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ITERATED BROWNIAN MOTION AND ITS
INTRINSIC SKELETAL STRUCTURE

By Davar Khoshnevisan† and Thomas M. Lewis
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ABSTRACT. This is an overview of some recent

results on the stochastic analysis of iterated Brown-

ian motion. In particular, we make explicit an intrin-

sic skeletal structure for the iterated Brownian motion

which can be thought of as the analogue of the strong

Markov property. As a particular application, we de-

rive a change of variables (i.e., Itô’s) formula for iter-

ated Brownian motion.

§1. INTRODUCTION

Let X+ ∆= {X+(t) : t ≥ 0}, X− ∆= {X−(t) : t ≥ 0}, and Y
∆= {Y (t) : t ≥ 0} be

independent Brownian motions, starting from the origin. Let

X(t) ∆=
{

X+(t) if t ≥ 0;
X−(−t) it t < 0.

Hence X
∆= {X(t) : t ∈ R} is a two–sided Brownian motion. Iterated Brownian

motion (I.B.M.) Z is defined by

Z(t) ∆= X(Y (t)), t ≥ 0.

It can be shown that Z is not a Markov process in its natural filtration. It is,
however, self–similar with parameter 1/4, which means that for any c > 0 the
finite–dimensional distributions of {Z(ct) : t ≥ 0} and {c1/4Z(t) : t ≥ 0} agree.
The reader can find a host of results on I.B.M. and its close relative, the Bahadur–
Kiefer process, in [1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 16, 17, 18, 20, 21, 22, 29, 30].
In particular, we mention the recent work of [7], where it is shown that, suitably
interpreted, I.B.M. is the canonical motion in an independent Brownian fissure.

There is a common thread which runs through references [20, 21, 22]. In
each of these articles, we analyze Z by means of certain stopping times for Y. In

†
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principle, this idea is quite simple: by stopping Y as it crosses certain levels, and
by sampling Z at these times, one can effectively separate X from Y. Our most
extensive use of this method has been in [22], where we have developed a stochastic
calculus for I.B.M. In this work, the stopping–time method is used to construct
what we call the intrinsic skeletal structure (I.S.S.) of Z, and our development of
the stochastic integral is fundamentally based on the I.S.S. The main motivation
for this paper is to give a concise account of this structure and indicate how it is
used to develop the stochastic integral.

According to [5], the sample paths of Z have finite quartic variation almost
surely. An immediate consequence of this fact is that Z has infinite quadratic
variation on a set of full measure. Thus Z is not a semi-martingale; nor is it a
Dirichlet process. As such, our construction of a stochastic integral with respect to
Z is necessarily nontrivial. Through the I.S.S., we derive the following fundamental
theorem of calculus for I.B.M.: if f : R → R is sufficiently smooth, then

f
(
Z(t)

)
= f(0) +

∫ t

0

f ′
(
Z(s)

)
∂Z(s) (1.1)

almost surely, where ∂Z is what we call the Stratonovich differential of Z. At
present, we do not have a good understanding of the connection between formula
(1.1) and the notion that I.B.M. is the canonical process on a Brownian crack.
There is, however, a loose relationship between I.B.M. and the biLaplacian (see
[4, 13]), and, as such, our work may have a fourth–order P.D.E. interpretation. A
variety of different attempts at a probabilistic description of such P.D.E.’s can be
found in [8, 9, 13, 14, 15, 24, 26, 27, 28].

Recently T. Lyons [25] has developed another approach to stochastic inte-
gration with respect to “rough signals”, which is based on the beautiful idea that
if one can construct enough “stochastic areas”, then one can obtain stochastic
integrals as a by–product. In fact, our methods can be used to construct such area
integrals; however, our theory is self–contained and yields additional information,
equation (1.1) being a case in point.

We conclude this section with a brief outline of this paper. In §2, we de-
scribe the I.S.S. §3 is an overview of some of the main results of [22]. In particular,
we describe the ∂ operator and we present a collection of weak and strong limit
theorems concerning the variations of I.B.M., including a surprising connection be-
tween these variations and H. Kesten and F. Spitzer’s Brownian motion in random
scenery (see [19] for further information on Brownian motion in random scenery).
While there are no problems in constructing a Stratanovich integral with respect
to I.B.M., defining an Itô integral is another matter, as the quadratic variation is
unbounded. In Theorem 4.1 of §4, we describe the nature of this infinity in terms
of a renormalization method. It is interesting that in a similar context, K. Nish-
ioka [27] obtains solutions to related P.D.E.’s with “infinities” such as our Theorem
4.1. It can be shown that Theorem 4.1 is equivalent to (1.1). This fact is due to a
cancellation of infinities. Is this related to the work of Nishioka? In §5, we conclude
this note with some remarks and some problems for further investigation.
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§2. THE INTRINSIC SKELETAL STRUCTURE (I.S.S.)

