)| ∨ · · · ∨ |G(xk−1)|, for each p

(9.5) E|γk(x1, · · · , xk−1, t)|p6 c(p)(G∨)ν(p), t6 1,

and

(9.6) E|γk(x1, · · · , xk−1, t)− γk(x1, · · · , xk−1, s)|p6 c(p)(G∨)ν(p) | t− s |ap, s, t6 1

for some a and ν(p) by Theorem 8.1 and the representation of γk as a linear combination
of the βi, i6 k.

We set

U t(x, y) =
∫ t

0

G(Xt −Xr − x)γk−1(y, t),

and
M t(x, y) = U t(x, y) + γk(x, y, t),

where x = x1, y = (x2, · · · , xk−1). By (9.3), M t(x, y) is a martingale.

Proposition 9.2. There exist α > 0 and ν(p) such that

(a) E|U t(x, y)− U t(x′, y)|p6 c(p)(G∨)ν(p) | x− x′ |ap;

(b) E|U t(x, y)− Us(x, y)|6 c(p)(G∨)ν(p) | t− s |ap;

(c) E|U t(x, y)− U t(x, y′)|6 c(p)(G∨)ν(p) | y − y′ |ap;

Proof. The proof is again by induction. Note

E|
∫ t

0

Hζ(Xt −Xr − x)γ+
k−1(y, t)|p6 c(p)(G∨)ν(p)ζbp

and similarly with γ+
k−1 replaced by γ−k−1 and with x replaced by x′, using Proposition 5.2.

If we connect x to x′ by a curve Γ of length 6 c | x− x′ | so that Γ never gets closer to the
point 0 than | x | ∧ | x′ |,

E|
∫ t

0

[Gζ(Xt −Xr − x)−Gζ(Xt −Xr − x′)]γk(y, dr)|p

6 cζ−p | x− x′ |p E|γ+
k (y, t) + γ−k (y, t)|p

6 c(p)(G∨)ν(p)| x− x′ |p /ζp.
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Adding our estimates and setting ζ =| x− x′ |1/2, we get (a).

The proofs of parts (b) and (c) are similar, following the lines of the proofs of (8.2)
and (8.3).

Theorem 9.3. γk(x1, · · · , xk−1, t) is jointly Hölder continuous in each variable on the set

(R2)k−1 × [0, 1].

Proof. Let z = (x1, · · · , xk−1, t). From Propositions 9.2 and 6.2 and the triangle inequality,
we get the existence of a > 0 and ν(p) such that

(9.7) E|γk(z)− γk(z′)|p6 c(p)(G∨)ν(p) | z − z′ |ap .

Fix p large enough so that ap> 6k + 4.

We now proceed to modify the standard chaining argument. Let Bn = {x ∈ R
2 : x 6= 0

and both coordinates of x are integer multiples of 2−n}, n> 1. Let R> 1 and let An = {z =
(x1, · · · , xk−1, t): | xi | 6R, xi ∈ Bn, i = 1, . . . , k− 1, t is an integer multiple of 2−n}, n> 1.
Let A =

⋃
nAn.

If z ∈ A, let zi be the point in Ai closest to z (with some convention for breaking
ties). We write, for any i0,

(9.8) γk(z) =
∞∑

i=i0

[γk(zi+1 − γk(zi)] + γk(zi0),

where the sum is actually finite, since z ∈ A. We do the same for γk(z′). Note #Ai6 c22jk.

Let λ > 0. If | z−z′ |< δ, and | γk(z)−γk(z′) |> λ, then either (a) | γk(zi0)−γk(z′i0) |>
λ/2 or (b) for some j> i0 and some w ∈ Aj , w

′ ∈ Aj+1 with | w − w′ | 6 c2−j , we have
| γk(w)− γk(w′) | >λ/40j2. So

P (| γk(z)− γk(z′) |> λ for some z, z′ ∈ A with | z − z′ |< δ)(9.9)

6(#Ai0) sup
z,z′∈Ai0
|z−z′|6 cδ

P (| γk(z)− γk(z′) |> λ/2)

+
∞∑

j=i0

(#Aj)(#Aj+1)

× sup{P (| γk(w)− γk(w′) |> λ/40j2:w ∈ Aj, w
′ ∈ Aj+1, | w − w′ | 6 c2−j}.
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Using Chebyshev with (9.7), we bound (9.9) by

c(p)22i0k(1 ∨ sup
Bi0

| G |)ν(p)δap/λp + c(p)
∞∑

j=i0

24jk(1 ∨ sup
Bj

| G |)ν(p)2−jap(40j2)p/λp

6 c(p)22i0k(i0)ν(p)δap/λp

+ c(p)
∞∑

j=i0

2−2jjν(p)j2p/λp

by our choice of p and the fact that supBj
| G | 6 c log(2−j) = cj. Choosing δ so that

2−i0 6 δ6 2−i0+1, we see the series on the right is summable with a sum 6 c(p)δa′p/λp.

A standard Borel–Cantelli argument shows that γk(z) is uniformly Hölder continuous on
A, a.s. By Proposition 9.1 and Theorem 8.1, we know that γk(z) is Hölder continuous
on (R2 − {0})k−1 × [0, 1]. So we can extend γk(z) to be continuous on B(0, R)k−1 × [0, 1].
Since R is arbitrary, this completes the proof.

Remark. In the above proof, we obtained the estimate

(9.10) P

(
sup

|z−z′|<δ

z,z′∈A

|γk(z)− γk(z′)| > λ

)
6 c(p)δa′p/λp.

