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1. Introduction and Preliminaries

Heat flow on a fractal F has been the subject of recent and vigorous investigations. See, for example,
the survey article [2]. As in the more classical studies of heat flow on smooth manifolds (cf. [16]),
a probabilistic interpretation of such problems comes from the description and analysis of “the
canonical stochastic process” on F, which is usually called Brownian motion on F. One of the
many areas of applications is heat flow along fractures. In this vein, see [14,17,20,21,22,26,39]
These articles start with an idealized fracture (usually a simple geometric construct such as a
comb) and proceed to the construction and analysis of Brownian motion on this fracture. Let us
begin by attacking the problem from a different point of view. Namely, rather than considering a
fixed idealized fracture, we begin with the following random idealization of a fracture: we assume
that R is a vertically homogeneous, two–dimensional rectangular medium with sides parallel to
the axes. Then the our left–to–right random fracture R looks like the graph of a one–dimensional
Brownian motion. (To make this more physically sound, one needs some mild conditions on the local
growth of the fracture together with the invariance principle of Donsker; see [6].) Approximating
the Brownian graph by random walks and once again applying Donsker’s invariance principle ([6]),
it is reasonable to suppose that Brownian motion on a Brownian fracture is described by (Yt, Zt),
where Y is a one–dimensional Brownian motion and Z is the iterated Brownian motion built from
Y . To construct Z, let X± be two independent one–dimensional Brownian motions which are
independent of Y, as well (throughout this paper, we assume that all Brownian motions start at
the origin). Let X be the two–sided Brownian motion given by

Xt =

X+(t), if t> 0

X−(−t), if t < 0.

Iterated Brownian motion Z can be defined as

Zt = X(Yt).

As is customary, given a function f (random or otherwise), we freely interchange between f(t) and
ft for typographical ease or for reasons of aesthetics.

The above model for Brownian motion on a Brownian fracture appears earlier (in a slightly
different form) in [13]. Our model is further supported by the results of [11]. There, it is shown
that iterated Brownian motion arises naturally as the (weak) limit of reflected Brownian motion
in an infinitesimal fattening of the graph of a Brownian motion.

Recently iterated Brownian motion and its variants have been the subject of various works;
see [1,4,5,8,9,10,11,13,15,23,24,25,29,30,38,40]. In addition to its relation to heat flow on fractures,
iterated Brownian motion has a loose connection with the parabolic operator 1

8∆2 − ∂/∂t; see [19]
for details.

In this paper, we are concerned with developing a stochastic calculus for Z. It is not sur-
prising that the key step in our analysis is a construction of stochastic integral processes of form∫ t

0
f(Zs)dZs, where f is in a “nice” family of functions. Since Z is not a semi-martingale, such a

construction is necessarily non–trivial. (A folk theorem of C. Dellacherie essentially states that for∫
HdM to exist as an “integral” for a large class of H’s, M need necessarily be a semi–martingale.)

Our construction of
∫ t

0
f(Zs)dZs is reminiscent of the integrals of Stratonovich and Lebesgue. More

precisely, for each nonnegative integer n, we divide space into an equipartition of mesh size 2−n/2.
According to the times at which the Brownian motion Y is in this partition, one obtains an in-
duced random partition {Tk,n; 16 k6 2nt} of the time interval [0, t]. One of the useful features of
this random partition is that it uniformly approximates the more commonly used dyadic partition
{k2−n; 16 k6 2nt}. Having developed the partition, we show that∫ t

0

f(Zs)dZs = lim
n→∞

∑
16 k6 2nt

f
(Z(Tk+1,n) + Z(Tk,n)

2

)
· (Z(Tk+1,n)− Z(Tk,n)

)
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exists with probability one and can be explicitly identified in terms of other (better understood)
processes. This material is developed in §2. The use of the midpoint rule in defining the stochastic
integral is significant. The midpoint rule is a symmetric rule, and symmetry will play an important
role in our analysis. As we will show later in this section, the analogous partial sum process based
on the right–hand rule does not converge.

Based on Donsker’s invariance principle, we have already argued that iterated Brownian mo-
tion is a reasonable candidate for the canonical process on a Brownian fracture. This viewpoint is
further strengthened by our results in the remainder of this paper which are concerned with the
variations of iterated Brownian motion. To explain these results, define — for smooth functions f ,

V (j)
n (f, t) =

∑
16 k6 2nt

f
(Z(Tk+1,n) + Z(Tk,n)

2

)
· (Z(Tk+1,n)− Z(Tk,n)

)j
, (j = 1, 2, 3, 4)

When f ≡ 1, we will write V
(j)
n (t) for V

(j)
n (1, t), which we call the j–th variation of Z. A more

traditional definition of the variation of iterated Brownian motion has been studied in [9]. In §3
and §4 we extend the results of [9] along the random partitions {Tk,n}. In fact, we prove that with
probability one, for a nice function f ,

lim
n→∞ 2−n/2V (2)

n (f, t) =
∫ t

0

f(Zs)ds,

lim
n→∞V (3)

n (f, t) = 0,

and

lim
n→∞V (4)

n (f, t) = 3
∫ t

0

f(Zs)ds.

Further refinements appear in the second–order analysis of these strong limit theorems. In essence,
we show that appropriately normalized versions of V

(2)
n (t) − 2n/2t and V

(4)
n (t) − 3t converge in

distribution to Kesten and Spitzer’s Brownian motion in random scenery (see [27]), while an
appropriately normalized version of V

(3)
n (t) converges in distribution to iterated Brownian motion

itself. Indeed, it can be shown that — after suitable normalizations — all even variations converge
weakly to Brownian motion in random scenery while the odd variations converge weakly to iterated
Brownian motion.

Our analysis of the variation of iterated Brownian motion indicates the failure of the right–
hand rule in defining the stochastic integral. If f is sufficiently smooth and has enough bounded
derivatives, then, by Taylor’s theorem, we have∑

16 k6 2nt

f
(
Z(Tk,n)

) · (Z(Tk+1,n)− Z(Tk,n)
)

= V (1)
n (f, t) +

1
2
V (2)

n (f ′, t) +
1
4
V (3)

n (f ′′, t) +
1
12

V (4)
n (f ′′′, t) + o(1),

where o(1) → 0 almost surely and in L2(P) as n →∞. It follows that

lim
n→∞

 ∑
16 k6 2nt

f
(
Z(Tk,n)

) · (Z(Tk+1,n)− Z(Tk,n)
)− 1

2
V (2)

n (f ′, t)


=
∫ t

0

f(Zs)dZs +
1
4

∫ t

0

f ′′′(Zs)ds.
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Consequently, the right–hand rule process will converge if and only if the associated quadratic
variation process converges. However the quadratic variation process diverges whenever f ′ is a
positive function, to name an obvious, but by no means singular, example.

Our construction of
∫ t

0
f(Zs)dZs is performed pathwise and relies heavily on excursion theory

for Brownian motion. It is interesting that a simplified version of our methods yields an excursion–
theoretic construction of ordinary Itô integral processes of the type

∫ t

0
f(Ys)dYs for Brownian

motion Y (see §5 for these results). While stochastic calculus treatments of excursion theory have
been carried out in the literature (cf. [37]), ours appears to be the first attempt in the reverse
direction.

A general pathwise approach to integration is carried out in [35]. This is based on a construction
of Lévy–type stochastic areas. It would be interesting to see the connection between our results
and those of [35].

We conclude this section by defining some notation which will be used throughout the paper.
For any array {ai,n, j ∈ Z, n> 0}, we define ∆aj,n = aj+1,n − aj,n. Whenever a process U has
local times, we denote them by Lx

t (U). This means that for any Borel function f and all t> 0∫ t

0

f(Us)ds =
∫ ∞

−∞
f(a)La

t (U)da,

almost surely. We write I{A} for the indicator of a Borel set A. In other words, viewed as a random
variable,

I{A}(ω) =

{ 1, if ω ∈ A

0, if ω 6∈ A.

Let C2(R) be the collection of all twice continuously differentiable functions, f : R → R. By C2
b (R)

we mean the collection of all f ∈ C2(R) such that ‖f‖C2
b
(R) < ∞, where

‖f‖C2
b
(R) = sup

x

(|f(x)|+ |f ′(x)|+ |f ′′(x)|). (1.1)

It is easy to see that endowed with the norm ‖ · · · ‖C2
b
(R), C2

b (R) is a separable Banach space. For
each integer j and each nonnegative integer n, let rj,n = j2−n/2. Recalling that X is a two–sided
Brownian motion, we let

Xj,n = X(rj,n)

Mj,n =
X(rj+1,n) + X(rj,n)

2
.

(1.2)

Finally, for any p > −1, µp will denote the absolute p–th moment of a standard normal distribution,
that is,

µp = (2π)−1/2

∫ ∞

−∞
|x|pe−x2/2dx = π−1/22p/2Γ

(p + 1
2

)
. (1.3)

Acknowledgments. We thank Chris Burdzy for several interesting discussions on iterated Brow-
nian motion. The presentation of this paper has been improved, largely due to the remarks of two
anonymous referees to whom we wish to extend our thanks.

2. The Stochastic Integral

In this section we will define a stochastic integral with respect to iterated Brownian motion. For
each t > 0, we will construct a sequence of partitions {Tk,n, 06 k6[2nt]} of the interval [0, t] along
which the partial sum process,

V (1)
n (f, t) =

[2nt]−1∑
k=0

f

(
Z(Tk+1,n) + Z(Tk,n)

2

)(
Z(Tk+1,n)− Z(Tk,n)

)
,
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converges almost surely and in L2(P) as n →∞, provided only that f is sufficiently smooth. The
limiting random variable is properly called the stochastic integral of f(Zs) with respect to Zs over
the interval [0, t] and will be denoted by

∫ t

0
f(Zs)dZs. Our point of departure from the classical

development of the stochastic integral is that the partitioning members Tk,n are random variables,
which we will define presently. For each integer n> 0 and each integer j, recall that rj,n = j2−n/2

and let
Dn =

{
rj,n, j ∈ Z

}
.