For n ≥ 1 and k ∈ Z, let rk,n
∆= k2−n/2. Of course, Dn

∆= {rk,n : k ∈ Z}, n ≥ 1, is
an equi-partition of R with mesh size 2n/2. For each positive integer n, let T0,n

∆= 0
and iteratively define

Tj,n
∆= inf

{
s > Tj−1,n

∣∣ Y (s) ∈ Dn \ {Y (Tj−1,n)}}, j ≥ 1.

It can be shown that as n tends to infinity, the collection Tn
∆= {Tj,n : j ≥ 0}

approximates the common dyadic partition {j2−n : j ≥ 0} (see [22, Lemma 2.2]
for a precise statement and proof of this result). For n ≥ 1 and j ≥ 0, let Sj,n =
Y (Tj,n). Then, for each admissible n, Pn

∆= {Sj,n : j ≥ 0} is a simple symmetric
random walk on Dn. The intrinsic skeletal structure of Z is the collection

I.S.S.
∆=

{
(Dn,Pn,Tn) : n ≥ 1

}
.

The principle use of the I.S.S. is through the following decomposition. For
each integer n ≥ 1, k ∈ Z and t ≥ 0, let Uk,n(t) (resp. Dk,n(t)) denote the
number of upcrossings (resp. downcrossings) of the interval [rk,n, rk+1,n] within
the first [2nt] steps of the random walk Pn. Let ϕ : R2 → R. We will say that ϕ
is symmetric (resp. skew–symmetric) provided that ϕ(x, y) = ϕ(y, x) for x, y ∈ R
(resp. ϕ(x, y) = −ϕ(y, x) for x, y ∈ R).

Proposition 2.1. ([22, Lemma 2.4]) If ϕ is symmetric, then

[2nt]−1∑
k=0

ϕ
(
Z(Tk,n), Z(Tk+1,n)

)
=

∑
j∈Z

ϕ
(
X(rj,n), X(rj+1,n)

)(
Uj,n(t) + Dj,n(t)

)
.

If ϕ is skew–symmetric, then

[2nt]−1∑
k=0

ϕ
(
Z(Tk,n), Z(Tk+1,n)

)
=

∑
j∈Z

ϕ
(
X(rj,n), X(rj+1,n)

)(
Uj,n(t)−Dj,n(t)

)
.

As we will see in the next section, the form

[2nt]−1∑
k=0

ϕ
(
Z(Tk,n), Z(Tk+1,n)

)

is a recurring theme in [22]. The significant feature of this decomposition is that
it separates X from Y, rendering this form amenable to analysis.

§3. STRATONOVICH INTEGRATION
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In this section, we define our Stratonovich integral with respect to I.B.M. and study
the variations of I.B.M. Since a detailed account of this material can be found in
[22], we will state our results without formal proof.

For k ≥ 0, let Ck
b denote the set of all functions f : R → R whose first

k derivatives are bounded and continuous. Recall from §1, that X+ and X− are
independent standard Brownian motions, and that X is the two–sided Brownian
motion constructed from X+ and X−. For f ∈ C2

b and t ∈ R, define (in the Itô
sense) ∫ t

0

f(X(s))dX(s) ∆=




∫ t

0
f(X+(s))dX+(s), if t ≥ 0;

∫ −t

0
f(X−(s))dX−(s), if t ≤ 0.

The corresponding two–sided Stratanovich integral is given by
∫ t

0

f(X(s))∂X(s) ∆=
∫ t

0

f(X(s))dX(s) +
1
2
sgn(t)

∫ t

0

f ′(X(s))ds.

For f ∈ C2
b and t ≥ 0, define

∫ t

0

f(Z(s))∂Z(s) ∆=
∫ Y (t)

0

f(X(s))∂X(s). (3.1)

Equation (3.1) may be taken as the definition of the Stratonovich integral with
respect to I.B.M., and, as our first theorem shows, this definition is both sensible
and consistent.

Theorem 3.1. ([22, Theorem 2.1]) Let f ∈ C2
b and let t ≥ 0. Then

lim
n→∞

[2nt]−1∑
k=0

f
(Z(Tk+1,n) + Z(Tk,n)

2

)(
Z(Tk+1,n)− Z(Tk,n)

)
=

∫ t

0

f(Z(s))∂Z(s)

almost surely and in L2(P ).