Given p0> 1, if we take p = p0 + 1, multiply by p0λ
p0−1 and integrate from 0 to ∞, and

then use the fact that γk is continuous, we get

(9.11) E( sup
|z−z′|<δ

|γk(z)− γk(z′)|p0)6 c(p)δa′p/2.

Remark. Theorem 9.3 was conjectured but not proved in [Sh].

10. Other Results.

A. Diffusions. With minor modifications, most of our results also hold for elliptic diffu-
sions. We consider two cases:
Case 1. Xt corresponds to the operator

Lf(x) =
d∑

i,j=1

∂

∂xi

(
aij(x)

∂f

∂xj
(x)

)

where the aij is bounded and uniformly elliptic (no smoothness required).
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Case 2. Xt corresponds to the operator

Lf(x) =
d∑

i,j=1

aij(x)
∂2f

∂xi∂xj
(x) +

d∑
i=1

bi(x)
∂f

∂xi
(x),

where the aij are uniformly elliptic and the aij , bi are C1.
In both cases, it is known (see [FS] and [LSW] for Case 1, [Fr] for Case 2) that

the Green function g(x, y) for Xt and the Green function gR(x, y) for Xt killed on exiting
B(0, R) are comparable (that is, the ratio is bounded above and below by constants) to the
corresponding Green functions for Brownian motion, provided x and y are close together
and in the interior of B(0, R). In fact, the transition densities are also comparable to those
of Brownian motion if x and y are close together, so the local properties (e.g., modulus of
continuity, time to exit a small ball, etc.) of Xt are similar to those of Brownian motion.

In Case 2, the gradient of the Green function is comparable to that of Brownian
motion, hence one can prove an analog of Brosamler’s theorem for measures µ on R

d

satisfying

µ(B(y, s))6 c | (s ∧ 1) |d−2+γ ,

c, γ independent of y, s by starting with Ito’s formula and taking limits. For Case 1, we
can only assert, in general, that the Green function is Hölder continuous, and so we cannot
get an explicit form for the martingale term in Case 1; the Hölder continuity follows from
Moser’s Harnack inequality by a standard argument (see [M]).

In Section 5, the proof of Proposition 5.1 needs to be modified. Let D1(z, Yr) be
the number of crossings from ∂B(z, σ) to ∂B(z, σ1−ε) by Yr, r6 1. We need a bound on
D1(x,X1−Xr). However, D1(x,X1−Xr)6 supz D1(z,Xr). For a single z, an upper bound
for D1(z,Xr) can be proved similarly to the Brownian case (in the proof of Proposition
5.1, we need to set Rt = G(Yt, z)); the bound has the same form and is exponential. One
can get an exponential bound for supz D1(z,Xr) by techniques very similar to the proof
of Lemma 2.1.

In the same way, if T (z, Yr) denotes the time for Yr − x to exceed σ1−ε, then

T (x,X1 −Xr)6 sup
z
T (z,Xr).

We can get bounds for a single z similar to the bound for Brownian motion. Again using
the techniques of Lemma 2.1, we get a bound for the sup in z.

With these observations, all the proofs of Sections 2–9 go through with only minor
modifications. We obtain, for example, for self-intersections of Xt in Case 2 the Tanaka
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formula for ILT for k-multiple points:
∫ t

0

[G(Xt, Xr + x1)−G(Xr, Xr + x1)]βk−1(x2, · · · , xk−1, dr)

=
∫ t

0

[
∫ s

0

∇G(Xs, Xr + x1)βk−1(x2, · · · , xk−1, dr)] · dX(M)
s − βk(xy, · · · , xk−1, t).

Here G(x, y) =
∫∞
0
pt(x, y)dt, where pt(x, y) is the transition density of Xt and X

(M)
s

denotes the martingale part of Xs. In Case 1, we get the same expression on the left-hand
side, but we cannot give an explicit formula for the martingale term. In either case, if one
defines renormalized ILT for double points by

γ2(x, t) = β2(x, t)−
∫ t

0

G(Xr, Xr + x)dr,

then γ2 will be Hölder continuous in both variables. Similar results hold for renormalization
of k multiple points. See [R] for what was known previously.

B. Stable Processes. If Xt is a symmetric stable process in R
2 of order α, then Xt will

have k multiple points (and k independent such processes will intersect) if 2−2/k < α. In
this case, we expect some of the above to go through with appropriate modifications. For
example, whenever we applied Hölder’s inequality, one must be much more careful with
the exponents used to make sure gp

R and Gp are appropriately integrable (where gR, G

denote the Green function in B(0, R) and Newtonian potential kernel in R
d , respectively,

for Xt). In Brosamler’s formula and the Tanaka formula, one does not have an explicit
form for the martingale term. (Actually, one could express the martingale in terms of a
stochastic integral with respect to a Poisson point process, but this does not seem very
useful.) Numerous other modifications will also be necessary.

C. ILTs in Certain Random Sets. Suppose Xt and Yt are independent Brownian
motions in R

2 . Suppose one has some sort of local time Lt for a certain random set.
For example, Lt might measure the amount of some appropriate subset of cone points
up to time t. Other possibilities might be local times for cut points or where one of
the coordinates of Xt has a slow point. If one defines µ(A) =

∫ u

0
1A(Xs)dLs and can

prove appropriate estimates, the associated additive functional would measure the amount
of time Yt intersects Xs at points where Xs is ”slow” or is a cone point. Without an
application in mind, we do not pursue this further.
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