To define the elements of the nth partition, let T0,n = 0 and, for each integer k> 1, let

Tk,n = inf
{
s > Tk−1,n : Ys ∈ Dn r {Y (Tk−1,n)}}.

For future reference we observe that the process
{
Y (Tk,n), k> 0

}
is a simple symmetric random

walk on Dn.
Here is the main result of this section.

Theorem 2.1. Let t > 0 and f ∈ C2
b (R). Then

V (1)
n (f, t) →

∫ Yt

0

f(Xs)dXs +
1
2
sgn(Yt)

∫ Yt

0

f ′(Xs)ds,

almost surely and in L2(P) as n →∞.

We have used the following natural definition for two–sided stochastic integrals:

∫ t

0

f(Xs)dXs =


∫ t

0
f(X+

s )dX+
s , if t> 0∫ −t

0
f(X−

s )dX−
s , if t < 0,

whenever the Itô integrals on the right exist.
Remark 2.1.1. For any f ∈ C2

b (R), define

〈f,X〉(t) =
∫ t

0

f(Xs)dXs +
1
2
sgn(t)

∫ t

0

f ′(Xs)ds.

Then {〈f,X〉(t), t ∈ R} is the correct two–sided Stratonovich integral process of the integrand
f ◦X. In the notation of §1, Theorem 2.1 asserts that∫ t

0

f(Zs)dZs = 〈f,X〉(Yt).

In other words, stochastic integration with respect to Z is invariant under the natural composition
map: (X,Y ) 7→ Z.

Before proceeding to the proof of Theorem 2.1, a few preliminary remarks and observations
are in order. First we will demonstrate that the random partition {Tk,n, k ∈ Z} approximates the
dyadic partition {k/2n, k ∈ Z} as n tends to infinity.

Lemma 2.2. Let t > 0. Then

sup
06 s6 t

∣∣T[2ns],n − s
∣∣→ 0
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almost surely and in L2(P) as n →∞.

Proof. By the strong Markov property,
{
∆Tj,n, j> 0

}
is an i.i.d. sequence of random variables.

Moreover, by Brownian scaling, ∆T1,n has the same distribution as 2−nT1,0. By Itô’s formula,
exp(λYt − λ2t/2) is a mean-one martingale. Thus, by Doob’s optional sampling theorem,

E
(
exp(−λ2T1,0/2)

)
=
(
cosh(λ)

)−1
.

It follows that E(T1,0) = 1, E (T 2
1,0 ) = 5/3; consequently, var(T1,0) = 2/3. Thus, by Brownian

scaling,

E (∆T1,n) = 2−n and var(∆T1,n) =
2
3
2−2n. (2.1)

Given 06 s6 t, we have

sup
06 s6 t

∣∣T[2ns],n − s
∣∣6 sup

06 s6 t

∣∣T[2ns],n − [2ns]2−n
∣∣+ sup

06 s6 t

∣∣[2ns]2−n − s
∣∣

6 max
16 k6[2nt]

|Tk,n − E(Tk,n)|+ 2−n.

Since

Tk,n − E(Tk,n) =
k−1∑
j=0

(
∆Tj,n − E(∆Tj,n)

)
,

we have, by Doob’s maximal inequality and (2.1),

E

[
max

16 k6[2nt]
|Tk,n − E (Tk,n)|2

]
6 4

[2nt]−1∑
j=0

var(∆Tj,n)

= O(2−n).

In summary ∥∥∥∥ sup
06 s6 t

∣∣T[2ns],n − s
∣∣∥∥∥∥

2

= O(2−n/2), (2.2)

which demonstrates the L2(P) convergence in question. The almost sure convergence follows from
applications of Markov’s inequality and the Borel-Cantelli lemma. �

For each n> 0, let
τn = τ(n, t) = T[2nt],n

j∗ = j∗(n, t) = 2n/2Y (τn).

In keeping with the notation that we have already developed, we have rj∗,n = Y (τn).

Lemma 2.3. Let t > 0. Then, as n →∞,
(a) ‖Y (τn)− Y (t)‖2 = O(2−n/8);
(b)

∥∥(sgn(Y (t))− sgn(Y (τn))
)(|Y (t)|+ |Y (τn)|)∥∥

2
= O(2−n/64).

Proof. For each integer n> 1, let εn = ‖τn − t‖1/2
2 . From (2.2) we have

εn = O(2−n/4). (2.3)
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Observe that
E(|Y (τn)− Y (t)|2) = E

(|Y (τn)− Y (t)|2I(|τn− t|6 εn)
)

+ E
(|Y (τn)− Y (t)|2I(|τn− t| > εn)

)
= An + Bn,

with obvious notation. By (2.3) and the elementary properties of Browian motion, we have

An6 2E
[

sup
t6 s6 t+εn

|Y (s)− Y (t)|2
]

= 2εnE

[
sup

06 s6 1
|Y (s)|2

]
= O(2−n/4).

Concerning Bn, observe that {2n/2Y (Tk,n), k> 0} is a simple symmetric random walk on Z.
As such,

E

[(
2n/2Y (τn)

)4] = 3[2nt]2 − 2[2nt].

It follows that {‖Y (τn)‖4, n> 0} is a bounded sequence. By the Hölder, Minkowski and Markov
inequalities,

Bn6 ‖Y (τn)− Y (t)‖24
√
P(|τn − t| > εn)

6
(‖Y (τn)‖4 + ‖Y (t)‖4

)2 ‖τn − t‖2
εn

= O(εn)

= O(2−n/4),

which proves (a).
For each integer n> 1, let δn = ‖Y (t) − Y (τn)‖1/2

2 and observe that δn = O(2−n/16). By
elementary considerations we obtain

|sgn(Y (t))− sgn((Y (τn))|6 2I(|Y (t)|6 δn) + 2I(|Y (τn)|6 δn) + 2I(|Y (t)− Y (τn)| > 2δn).

Consequently

‖sgn(Y (t))− sgn((Y (τn))‖46 2‖I(|Y (t)|6 δn)‖4 + 2‖I(|Y (τn)|6 δn)‖4
+ 2‖I(|Y (t)− Y (τn)| > 2δn)‖4.

We will obtain bounds for each of the terms on the right.
Since t > 0, |Y (t)| has a bounded density function. In particular,

P(|Y (t)|6 δn)6

√
2
πt

δn.

This shows that ‖I(|Y (t)|6 δn)‖46 4
√

2δn = O(2−n/64). Once again, let us observe that
{2n/2Y (Tk,n), k> 0} is a simple symmetric random walk on Z. Consequently, E (Y (τn)) = 0 and
var(Y (τn)) = [2nt]2−n. From the Berry–Esseen theorem we obtain the estimate

P(|Y (τn)|6 δn)6P(|Y (1)|6 δn/
√

[2nt]2−n) +
C

2n/2
,

where C depends only on t. Arguing as above, we have ‖I(|Y (τn)|6 δn)‖4 = O(2−n/64).
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By Markov’s inequality,

P(|Y (t)− Y (τn)| > 2δn)6
‖Y (t)− Y (τn)‖2

4δ2
n

=
1
4
δn,

which shows that ‖I(|Y (t)− Y (τn)| > 2δn)‖4 = O(2−n/64). In summary, we have

‖sgn(Y (t))− sgn(Y (τn))‖4 = O(2−n/64). (2.4)

Finally, by the Hölder and Minkowski inequalities, we have∥∥(sgn(Y (t))− sgn(Y (τn))
)(|Y (t)|+ |Y (τn)|)∥∥

2

6 ‖sgn(Y (t))− sgn(Y (τn))‖4
(‖Y (t)‖4 + ‖Y (τn)‖4

)
.

As we have already observed, {‖Y (τn)‖4, n> 0} is a bounded sequence. Thus, item (b) of this
lemma follows from (2.4). �

We will adopt the following notation and definitions. For each integer n> 0, j ∈ Z and real
number t> 0, let

Uj,n(t) =
[2nt]−1∑

k=0

I
{
Y (Tk,n) = rj,n, Y (Tk+1,n) = rj+1,n

}
(2.5)

Dj,n(t) =
[2nt]−1∑

k=0

I
{
Y (Tk,n) = rj+1,n, Y (Tk+1,n) = rj,n

}
. (2.6)

Thus, Uj,n(t) and Dj,n(t) denote the number of upcrossings and downcrossings of the interval
[rj,n, rj+1,n] within the first [2nt] steps of the random walk {Y (Tk,n), k> 0}, respectively.

As is customary, we will say that ϕ : R2 → R is symmetric provided that

ϕ(x, y) = ϕ(y, x)

for all x, y ∈ R. We will say that ϕ is skew symmetric provided that

ϕ(x, y) = −ϕ(y, x)

for all x, y ∈ R. Recalling (1.2), we state and prove a useful real–variable lemma.

Lemma 2.4. If ϕ is symmetric, then

[2nt]−1∑
k=0

ϕ
(
Z(Tk,n), Z(Tk+1,n)

)
=
∑
j∈Z

ϕ(Xj,n,Xj+1,n)(Uj,n(t) + Dj,n(t)).

If ϕ is skew–symmetric, then

[2nt]−1∑
k=0

ϕ
(
Z(Tk,n), Z(Tk+1,n)

)
=
∑
j∈Z

ϕ(Xj,n,Xj+1,n)(Uj,n(t)−Dj,n(t)).
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Proof. Since each step of the random walk {Y (Tk,n), k> 0} is either and upcrossing or a down-
crossing of some interval [rj,n, rj+1,n], j ∈ Z, it follows that

1 =
∑
j∈Z

(
I{Y (Tk,n) = rj,n, Y (Tk+1,n) = rj+1,n}+ I{Y (Tk,n) = rj+1,n, Y (Tk+1,n) = rj,n}

)
.