In other words, by taking our partition of integration from the I.S.S., we
obtain Stratonovich ∂Z–integrals by the familiar midpoint rule. A few additional
remarks are in order. First, it can be shown that the convergence in Theorem 3.1
holds uniformly on t–compacta. Furthermore, we observe that (3.1) and Theorem
3.1 imply that for all t ≥ 0, It : f 7→ ∫ t

0
f(Z(s))∂Z(s) is a random linear operator

from C2
b into R. (It is possible to extend the domain of this definition.) The nature

of the stochastic evolution of t 7→ It is an important problem which has yet to be
studied.

Next, we discuss the variations of I.B.M. To simplify the notation, let us fix a
nonnegative real number t. For integers n, k ≥ 0 and f ∈ C2

b , let

V (k)
n (f) =

[2nt]−1∑
j=0

f
(Z(Tk+1,n) + Z(Tk,n)

2

)(
Z(Tk+1,n)− Z(Tk,n)

)k
. (3.3)
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When f is identically equal to 1, V
(k)
n (f) is the usual k-th variation of Z, although

we must emphasize that the underlying partition is drawn from the I.S.S.

Our first results describe the behavior of the quadratic variation.

Theorem 3.2. ([22, Theorem 3.1]) For each f ∈ C2
b ,

lim
n→∞ 2−n/2V (2)

n (f) =
∫ t

0

f(Z(s))ds

almost surely and in L2(P ).

The analysis of the rate of convergence in Theorem 3.2 reveals a striking
connection to Brownian motion and random scenery, a process which was first
described by H. Kesten and F. Spitzer [19]. Let B1 be a two–sided Brownian
motion, let B2 be an independent Brownian motion, and let

{
Lx

t (B2) : t ≥ 0, x ∈
R
}

denote the process of local times of B2. Let

G(t) ∆=
∫ ∞

−∞
Lx

t (B2)dB1(x), t ≥ 0. (3.4)

The process G
∆= {G(t) : t ≥ 0} is called Brownian motion in random scenery

(B.M.R.S.).
In the statements of our next results, we will use 1 to denote the function

which is identically equal to 1.

Theorem 3.3. ([22, Theorem 3.2]) As n →∞,

2n/4

√
2

(
2−n/2V (2)

n (1)− t
) D[0,1]→ G(t)

Next, we consider the tertiary and quartic variations of I.B.M.

Theorem 3.4. ([22, Theorems 4.2, 4.3, 4.4, 4.5]) For f ∈ C2
b ,

lim
n→∞V (3)

n (f) = 0 and lim
n→∞ V (4)

n (f) = 3
∫ t

0

f(Z(s))ds

almost surely and in L2(P ). Moreover, as n →∞,

2n/2

√
15

V (3)
n (1)

D[0,1]→ Z(t) and
2n/4

√
96

(
V (4)

n (1)− 3t
) D[0,1]→ G(t).

In particular, along the I.S.S., Z has quartic variation. In [5, Theorem 1], K.
Burdzy has shown this fact along certain nonrandom partitions, and our results
are consistent with his.
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It can be shown that, suitably normalized, each even–ordered variation of
I.B.M. converges in distribution to B.M.R.S., while each odd–ordered variation of
I.B.M. converges in distribution to I.B.M. itself, which suggests the existence of a
form of measure–theoretic duality between I.B.M. and B.M.R.S.

To conclude this section, let us make a brief remark on the proofs of these
results. For each k ≥ 1, the mapping

ϕ(x, y) = f

(
x + y

2

)
(y − x)k

is either symmetric (k even) or skew–symmetric (k odd); consequently, the proofs
of these results begin with Proposition 2.1, the fundamental decomposition result.

§4. RENORMALIZED ITÔ INTEGRALS

In this section, we investigate the Itô calculus analogues of the results of the §3.
Throughout, let t be a nonnegative real number. Given integers n, k ≥ 1 and a
Borel function f : R → R, let

I(k)
n (f) ∆=

[2nt]−1∑
j=0

f
(
Z(Tj,n)

)(
Z(Tj+1,n)− Z(Tj,n)

)k
. (4.1)

Note that I
(k)
n (f) differs from V

(k)
n (f) (cf. (3.3)) in the use of the left–hand rule

instead of the midpoint rule, which is precisely what distinguishes the Itô and
Stratonovich theories of stochastic calculus.

In this section, we study the asymptotic behavior of I
(k)
n (f). As we shall see,

I
(1)
n (f) and I

(2)
n (f) are generally divergent as n → ∞, and this divergence can

be related directly, through renormalization, to the divergence of the quadratic
variation of I.B.M.

Theorem 4.1. For f ∈ C5
b ,

lim
n→∞

[
I(1)
n (f) +

1
2
V (2)

n (f ′)
]

=
∫ t

0

f(Z(s))∂Z(s)− 1
16

∫ t

0

f ′′′(Z(s))ds

lim
n→∞

[
I(2)
n (f)− V (2)

n (f)
]

=
3
8

∫ t

0

f ′′(Z(s))ds

lim
n→∞ I(3)

n (f) = −3
2

∫ t

0

f ′(Z(s))ds

lim
n→∞ I(4)

n (f) = 3
∫ t

0

f(Z(s))ds.

almost surely and in L2(P ).