Consequently

[2nt]−1∑
k=0

ϕ
(
Z(Tk,n), Z(Tk+1,n)

)
=
∑
j∈Z

[2nt]−1∑
k=0

ϕ
(
Z(Tk,n), Z(Tk+1,n)

)
×
(
I{Y (Tk,n) = rj,n, Y (Tk+1,n) = rj+1,n}

+ I{Y (Tk,n) = rj+1,n, Y (Tk+1,n) = rj,n}
)

.

Observe that from (2.5) and (2.6) we have

[2nt]−1∑
k=0

ϕ
(
Z(Tk,n), Z(Tk+1,n)

)
I{Y (Tk,n) = rj,n, Y (Tk+1,n) = rj+1,n}

= ϕ(Xj,n,Xj+1,n)Uj,n(t)
[2nt]−1∑

k=0

ϕ
(
Z(Tk,n), Z(Tk+1,n)

)
I{Y (Tk,n) = rj+1,n, Y (Tk+1,n) = rj,n}

= ϕ(Xj+1,n,Xj,n)Dj,n(t)

The remainder of the argument follows from the definitions of symmetric and skew symmetric. �

Our next result will be used in conjunction with the decomposition developed in Lemma 2.3;
its proof is easily obtained by observing that the upcrossings and downcrossings of the interval
[rj,n, rj+1,n] alternate.

Lemma 2.5. Let t > 0. For each j ∈ Z,

Uj,n(t)−Dj,n(t) =

 I(06j < j∗) if j∗ > 0
0 if j∗ = 0
−I(j∗6 j < 0) if j∗ < 0.

We will need a set of auxiliary processes. For s> 0, let

X̃±
s = X±(rj,n) when rj,n6 s < rj+1,n.

For s ∈ R, let

X̃s =
{

X̃+
s if s> 0

X̃−
−s if s < 0.

We will adopt the following conventions: given t ∈ R, let

∫ t

0

f(X̃s)dXs =


∫ t

0
f(X̃+

s )dX+
s if t> 0∫ −t

0
f(X̃−

s )dX−
s if t < 0,
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whenever the integrals on the right are defined. Due to the definition of {X̃s, s ∈ R}, we have

∫ rk,n

0

f(X̃s)dXs =



∑k−1
j=0 f(X+

j,n)∆X+
j,n if k > 0

0 if k = 0∑|k|−1
j=0 f(X−

j,n)∆X−
j,n if k < 0.

(2.7)

Similarly, by consideration of the cases, we obtain

sgn(rk,n)
∫ rk,n

0

f(X̃s)ds =



∑k−1
j=0 f(X+

j,n)∆rj,n if k > 0

0 if k = 0∑|k|−1
j=0 f(X−

j,n)∆rj,n if k < 0.

(2.8)

It will be convenient to rewrite the results of (2.8) in a modified form. For k > 0, it will be preferable
to write

sgn(rk,n)
∫ rk,n

0

f(X̃s)ds =
k−1∑
j=0

f(X+
j,n)(∆X+

j,n)2

+
k−1∑
j=0

f(X+
j,n)
(
∆rj,n − (∆X+

j,n)2
)
.

(2.9)

The obvious modifications should be made for the case k < 0.

Proof of Theorem 2.1. Recall (1.1)–(1.3). For each integer n> 0, let

Ṽ (1)
n (f, t) =

∫ rj∗,n

0

f(X̃s)dXs +
1
2
sgn(rj∗,n)

∫ rj∗,n

0

f ′(X̃s)ds

V̂ (1)
n (f, t) =

∫ Y (τn)

0

f(Xs)dXs +
1
2
sgn(Y (τn))

∫ Y (τn)

0

f ′(Xs)ds

V (1)(f, t) =
∫ Yt

0

f(Xs)dXs +
1
2
sgn(Yt)

∫ Yt

0

f ′(Xs)ds.

In this notation, we need to show that V
(1)
n (f, t) → V (1)(f, t) almost surely and in L2(P) as n →∞.

To this end, we have

‖V (1)
n (f, t)− V (1)(f, t)‖26 ‖V (1)

n (f, t)− Ṽ (1)
n (f, t)‖2 + ‖Ṽ (1)

n (f, t)− V̂ (1)
n (f, t)‖2

+ ‖V̂ (1)
n (f, t)− V (1)(f, t)‖2.

We will estimate each of the terms on the right in order. We will begin by expressing V
(1)
n (f, t)

in an alternate form. We will place a ± superscript on Mj,n whenever the underlying Brownian
motion is so signed. Since the function

ϕ(x, y) = f

(
y + x

2

)
(y − x)
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is skew symmetric, by Lemma 2.4 we have

V (1)
n (f, t) =

∑
j∈Z

f(Mj,n)∆Xj,n

(
Uj,n(t)−Dj,n(t)

)
.

In light of Lemma 2.5, there will be three cases to consider, according to the sign of j∗. If j∗ = 0,
then Uj,n(t) −Dj,n(t) = 0 and, consequently, V

(1)
n (f, t) = 0. If j∗ > 0, then Uj,n(t) −Dj,n(t) = 1

for 06 j6 j∗ − 1 and 0 otherwise; consequently,

V (1)
n (f, t) =

j∗−1∑
j=0

f(M+
j,n)∆X+

j,n.

If, however, j∗ < 0, then Uj,n(t)−Dj,n(t) = −1 for j∗6 j6−1 and 0 otherwise; consequently,

V (1)
n (f, t) = −

−1∑
j=j∗

f

(
Xj+1,n + Xj,n

2

)
(Xj+1,n −Xj,n)

=
−1∑

j=j∗
f

(
X−
−j−1,n + X−

−j,n

2

)
(X−

−j,n −X−
−j−1,n)

=
|j∗|−1∑
j=0

f(M−
j,n)∆X−

j,n.

In summary,

V (1)
n (f, t) =



∑j∗−1
j=0 f(M+

j,n)∆X+
j,n if j∗ > 0

0 if j∗ = 0∑|j∗|−1
j=0 f(M−

j,n)∆X−
j,n if j∗ < 0.

(2.10)

By combining (2.7), (2.9) and (2.10), we have

V (1)
n (f, t)− Ṽ (1)

n (f, t) = An + Bn,

where

An =



∑j∗−1
j=0

[
f(M+

j,n)− f(X+
j,n)− 1

2f ′(X+
j,n)∆X+

j,n

]
∆X+

j,n if j∗ > 0

0 if j∗ = 0

∑|j∗|−1
j=0

[
f(M−

j,n)− f(X−
j,n)− 1

2f ′(X−
j,n)∆X−

j,n

]
∆X−

j,n if j∗ < 0,

and

Bn =


1
2

∑j∗−1
j=0 f ′(X+

j,n)
(
(∆X+

j,n)2 −∆rj,n

)
if j∗ > 0

0 if j∗ = 0

1
2

∑|j∗|−1
j=0 f ′(X−

j,n)
(
(∆X−

j,n)2 −∆rj,n

)
if j∗ < 0.

Note that by Taylor’s theorem∣∣∣∣f(M±
j,n)− f(X±

j,n)− 1
2
f ′(X±

j,n)∆X±
j,n

∣∣∣∣6 1
8
‖f‖C2

b
(R)|∆X±

j,n|2.
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Hence,

|An|6


1
8‖f‖C2

b
(R)

∑j∗−1
j=0 |∆X+

j,n|3 if j∗ > 0

0 if j∗ = 0

1
8
‖f‖C2

b
(R)

∑|j∗|−1
j=0 |∆X−

j,n|3 if j∗ < 0.

However, for any integer m, we have, by the triangle inequality and Brownian scaling,∥∥∥∥∥∥
|m|−1∑
j=0

|∆X±
j,n|3

∥∥∥∥∥∥
2

6 |m| ‖(∆X±
0,n)3‖2

= |m| µ
1/2
6 2−3n/4.

Since the random variable j∗ is independent of X, by conditioning on the value of j∗ and applying
the above inequality we obtain

‖An‖26 1
8
‖f‖C2

b
(R)µ

1/2
6 2−3n/4

E(|j∗ |).

Since {2n/2Y (Tk,n), k> 0} is a simple symmetric random walk on Z, it follows that for each t > 0

E (|j∗ |)6 ‖j∗‖2 =
√

[2nt] = O(2n/2). (2.11)

Consequently
‖An‖2 = O(2−n/4). (2.12)

Let us turn our attention to the analysis of Bn. For each j ∈ Z, let

ε±j,n = (∆X±
j,n)2 −∆rj,n.

Observe that E (ε±j,n) = 0 and var(ε±j,n) = 2−nvar(X(1)2). Let m ∈ Z. Since the random variables
{f ′(X±

j,n)ε±j,n, 06 j6 |m| − 1} are pairwise uncorrelated and since ε±j,n is independent of f ′(X±
j,n),

it follows that

var

1
2

|m|−1∑
j=0

f ′(X±
j,n)ε±j,n

 =
1
4

|m|−1∑
j=0

E
(
f ′(X±

j,n)2
)
var(ε±j,n)

6C1|m|2−n,

where C1 = ‖f‖2
C2

b
(R)

var(X(1))2/4. Arguing as above, since j∗ is independent of X, it follows that

‖Bn‖226C12−n
E (|j∗ |)

= O(2−n/2).

We have used (2.11) to arrive at this last estimate. This estimate, in conjunction with (2.12), yields

‖V (1)
n (f, t)− Ṽ (1)

n (f, t)‖2 = O(2−n/4). (2.13)

Recalling that rj∗,n = Y (τn), we have

|Ṽ (1)
n (f, t)− V̂ (1)

n (f, t)|6
∣∣∣∣∫ rj∗,n

0

(
f(Xs)− f(X̃s)

)
dXs

∣∣∣∣+ 1
2

∣∣∣∣∫ rj∗,n

0

(
f(Xs)− f(X̃s)

)
ds

∣∣∣∣ .
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For j > 0 we have

E

[(∫ rj,n

0

(
f(Xs)− f(X̃s)

)
dXs

)2
]

=
∫ rj,n

0

E

[
|f(X̃+

s )− f(X+
s )|2

]
ds

6 ‖f‖2C2
b
(R)

∫ rj,n

0

E

[
|X+

s − X̃+
s |2
]
ds

= ‖f‖2C2
b
(R)

j−1∑
k=0

∫ rk+1,n

rk,n

E
[|X+(s)−X+(rk,n)|2] ds

= ‖f‖2C2
b
(R)j

∫ r1,n

0

sds

=
1
2
‖f‖2C2

b
(R)jr

2
1,n.

A similar argument handles the case j < 0, and in general

E

[(∫ rj,n

0

(
f(Xs)− f(X̃s)

)
dXs

)2
]
6

1
2
‖f‖2C2

b
(R)|j|2−n. (2.14)

Since j∗ is independent of the X, by conditioning on the value of j∗ and applying (2.14), we obtain

E

[(∫ rj∗,n

0

(
f(X̃s)dXs − f(X̃s)

)
dXs

)2
]

=
1
2
‖f‖2C2

b
(R)2

−n
E(|j∗ |)

= O(2−n/2).

(2.15)

We have used (2.11) to obtain this last estimate. Similarly, for any integer j > 0, we have∥∥∥∥∫ rj,n

0

(
f(Xs)− f(X̃s)

)
ds

∥∥∥∥
2

6

∫ rj,n

0

‖f(X+
s )− f(X̃+

s )‖2ds

6 ‖f‖C2
b
(R)

∫ rj,n

0

‖X+
s − X̃+

s ‖2ds

= ‖f‖C2
b
(R)

j−1∑
k=0

∫ rk+1,n

rk,n

‖X+(s)−X+(rk,n)‖2ds

= ‖f‖C2
b
(R)j

∫ r1,n

0

√
sds

=
2
3
‖f‖C2

b
(R)jr

3/2
1,n .

A similar proof handles the case j < 0, and in general we have

E

[(∫ rj,n

0

(
f(Xs)ds− f(X̃s)

)
ds

)2
]
6

4
9
‖f‖2C2

b
(R)j

22−3n/2. (2.16)

Since j∗ is independent of X, by conditioning on the value of j∗ and applying (2.16), we have

E

[(∫ rj∗,n

0

(
f(Xs)ds− f(X̃s)

)
ds

)2
]
6

4
9
‖f‖2C2

b
(R)2

−3n/2
E
(
(j∗)2

)
= O(2−n/2).

(2.17)
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We have used (2.11) to obtain this last estimate. From (2.15) and (2.17), we have

‖Ṽ (1)
n (f, t)− V̂ (1)

n (f, t)‖2 = O(2−n/4). (2.18)

Recalling that rj∗,n = Y (τn), we have

|V̂ (1)
n (f, t)− V (1)(f, t)|6

∣∣∣∣∣
∫ Y (t)

Y (τn)

f(Xs)dXs

∣∣∣∣∣
+

∣∣∣∣∣sgn(Y (t))
∫ Y (t)

0

f ′(Xs)ds− sgn(Y (τn))
∫ Y (τn)

0

f ′(Xs)ds

∣∣∣∣∣ .
Let a, b ∈ R. Then by the Itô isometry

E

[(∫ b

a

f(Xs)dXs

)2
]

=
∫ b∨a

a∧b

E
(
f2(Xs)

)
ds

6 ‖f‖2C2
b
(R)|b− a|.

Since X are Y are independent, by item (a) of Lemma 2.3 we obtain

E

[(∫ Y (t)

Y (τn)

f(Xs)dXs

)2
]
6 ‖f‖2C2

b
(R)E

(|Y (t)− Y (τn)|)
= O(2−n/8).

(2.19)

By consideration of the cases,∣∣∣∣∣sgn(Y (t))
∫ Y (t)

0

f ′(Xs)ds− sgn(Y (τn))
∫ Y (τn)

0

f ′(Xs)ds

∣∣∣∣∣
is bounded by∣∣∣∣∣

∫ Y (t)

Y (τn)

f ′(Xs)ds

∣∣∣∣∣+ 1
2
|sgn(Y (t))− sgn(Y (τn))|

∣∣∣∣∣
∫ Y (t)

0

f ′(Xs)ds +
∫ Y (τn)

0

f ′(Xs)ds

∣∣∣∣∣ .
However, by an elementary bound on the integral and item (a) of Lemma 2.3,∥∥∥∥∥

∫ Yt

Y (τn)

f ′(Xs)ds

∥∥∥∥∥
2

6 ‖f‖C2
b
(R)‖Y (t)− Y (τn)‖2

= O(2−n/8).

(2.20)

Finally, note that

|sgn(Y (t))− sgn(Y (τn))|
∣∣∣∣∣
∫ Y (t)

0

f ′(Xs)ds +
∫ Y (τn)

0

f ′(Xs)ds

∣∣∣∣∣
6 ‖f‖C2

b
(R)|sgn(Y (t))− sgn(Y (τn))|(|Y (t)|+ |Y (τn)|).
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By Lemma 2.3(b),∥∥∥∥∥(sgn(Y (t))− sgn(Y (τn))
)(∫ Y (t)

0

f ′(Xs)ds +
∫ Y (τn)

0

f ′(Xs)ds

)∥∥∥∥∥
2

= O(2−n/64). (2.21)

From (2.19), (2.20) and (2.21) we obtain

‖V̂ (1)
n (f, t)− V (1)(f, t)‖2 = O(2−n/64). (2.22)

Combining (2.13), (2.18) and (2.22), it follows that

‖V (1)
n (f, t)− V (1)(f, t)‖2 = O(2−n/64),

which yields the L2(P) convergence in question. The almost sure convergence follows from appli-
cations of Markov’s inequality and the Borel–Cantelli lemma. �

3. The Quadratic Variation of Iterated Brownian Motion

Given an integer n> 0 and a real number t > 0, let

V (2)
n (t) =

[2nt]−1∑
k=0

(
Z(Tk+1,n)− Z(Tk,n)

)2
V (2)

n (f, t) =
[2nt]−1∑

k=0

f

(
Z(Tk+1,n) + Z(Tk,n)

2

)(
Z(Tk+1,n)− Z(Tk,n)

)2
.

In this section, we will examine both strong and weak limit theorems associated with these
quadratic variation processes. Our first result is the strong law of large numbers for V

(2)
n (f, t).

Theorem 3.1. Let t > 0 and f ∈ C2
b (R). Then,

2−n/2V (2)
n (f, t) →

∫ t

0

f(Zs)ds,

almost surely and in L2(P) as n →∞.

As a corollary, we have 2−n/2V
(2)
n (t) → t almost surely and in L2(P) as n → ∞. Our next

result examines the deviations of the centered process
(
2−n/2V

(2)
n (t) − t

)
and was inspired by

the connection between the quadratic variation of iterated Brownian motion and the stochastic
process called Brownian motion in random scenery, first described and studied in [27]. Since the
introduction of this model, various aspects of Brownian motion in random scenery have been
studied in [7, 31, 32, 33, 34, 36],

We will use the following notation in the sequel. Let DR[0, 1] denote the space of real–valued
functions on [0, 1] which are right continuous and have left–hand limits. Given random elements
{Tn} and T in DR[0, 1], we will write Tn =⇒ T to denote the convergence in distribution of the {Tn}
to T (see [6, Chapter 3]). Let {B1(t), t ∈ R} be a two–sided Brownian motion and let {B2(t), t> 0}
denote an independent standard Brownian motion. Let

G(t) =
∫
R

Lx
t (B2)B1(dx),
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The process {G(t), t ∈ R} is called a Brownian motion in random scenery. Our next result states
that V

(2)
n (t), suitably normalized, converges in DR[0, 1] to G(t).

Theorem 3.2. As n →∞,
2n/4

√
2

(
2−n/2V (2)

n (t)− t
)

=⇒ G(t).

We will prove these theorems in order, but first we will develop several lemmas pertaining to
the local time of Brownian motion.

Lemma 3.4. For real numbers p, q > 0,∑
j∈Z

‖Lrj,n

t (Y )‖q
p = O(2n/2).

Proof. We will use the following notation: given x ∈ R, let

τx = inf{s> 0 : Ys = x}.

Let C = E ((L0
1)p). Then, from the strong Markov property, elementary properties of the local time

process, the reflection principle, and a standard Gaussian estimate, it follows that

E ((Lx
t (Y ))p) =

∫ t

0

E((Lx
t (Y ))p | τx = s)dP(τx6 s)

=
∫ t

0

E((L0
t−s (Y ))p)dP(τx6 s)

6 E((L0
t (Y ))p)P(τx6 t)

= 2Ctp/2
P(Yt> |x|)

6 2Ctp/2exp
(−x2/(2t)

)
.

Consequently, for real numbers p, q > 0,∫
R

‖Lx
t (Y )‖q

pdx < ∞.

Since the mapping x 7→ ‖Lx
t (Y )‖q

p is uniformly continuous,

lim
n→∞

∑
j∈Z

‖Lrj,n

t (Y )‖q
p2
−n/2 = lim

n→∞

∑
j∈Z

‖Lrj,n

t (Y )‖q
p∆rj,n =

∫ ∞

−∞
‖Lx

t (Y )‖q
pdx.