It is noteworthy that the Itô and Stratonovich quartic variations agree while
their tertiary variations do not.
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By Theorems 3.2 and 4.1, it is easy to give the precise rate of divergence of
I
(1)
n (f) and I

(2)
n (f). We have

lim
n→∞ 2−n/2I(1)

n (f) = −1
2

∫ t

0

f ′(Z(s))ds

and

lim
n→∞ 2−n/2I(2)

n (f) =
∫ t

0

f(Z(s))ds

almost surely and in L2(P ).

Proof of Theorem 4.1. For simplicity, let

Mj,n
∆=

Z(Tj+1,n) + Z(Tj,n)
2

∆Zj,n
∆= Z(Tj+1,n)− Z(Tj,n).

Since f ∈ C5
b , we can apply Taylor’s expansion to see that

f(Z(Tj,n)) = f(Mj,n)− 1
2
f ′(Mj,n) · (∆Zj,n) +

1
8
f ′′(Mj,n) · (∆Zj,n)2

− 1
48

f ′′′(Mj,n) · (∆Zj,n)3 + bj,n · (∆Zj,n)4,

where bj,n is a random variable bounded by supx∈R |f (4)(x)|. By (3.3) and (4.1),
it follows that, for k ≥ 1,

I(k)
n (f) = V (k)

n (f)− 1
2
V (k+1)

n (f ′) +
1
8
V (k+2)

n (f ′′)− 1
48

V (k+3)
n (f ′′′) + ε(k)

n (f),

where limn→∞ ε
(k)
n (f) = 0 almost surely and in L2(P ). By appealing to Theorems

3.1, 3.3 and 3.4, we obtain the stated result. ////

§5. EPILOGUE

§5.1. Universality. An important open problem is to determine whether I.B.M.

is the canonical process on a Brownian crack. The results of [7] clearly indicate
that this may be so, and the work of [22] gives further evidence for this conclusion.
To obtain a better sense of universality, it would be useful to show that the I.S.S.

is not a special partitioning algorithm. Thus we pose the following problem:

Problem 5.1. Let f ∈ C∞b , let t be a nonnegative real number, and let Π = {tj :
1 ≤ j ≤ J} be a partition of [0, t]. Is it true that

J∑
j=1

f
(Z(tj+1) + Z(tj)

2

)
· (Z(tj+1)− Z(tj)

) →
∫ t

0

f(Z(s))∂Z(s)
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in probability as mesh(Π) → 0?

§5.2. Brownian motion in random scenery. It is easy to show that G (see
(3.4)) is self–similar with index 3/4, that is, for all c > 0,

{
G(ct) : t ≥ 0

}
and{

c3/4G(t) : t ≥ 0
}

have the same finite dimensional distributions. You will recall
that Z is self–similar with index 1/4. Roughly speaking, this suggests that G and
Z might have “dual” dimensional properties. As an example, recall from [6] that
the level sets of Z have Hausdorff dimension 3/4 (cf. [16] for further results and
refinements). This motivates the following conjecture:

Conjecture 5.2. Let dim denote Hausdorff dimension. Then

dim
{
s ≥ 0 : G(s) = 0

}
=

1
4

a.s.

We also suspect that some form of duality between G and Z will be evident
in the functional forms of their respective laws of the iterated logarithm, perhaps
a duality between their reproducing kernel Hilbert spaces. To this end, we have
demonstrated the following provisional result:

Theorem 5.3. ([23, Theorem 1.1]) There exists a constant 0 < C1 < ∞ such
that

lim sup
t→∞

G(t)
(t log log t)3/4

= C1 a.s.

This should be compared to a result of K. Burdzy concerning I.B.M.

Theorem 5.4. ([4, Theorem 3]) There exists a constant 0 < C2 < ∞ such that

lim sup
t→∞

Z(t)
t1/4(log log t)3/4

= C2 a.s.

It should be noted that the value of C2 is known; however, at present, we do
not know the value of C1.

While the functional analogue of Theorem 5.4 has been demonstrated [10], the
functional analogue of Theorem 5.3 has not. Thus we offer the following problem:

Problem 5.5. For each integer n ≥ 1, let

Gn(t) ∆=
G(nt)

(n log log n)3/4
, 0 ≤ t ≤ 1.

From Theorem 5.3 and tightness arguments, it can be shown that the limit points
(in the uniform topology) of {Gn : n ≥ 1} form a compact set. Is there an energy
characterization of this set?
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