It follows that ∑
j∈Z

‖Lrj,n

t (Y )‖q
p = O(2n/2),

which proves the lemma in question. �

Lemma 3.5. Let a, b ∈ R with ab> 0. Then there exists a positive constant µ, independent of a, b
and t, such that

‖Lb
t(Y )− La

t (Y )‖26µ
√
|b− a|t1/4exp

(− a2/(4t)
)
.
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Proof. Let c ∈ R and t> 0. From [37, Theorem 1.7, p. 210] and its proof, there exists a constant
γ, independent of c and t, such that

E
(
(Lc

t(Y )− L0
t (Y ))2

)
6 γ|c|t1/2. (3.2)

By symmetry, it is enough to consider the case 06 a < b. By the strong Markov property, Brownian
scaling, the reflection principle, item (3.2), and a standard estimate, we obtain

E((Lb
t (Y )− La

t (Y ))2) =
∫ a

0

E((Lb
t (Y )− La

t (Y ))2 | τa = s)dP(τa6 s)

=
∫ a

0

E((Lb−a
t−s (Y )− L0

t−s(Y ))2)dP(τa 6 s)

6 γ(b− a)t1/2
P(τa6 t)

6 γ(b− a)t1/2exp
(− a2/(2t)

)
.

The desired result follows upon taking square roots and setting µ = γ1/2. �

What follows is an immediate application of the preceeding lemma.

Lemma 3.6. Let t > 0. In the notation of (1.2),

∑
j∈Z

f(Mj,n)Lrj,n

t (Y )∆rj,n →
∫ t

0

f(Zs)ds,

almost surely and in L2(P) as n →∞.

Proof. By the occupation times formula,∫ t

0

f(Zs)ds =
∫ ∞

−∞
f(Xu)Lu

t (Y )du

=
∑
j∈Z

∫ rj+1,n

rj,n

f(Xu)Lu
t (Y )du.

It follows that∥∥∥∥∥∥
∫ t

0

f(Zs)−
∑
j∈Z

f(Mj,n)Lrj,n

t (Y )∆rj,n

∥∥∥∥∥∥
2

6
∑
j∈Z

∫ rj+1,n

rj,n

‖f(Xu)Lu
t (Y )− f(Mj,n)Lrj,n

t (Y )‖2 du. (3.3)

Since f ∈ C2
b (R) and X is independent of Y, we have

‖f(Xu)Lu
t (Y )− f(Mj,n)Lrj,n

t (Y )‖2
6 ‖f‖C2

b
(R)

(‖Lu
t (Y )− L

rj,n

t (Y )‖2 + ‖Xu −Mj,n‖2‖Lrj,n

t (Y )‖2
)
. (3.4)

However, by Lemma 3.5,

∥∥Lu
t (Y )− L

rj,n

t (Y )
∥∥

2
6C

√
∆rj,nexp

(
− (rj,n ∧ rj+1,n)2

(4t)

)
,
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where C depends only upon t. By the integral test, the sums,∑
j∈Z

exp
(
− (rj,n ∧ rj+1,n)2

(4t)

)
∆rj,n,

are bounded in n. Thus,∑
j∈Z

∫ rj+1,n

rj,n

∥∥Lu
t (Y )− L

rj,n

t (Y )
∥∥

2
du = O

(√
∆rj,n

)
= O(2−n/4).

(3.5)

For rj,n6u6 rj+1,n we have ‖Xu −Mj,n‖2 =
√

∆rj,n. Thus, by Lemma 3.4, we have∑
j∈Z

∫ rj+1,n

rj,n

‖Xu −Mj,n‖2‖Lrj,n

t (Y )‖2du = O(2−n/4). (3.6)

Combining (3.3), (3.4), (3.5) and (3.6) we see that∥∥∥∥∥
∫ t

0

f(Zs)ds −
∑
j∈Z

f(Mj,n)Lrj,n

t (Y )∆rj,n

∥∥∥∥∥
2

= O(2−n/4).

This demonstrates the convergence in L2(P). By applications of Markov’s inequality and the Borel–
Cantelli lemma, this convergence is almost sure, as well. �

Our next result is from [28, Theorem 1.4] and its proof. See [3] for a related but slightly weaker
version in Lp(P).

Lemma 3.7. There exists a positive random variable K ∈ L8(P) such that for all j ∈ Z, n> 0,
and t> 0, ∣∣∣∣Uj,n(t)− 2n/2

2
L

rj,n

t (Y )
∣∣∣∣6Kn2n/4

√
L

rj,n

t (Y )∣∣∣∣Dj,n(t)− 2n/2

2
L

rj,n

t (Y )
∣∣∣∣6Kn2n/4

√
L

rj,n

t (Y ).

Proof of Theorem 3.1. Since the mapping

ϕ(x, y) = f

(
y + x

2

)
(y − x)2

is symmetric, by Lemma 2.4,

2−n/2V (2)
n (f, t) =

∑
j∈Z

2−n/2f(Mj,n)(∆Xj,n)2
(
Uj,n(t) + Dj,n(t)

)
= An + Bn + Cn,

where
An =

∑
j∈Z

2−n/2f(Mj,n)(∆Xj,n)2
(
Uj,n(t) + Dj,n(t)− 2n/2L

rj,n

t (Y )
)

,

Bn =
∑
j∈Z

f(Mj,n)
(
(∆Xj,n)2 − E

(
(∆Xj,n)2

))
L

rj,n

t (Y ),

Cn =
∑
j∈Z

f(Mj,n)Lrj,n

t (Y )∆rj,n.
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By Lemma 3.7, since f ∈ C2
b (R),

|An|6 ‖f‖C2
b
(R)n2−n/4

∑
j∈Z

(∆Xj,n)2K
√

L
rj,n

t (Y ).

Since X is independent of Y, by Hölder’s inequality, for each j ∈ Z,

‖(∆Xj,n)2K
√

L
rj,n

t (Y )‖26 ‖(∆X1,n)2‖2‖K‖4‖Lrj,n

t (Y )‖1/2
2 .

By scaling, ‖(∆Xj,n)2‖2 = 2−n/2√µ4. Hence, by the triangle inequality and Lemma 3.4,

‖An‖26n2−3n/4‖K‖4√µ4

∑
j∈Z

‖Lrj,n

t (Y )‖1/2
2

= O(n2−n/4),

which shows that An → 0 in L2(P) as n → ∞. By Markov’s inequality and the Borel–Cantelli
lemma, the convergence is almost sure, as well.

Let

X∗
j,n =

{
Xj,n if j> 0
Xj+1,n if j < 0.

Then we may write Bn = B
(1)
n + B

(2)
n , where

B(1)
n =

∑
j∈Z

(
f(Mj,n)− f(X∗

j,n)
) (

(∆Xj,n)2 − E
(
(∆Xj,n)2

))
L

rj,n

t (Y ),

B(2)
n =

∑
j∈Z

f(X∗
j,n)

(
(∆Xj,n)2 − E

(
(∆Xj,n)2

))
L

rj,n

t (Y ).

By noting that |Mj,n −Xj∗,n| = 1
2 |∆Xj,n|, we see that

|B(1)
n |6 1

2
‖f‖C2

b
(R)

∑
j∈Z

|∆Xj,n|
(
(∆Xj,n)2 − E

(
(∆Xj,n)2

))
L

rj,n

t .

Since X and Y are independent,

‖B(1)
n ‖26 1

2
‖f‖C2

b
(R)

∑
j∈Z

‖∆Xj,n‖4
∥∥(∆Xj,n)2 − E

(
(∆Xj,n)2

)∥∥
4
‖Lrj,n

t (Y )‖2

= O(2−n/4).

We have used Brownian scaling and Lemma 3.4 to obtain this last estimate.
Observe that the collection {f(X∗

j,n)
(
(∆Xj,n)2 − E

(
(∆Xj,n)2

))
, j ∈ Z} is centered and pair-

wise uncorrelated. Since X and Y are independent, we obtain

var(B(2)
n ) =

∑
j∈Z

‖f(X∗
j,n)‖22‖Lrj,n

t (Y )‖22var
(
(∆Xj,n)2 − E

(
(∆Xj,n)2

))
.

Since f is bounded, by Brownian scaling,

var
(
(∆Xj,n)2 − E

(
(∆Xj,n)2

))
= O(2−n).
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Therefore,
‖B(2)

n ‖2 = O(2−n/4).

In summary, ‖Bn‖2 = O(2−n/4), which shows that Bn → 0 in L2(P) as n → ∞. By applications
of Markov’s inequality and the Borel–Cantelli lemma, this convergence is almost sure, as well.

Finally, by Lemma 3.6, Cn →
∫ t

0
f(Zs)ds almost surely and in L2(P) as n →∞, which proves

the theorem in question. �

We turn our attention to the proof of Theorem 3.2. In preparation for the proof of this result,
we will prove several lemmas. For each integer j, each positive integer n and each positive real
number t, let

Lj,n(t) = 2−n/2
(
Uj,n(t) + Dj,n(t)

)
.

Lemma 3.8. For each t> 0, ∑
j∈Z

E
(|Lj,n(t)|3) = O(2n/2).

Proof. By the triangle inequality and a standard convexity argument, it follows that

E
(|Lj,n(t)|3)6 4E

(|Lrj,n

t (Y )|3)+ 4E
(|Lj,n(t)− L

rj,n

t (Y )|3).
By Lemma 3.4, ∑

j∈Z
E
(|Lrj,n

t (Y )|3) = O(2n/2).

By Lemma 3.7,
|Lj,n(t)− L

rj,n

t (Y )|36K3n32−3n/4
(
L

rj,n

t (Y )
)3/2

.

By Hölder’s inequality,

E
(|Lj,n(t)− L

rj,n

t (Y )|3)6 ‖K‖36n32−3n/4‖Lrj,n

t (Y )‖3/2
3 .

From Lemma 3.4, it follows that∑
j∈Z

E
(|Lj,n(t)− L

rj,n

t (Y )|3) = O(n32−n/4).

This proves the lemma in question. �

Lemma 3.9. For each pair of nonnegative real numbers s and t we have,

lim
n→∞

∑
j∈Z

E
(|Lj,n(s)Lj,n(t)− Lrj,n

s (Y )Lrj,n

t (Y )|)2−n/2 = 0.

Proof. We have the decomposition

|Lj,n(s)Lj,n(t)− Lrj,n
s (Y )Lrj,n

t (Y )|6 (Lj,n(s)− Lrj,n
s (Y )

)(
Lj,n(t)− L

rj,n

t (Y )
)

+
(
Lj,n(s)− Lrj,n

s (Y )
)
L

rj,n

t (Y ) +
(
Lj,n(t)− L

rj,n

t (Y )
)
Lrj,n

s (Y ).

By Lemma 3.7,∣∣Lj,n(s)− Lrj,n
s (Y )

)(
Lj,n(t)− L

rj,n

t (Y )
∣∣6K2n22−n/2

√
L

rj,n
s (Y )

√
L

rj,n

t (Y ).
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By Hölder’s inequality, we have

E
(∣∣(Lj,n(s)− Lrj,n

s (Y )
)(
Lj,n(t)− L

rj,n

t (Y )
)∣∣)
6 ‖K‖26n22−n/2‖Lrj,n

s (Y )‖1/3
3/2‖L

rj,n

t (Y )‖1/3
3/2.

By applications of the Cauchy–Schwarz inequality and Lemma 3.4, we obtain the following:∑
j∈Z

E
(∣∣(Lj,n(s)− Lrj,n

s (Y )
)(
Lj,n(t)− L

rj,n

t (Y )
)∣∣) 2−n/2

6 ‖K‖26n22−n

√∑
j∈Z

‖Lrj,n
s (Y )‖2/3

3/2

√∑
j∈Z

‖Lrj,n

t (Y )‖2/3
3/2

= O(n22−n/2).

The remaining terms can be handled similarly. �

Lemma 3.10. Let 06 s6 t6 1. Then,∑
j∈Z

Lrj,n
s (Y )Lrj,n

t (Y )∆rj,n →
∫
R

Lx
s (Y )Lx

t (Y )dx,

in L1(P) as n →∞.

Proof. We have ∫
R

Lx
s (Y )Lx

t (Y )dx =
∑
j∈Z

∫ rj+1,n

rj,n

Lx
s (Y )Lx

t (Y )dx.

From this it follows that∥∥∥∥∥∥
∫
R

Lx
s (Y )Lx

t (Y )dx−
∑
j∈Z

Lrj,n
s (Y )Lrj,n

t (Y )∆rj,n

∥∥∥∥∥∥
1

6
∑
j∈Z

∫ rj+1,n

rj,n

∥∥Lx
s (Y )Lx

t (Y )− Lrj,n
s (Y )Lrj,n

t (Y )
∥∥

1
dx.

By the Hölder and Minkowski inequalities, we obtain∥∥Lx
s (Y )Lx

t (Y )− Lrj,n
s (Y )Lrj,n

t (Y )
∥∥

1
6 ‖Lx

t (Y )− L
rj,n

t (Y )‖2‖Lx
s (Y )‖2

+ ‖Lx
s (Y )− Lrj,n

s (Y )‖2‖Lrj,n

t (Y )‖2.

Since s, t ∈ [0, 1], it follows that ‖Lx
s (Y )‖2 and ‖Lx

t (Y )‖2 are bounded by 1. Therefore, by Lemma
3.5 and Jensen’s inequality, there exists a universal constant C such that

∥∥Lx
s (Y )Lx

t (Y )− Lrj,n
s (Y )Lrj,n

t (Y )
∥∥

1
6C

√
∆rj,nexp

(
− (rj,n ∧ rj+1,n)2

4

)
.

By the integral test, the sums,

∑
j∈Z

exp
(
− (rj,n ∧ rj+1,n)2

4

)
∆rj,n,
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are bounded in n. Since
√

∆rj,n = 2−n/4,∥∥∥∥∥∥
∫
R

Lx
s (Y )Lx

t (Y )dx−
∑
j∈Z

Lrj,n
s (Y )Lrj,n

t (Y )∆rj,n

∥∥∥∥∥∥
1

= O(2−n/4).

This proves the lemma. �

Given a function f defined on [0, 1] and δ > 0, let

ω(f, δ) = sup
06 s,t6 1
|s−t|<δ

|f(t)− f(s)|.

Lemma 3.11. There exists a universal c ∈ (0,∞) such that for all a ∈ R and δ > 0,

‖ω(La(Y ), δ)‖22 6 c
(
(δ ln(1/δ)) ∧ |a|exp(−a2/2)

)
.

Proof. Since local times are increasing in the time variable, we have ω(La(Y ), δ)6La
1(Y ). Con-

sequently, by Lemma 3.5, ∥∥ω(La(Y ), δ)
∥∥2

2
6 ‖La

1(Y )‖22
6 c|a|exp(−a2/4).

However, by Tanaka’s formula,

La
t (Y ) = |Yt − a| − |a| −

∫ t

0

sgn (Yr − a)dYr.

Hence, for s < t,

La
t (Y )− La

s(Y )6 |Yt − Ys| −
∫ t

s

sgn (Yr − a)dYr.

By Lévy’s representation theorem (see [37]), t 7→ ∫ t

0
sgn (Yr−a)dYr is a standard Brownian motion.

Thus, there exists positive numbers c and δ0 such that for all 06 δ6 δ0,

‖ω(La(Y ), δ)‖22 6 cδ log(1/δ).

We have used Lévy’s theorem concerning the modulus of continuity of Brownian motion to obtain
this last result; see [37] for details. �

Proof of Theorem 3.2. For each integer j and each positive integer n, let

εj,n =
2n/2

√
2

(
(∆Xj,n)2 − E

(
(∆Xj,n)2

))
.

For each n, the random variables {εj,n, j ∈ Z} are independent and identically distributed. A
scaling argument shows that εj,n is distributed as ε = (X2

1 − 1)/
√

2 for all admissible integers j
and n. Let φ denote the characteristic function of ε. Since E (ε) = 0 and E (ε2 ) = 1, we have, as
z → 0,

log φ(z) = −z2

2
+ O(z3).
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Thus, there exist γ > 0 and 0 < δ6 1 such that∣∣∣∣log φ(z) +
z2

2

∣∣∣∣6 γ|z|3, (3.7)

for all |z|6 δ.
By Lemma 2.4 and the definition of {Lj,n(t), j ∈ Z},

2−n/2V (2)
n (t) =

∑
j∈Z

(
∆Xj,n

)2
Lj,n(t).

Noting that E
(
(∆Xj,n)2

)
= ∆rj,n = 2−n/2, we arrive at the following:

2−n/2V (2)
n (t) =

∑
j∈Z

√
2εj,nLj,n(t)2−n/2 + 2−n

∑
j∈Z

(Uj,n(t) + Dj,n(t)).

Concerning this last term on the right, we have

2−n
∑
j∈Z

(Uj,n(t) + Dj,n(t)) = 2−n[2nt] = t + O(2−n),

since the number of upcrossings and downcrossings of all the intervals [rj,n, rj+1,n] by the random
walk is equal to the number of steps taken by this same random walk. It follows that

2n/4

√
2

(
V (2)

n (t)− t
)

=
∑
j∈Z

εj,nLj,n(t)2−n/4 + O(2−3n/4).

Letting
Gn(t) =

∑
j∈Z

εj,nLj,n(t)2−n/4,

it is enough to show that
Gn(t) =⇒ G(t). (3.8)

First we will demonstrate the convergence of the finite–dimensional distributions and then we will
give the tightness argument.

Let 06 t1 < t2 < · · · < tm6 1 and let λ1, λ2, · · · , λm ∈ R. To demonstrate the convergence of
the finite–dimensional distributions, it is enough to show that

E

[
exp
(
i

m∑
k=1

λkGn(tk)
)]→ E

[
exp
(
i

m∑
k=1

λkG(tk)
)]

, (3.9)

as n →∞. For simplicity, let,

aj,n = 2−n/4
m∑

k=1

λkLj,n(tk)

ãj,n = 2−n/4
m∑

k=1

λkL
rj,n

tk
(Y ).

We have the following:∣∣∣∣E[exp
(
i

m∑
k=1

λkGn(tk)
)]− E

[
exp
(
i

m∑
k=1

λkG(tk)
)] ∣∣∣∣6An + Bn + Cn,
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where,

An =
∣∣∣∣E[exp

(
i

m∑
k=1

λkGn(tk)
)]− E

[
exp
(− 1

2

∑
j∈Z

a2
j,n

)]∣∣∣∣,
Bn =

∣∣∣∣E[exp
(− 1

2

∑
j∈Z

a2
j,n

)]− E

[
exp
(− 1

2

∑
j∈Z

ã2
j,n

)]∣∣∣∣,
Cn =

∣∣∣∣E[exp
(− 1

2

∑
j∈Z

ã2
j,n

)]− E

[
exp
(
i

m∑
k=1

λkG(tk)
)]∣∣∣∣.

We will estimate each term in turn.
Observe that

m∑
k=1

λkGn(tk) =
∑
j∈Z

εj,naj,n.

Let Y denote the σ–algebra generated by {Yt, t> 0} and observe that the random variables
{aj,n, j ∈ Z} are Y–measureable. Thus,

E

[
exp
(
i

m∑
k=1

λkGn(tk)
)]

= E

{
E

[ ∏
j∈Z

eiaj,nεj,n

∣∣∣ Y]}
= E

[ ∏
j∈Z

φ(aj,n)
]
.

Assuming that
∑

j∈Z|aj,n|36 δ3, we have, by (3.7),

∑
j∈Z

∣∣∣∣log φ(aj,n)− 1
2
a2

j,n

∣∣∣∣6 γ
∑
j∈Z

|aj,n|3.

From this it follows that∣∣∣∏
j∈Z

φ(aj,n)− exp
(− 1

2

∑
j∈Z

a2
j,n

)∣∣∣6γeγ
∑
j∈Z

|aj,n|3.

Since ∣∣∣∏
j∈Z

φ(aj,n)− exp
(− 1

2

∑
j∈Z

a2
j,n

)∣∣∣6 2,

we may conclude that∣∣∣∏
j∈Z

φ(aj,n)− exp
(− 1

2

∑
j∈Z

a2
j,n

)∣∣∣6 γeγ
∑
j∈Z

|aj,n|3 + 2I
(∑

j∈Z

|aj,n|3 > δ3
)
.

Upon taking expectations and applying Markov’s inequality, we obtain

An6C
∑
j∈Z

E (|aj,n |3),

where C = (γeγ + 2δ−3). However, by a convexity argument and Lemma 3.8, we have

∑
j∈Z

E(|aj,n|3)6m22−3n/4
m∑

k=1

|λk|3
∑
j∈Z

E
(
L3

j,n(tk)
)

= O(2−n/4),
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which shows that An → 0 as n →∞.
Note that,

Bn6
1
2

∑
j∈Z

E
(|a2

j,n − ã2
j,n|
)

6
1
2

m∑
k=1

m∑
`=1

|λk||λ`|
∑
j∈Z

E
(|Lj,n(tk)Lj,n(t`)− L

rj,n

tk
(Y )Lrj,n

t`
(Y )|)2−n/2.

By Lemma 3.9, we see that Bn → 0.
Finally, observe that

E

[
exp
(
i

m∑
k=1

λkG(tk)
)]

= E

[
exp
(− 1

2

∫
R

( m∑
k=1

λkLx
tk

(Y )
)2

dx
)]

.

Thus,

Cn6
1
2
E

[∣∣∑
j∈Z

ã2
j,n −

∫
R

( m∑
k=1

λkLx
tk

(Y )
)2

dx
∣∣]

6
1
2

m∑
k=1

m∑
`=1

|λk| |λ`|
∥∥∥∑

j∈Z
Lj,n(tk)Lj,n(t`)∆rj,n −

∫
R

Lx
tk

(Y )Lx
t`

(Y )dx
∥∥∥

1
.

By Lemma 3.10, Cn → 0, which, in conjunction with the above, verifies (3.9).
To demonstrate tightness, observe that

ω(Gn, δ)6
∑
j∈Z

2−n/4εj,nω(Lj,n, δ).

It follows that
var
(
ω(Gn, δ)

)
=
∑
j∈Z

2−n/2‖ω(Lj,n, δ)‖22. (3.10)

By Lemma 3.7, the triangle inequality and the fact that the local times are increasing in the time
variable, we have

ω(Lj,n, δ)6 2Kn2−n/4
√

L
rj,n

1 (Y ) + ω(Lrj,n(Y ), δ).

Thus, by a simple convexity inequality,

‖ω(Lj,n, δ)‖22 6 8n22−n/2

∥∥∥∥K√L
rj,n

1 (Y )
∥∥∥∥2

2

+ 2‖ω(Lrj,n(Y ), δ)‖22
= A(n) + 2‖ω(Lrj,n(Y ), δ)‖22,

with obvious notation.
By Hölder’s inequality and some algebra,∥∥∥∥K√L

rj,n

1 (Y )
∥∥∥∥2

2

6 ‖K‖24‖Lrj,n

1 (Y )‖2.

Thus, by Lemma 3.4, we have ∑
j∈Z

2−n/2An = O(n22−n/2). (3.11)



THE ANNALS OF APPLIED PROBABILITY, 9, 629–667 (1999)

Given δ > 0, let us divide the integers into two classes J1 and J2, where

J1 = {j ∈ Z : |j|6 δ−1/22n/2}
J2 = Jc

1 .

Then by Lemma 3.11, ∑
j∈J1

2−n/2‖ω(Lrj,n , δ)‖22 6 c|J1|2−n/2δ log(δ−1)

6 2c
√

δ log(δ−1).
(3.12)

However, recalling that ∆rj,n = 2−n/2 and applying Lemma 3.11,∑
j∈J2

2−n/2‖ω(Lrj,n , δ)‖22 6 c
∑
j∈J2

|rj,n|exp
(− r2

j,n/2
)
∆rj,n

∼ 2c
∫ ∞

δ−1/2
|x|exp

(− x2/2
)
dx.

(3.13)

Combining (3.10), (3.11), (3.12) and (3.13) gives the requisite tightness. This demonstrates (3.8)
and the theorem is proved. �

4. Higher Order Variation

In this section, we will examine strong and weak limit theorems for the tertiary and quartic variation
of iterated Brownian motion. Let us begin by recalling a theorem, essentially due to [8].

Proposition 4.1. Let t> 0 and p > 0. The following hold in Lp(P) :

(a)

[2n/2t]∑
k=0

(
Z(rk+1,n)− Z(rk,n)

)3 → 0;

(b)

[2n/2t]∑
k=0

(
Z(rk+1,n)− Z(rk,n)

)4 → 3t.

Our next two theorems generalize the above along our random partitions. Given an integer
n> 0 and a real number t > 0, let

V (3)
n (f, t) =

[2nt]−1∑
k=0

f

(
Z(Tk+1,n) + Z(Tk,n)

2

)(
Z(Tk+1,n)− Z(Tk,n)

)3
,

V (4)
n (f, t) =

[2nt]−1∑
k=0

f

(
Z(Tk+1,n) + Z(Tk,n)

2

)(
Z(Tk+1,n)− Z(Tk,n)

)4
.

Whenever f ≡ 1, we will write V
(3)
n (t) and V

(4)
n (t) in place of V

(3)
n (f, t) and V

(4)
n (f, t), respectively.

Our first result is a strong limit theorem for the tertiary variation of iterated Brownian motion
and is related to Theorem 2.1 and Proposition 4.1(a).
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Theorem 4.2. Let t > 0 and let f ∈ C2
b (R). Then

V (3)
n (f, t) → 0,

almost surely and in L2(P) as n →∞.

Our next result is a strong limit theorem for the quartic variation of iterated Brownian motion
and is related to Theorem 3.1 and Proposition 4.1(b).

Theorem 4.3. Let t > 0 and let f ∈ C2
b (R). Then

V (4)
n (f, t) → 3

∫ t

0

f(Zs)ds,

almost surely and in L2(P) as n →∞.

As corollaries to Theorem 4.2 and Theorem 4.3, we have V
(3)
n (t) → 0 and V

(4)
n (t) → 3t almost

surely and in L2(P). Our next two results concern the deviations of V
(3)
n (t) and V

(4)
n (t) − 3t : we

will demonstrate that V
(3)
n (t) and V

(4)
n (t) − 3t, suitably normalized, converge in distribution to

an iterated Brownian motion and to Brownian motion in random scenery, respectively. As in §3,
let {B1(t), t ∈ R} denote a standard two–sided Brownian motion and let {B2(t), t> 0} denote an
independent standard Brownian motion. Observe that {B1 ◦ B2(t), t> 0} is an iterated Brownian
motion and that

G(t) =
∫
R

Lx
t (B2)B1(dx),

is a Brownian motion in random scenery.

Theorem 4.4. As n →∞,

2n/2

√
15

V (3)
n (t) =⇒ B1 ◦B2(t).

Theorem 4.5. As n →∞,

2n/4

√
96

(
V (4)

n (t)− 3t
)

=⇒ G(t).

We will prove these theorems in order.

Proof of Theorem 4.2. Since the mapping

ϕ(x, y) = f

(
y + x

2

)
(y − x)3

is skew symmetric, by Lemma 2.4 we have

V (3)
n (f, t) =

∑
j∈Z

f(Mj,n)(∆Xj,n)3
(
Uj,n(t)−Dj,n(t)

)
.
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By Lemma 2.5 and by following the argument preceeding (2.10), we obtain

V (3)
n (f, t) =



∑j∗−1
j=0 f(M+

j,n)(∆X+
j,n)3 if j∗ > 0

0 if j∗ = 0∑|j∗|−1
j=0 f(M−

j,n)(∆X−
j,n)3 if j∗ < 0.

However, for any integer m, by the triangle inequality, the boundedness of f and Brownian scaling,
we have ∥∥∥∥∥∥

|m|−1∑
j=0

f(M±
j,n)
(
∆X±

j,n

)3∥∥∥∥∥∥
2

6 ‖f‖C2
b
(R)‖(∆X±

0,n)3‖2|m|

= ‖f‖C2
b
(R)|m|µ1/2

6 2−3n/4.

Since the random variable j∗ is independent of X, by conditioning on the value of j∗ and applying
the above inequality we obtain

E

((
V (3)

n (f, t)
)2)

6 ‖f‖2C2
b
(R)µ62−3n/2

E
(
(j∗)2

)
= O(2−n/2).

We have used (2.11) to obtain this last estimate. This demonstrates the L2(P)–convergence in
question. By applications of Markov’s inequality and the Borel–Cantelli lemma, the convergence
is almost sure, as well. �

Proof of Theorem 4.3. Since the mapping

ϕ(x, y) = f

(
y + x

2

)
(y − x)4

is symmetric, by Lemma 2.4 we have

V (4)
n (f, t) =

∑
j∈Z

f(Mj,n)(∆Xj,n)4
(
Uj,n(t) + Dj,n(t)

)
= An + Bn + Cn,

where
An =

∑
j∈Z

f(Mj,n)(∆Xj,n)4
(
Uj,n(t) + Dj,n(t)− 2n/2L

rj,n

t (Y )
)

,

Bn =
∑
j∈Z

f(Mj,n)
(
(∆Xj,n)4 − E

(
(∆Xj,n)4

))
2n/2L

rj,n

t (Y ),

Cn =
∑
j∈Z

3f(Mj,n)Lrj,n

t (Y )∆rj,n.

Since f ∈ C2
b (R), by Lemma 3.7 we have

|An|6 ‖f‖C2
b
(R)n2n/4

∑
j∈Z

(∆Xj,n)4K
√

L
rj,n

t (Y ).
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Since X is independent of Y, by Hölder’s inequality we have, for each j ∈ Z,

‖(∆Xj,n)4K
√

L
rj,n

t (Y )‖26 ‖(∆X1,n)4‖2‖K‖4‖Lrj,n

t (Y )‖1/2
2 .

By scaling, ‖(∆Xj,n)4‖2 = 2−n√µ8. Hence, by the triangle inequality and Lemma 3.4,

‖An‖26 ‖f‖C2
b
(R)n2−3n/4‖K‖4√µ8

∑
j∈Z

‖Lrj,n

t (Y )‖1/2
2

= O(n2−n/4),

which shows that An → 0 in L2(P) as n → ∞. By Markov’s inequality and the Borel–Cantelli
lemma, the convergence is almost sure, as well.

Let

X∗
j,n =

{
Xj,n if j> 0
Xj+1,n if j < 0.

Then we may write Bn = B
(1)
n + B

(2)
n , where

B(1)
n =

∑
j∈Z

(
f(Mj,n)− f(X∗

j,n)
) (

(∆Xj,n)4 − E
(
(∆Xj,n)4

))
2n/2L

rj,n

t (Y ),

B(2)
n =

∑
j∈Z

f(X∗
j,n)

(
(∆Xj,n)4 − E

(
(∆Xj,n)4

))
2n/2L

rj,n

t (Y ).

Noting that |Mj,n −X∗
j,n| = 1

2
|∆Xj,n|, we have

|B(1)
n |6

‖f‖C2
b
(R)

2
2n/2

∑
j∈Z

|∆Xj,n|
(
(∆Xj,n)4 − E

(
(∆Xj,n)4

))
L

rj,n

t (Y ).

Since X and Y are independent,

‖B(1)
n ‖26

‖f‖C2
b
(R)

2
2n/2

∑
j∈Z

‖∆Xj,n‖4
∥∥(∆Xj,n)4 − E

(
(∆Xj,n)4

)∥∥
4
‖Lrj,n

t (Y )‖2

= O(2−n/4).

We have used Brownian scaling and Lemma 3.4 to obtain this last estimate.
Observe that the collection {f(X∗

j,n)
(
(∆Xj,n)4 − E

(
(∆Xj,n)4

))
, j ∈ Z} is centered and pair-

wise uncorrelated. Since X and Y are independent,

var(B(2)
n ) = 2n

∑
j∈Z

‖f(X∗
j,n)‖22‖Lrj,n

t (Y )‖22var
(
(∆Xj,n)4 − E

(
(∆Xj,n)4

))
.

By Brownian scaling,
var
(
(∆Xj,n)4 − E

(
(∆Xj,n)4

))
= O(2−2n).

Therefore,
‖B(2)

n ‖2 = O(2−n/4).

In summary, ‖Bn‖2 = O(2−n/4), which shows that Bn → 0 in L2(P) as n → ∞. By applications
of Markov’s inequality and the Borel–Cantelli lemma, this convergence is almost sure, as well.
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Finally, by Lemma 3.6, Cn → 3
∫ t

0
f(Zs)ds almost surely and in L2(P) as n →∞. This proves

Theorem 4.3. �

Proof of Theorem 4.4. Since the mapping

ϕ(x, y) = (y − x)3

is skew–symmetric, by Lemma 2.4 we have,

V (3)
n (t) =

∑
j∈Z

(
∆Xj,n

)3(
Uj,n(t)−Dj,n(t)

)
.

From Lemma 2.5 and some algebra, it follows that

V (3)
n (t) =



j∗−1∑
j=0

(
∆X+

j,n

)3 if j∗ > 0

0 if j∗ = 0

|j∗|−1∑
j=0

(
∆X−

j,n

)3 if j∗ < 0.

(4.1)

For each j ∈ Z and each integer n> 0, we have

var
((

∆Xj,n

)3) = 15 · 2−3n/2.

Let
ε±j,n =

1√
15

23n/4
(
∆X±

j,n

)3
. (4.2)

A scaling argument shows that, for each n, the random variables {ε±j,n, j > 0} are independent
and identically distributed as ε = X3

1/
√

15. For future reference, let us note that E(ε) = 0 and
E (ε2 ) = 1. For each t> 0, let

X±
n (t) =


2−n/4

[2n/2t]−1∑
j=0

ε±j,n if t> 2−n/2

0 if 06 t < 2−n/2.

For t ∈ R, let

Xn(t) =
{

X+
n (t) if t> 0

X−
n (t) if t < 0.

In order that we may emphasize their dependence upon n and t, recall that

τn = τ(n, t) = T[2nt],n

j∗ = j∗(n, t) = 2n/2Y (τn).

For t ∈ [0, 1], let
Yn(t) = Y (τ(n, t)).
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We observe that
1√
15

2n/2V (3)
n (t) = Xn ◦ Yn(t). (4.3)

Let DR[0,∞) denote the space of all real–valued functions on [0,∞) which are right continuous
and have left limits. Given a function g : R → R, let us define g+, g− : [0,∞) → R accordingly: for
each t> 0, let g+(t) = g(t) and let g−(t) = g(−t). Let

D∗
R
(R) = {g : R → R : g+ ∈ DR[0,∞) and g− ∈ DR[0,∞)}.

Let q denote the usual Skorohod metric on DR[0,∞) (cf. [18, p. 117]). Then we can define a metric
q∗ on D∗

R
(R) as follows: given f, g ∈ D∗

R
(R), let

q∗(f, g) = q(f+, g+) + q(f−, g−).

So defined,
(
D∗
R
(R), q∗

)
is a complete separable metric space. Moreover, {gn} converges to g in

D∗
R
(R) if and only if {g+

n } and {g−n } converge to g+ and g− in DR[0,∞), respectively. By Donsker’s
theorem, X+

n =⇒ B+
1 and X−

n =⇒ B−
1 in DR[0,∞) consequently,

Xn =⇒ B1 in D∗
R(R). (4.4)

By another application of Donsker’s theorem,

Yn =⇒ B2 in DR([0, 1]). (4.5)

From (4.4) and (4.5), the independence of X and Y and the independence of B1 and B2, it
follows that

(Xn, Yn) =⇒ (B1, B2) in D∗
R
(R) ×DR([0, 1]).

Since (x, y) ∈ D∗
R
(R)×DR([0, 1]) 7→ DR([0, 1]) 3 x◦y is measurable and since B1◦B2 is continuous,

it follows that
Xn ◦ Y =⇒ B1 ◦B2 in DR([0, 1]).

Recalling (4.3), this proves the theorem. �

Proof of Theorem 4.5. For each integer j and each positive integer n, let

εj,n =
2n

√
96

((
∆Xj,n

)4 − E
(
(∆Xj,n)4

))
.

For each n, the random variables {εj,n, j ∈ Z} are independent and identically distributed. A
scaling argument shows that εj,n is distributed as ε = (X4

1 − 3)/
√

96 for all admissible integers j
and n. For future reference, we note that E (ε) = 0 and E(ε2 ) = 1.

By Lemmas 2.4 and 2.5,

V (4)
n (t) =

∑
j∈Z

(
∆Xj,n

)4(
Uj,n(t) + Dj,n(t)

)
=
∑
j∈Z

√
96 2−n/2εj,nLj,n(t) + 3 · 2−n

∑
j∈Z

(
Uj,n(t) + Dj,n(t)

)
.

Arguing as in the proof of Theorem 3.2, we have

3 · 2−n
∑
j∈Z

(
Uj,n(t) + Dj,n(t)

)
= 3t + O(2−n).
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From this it follows that

2−n/4
(
V (4)

n (t)− 3t
)

= O(2−3n/4) +
∑
j∈Z

εj,nLj,n(t)2−n/4.

As was shown in the proof of Theorem 3.2,∑
j∈Z

εj,nLj,n(t)2−n/4 =⇒ G(t).

This finishes the proof. �

5. An Excursion–Theoretic Construction of the Itô Inte-

gral

In this section we show that for f ∈ C2
b (R), the Itô integral process

∫ t

0
f(Yr)dYr can be defined by

means of the random partitions defined in §2. For each integer n> 0 and k ∈ Z, let

Yk,n = Y (Tk,n).

We offer the following theorem:

Theorem 5.1. Let t > 0 and let f ∈ C2
b (R). Then

[2nt]−1∑
k=0

f(Yk,n)∆Yk,n →
∫ t

0

f(Yr)dYr.

almost surely and in L2(P), as n →∞.

We will need the following lemma, which is a simple consequence of the mean value theorem
for integrals.

Lemma 5.2. Let a, b ∈ R, a < b, and let f ∈ C2
b (R). Let

a = u0 < u1 < · · · < un−1 < un = b

be a partition of [a, b]. Then∣∣∣∣∣
∫ b

a

f(s)ds−
n−1∑
k=0

f(uk)∆uk

∣∣∣∣∣6 ‖f‖C2
b
(R)|b− a| max

06 k6n−1
{|∆uk|}.

Proof of Theorem 5.1. By the proof of Lemma 2.4,

[2nt]−1∑
k=0

f(Yk,n)∆Yk,n =
∑
j∈Z

[f(rj,n)∆rj,nUj,n(t)− f(rj+1,n)∆rj,nDj,n(t)]

=
∑
j∈Z

f(rj,n)∆rj,n

(
Uj,n(t)−Dj,n(t)

)
−
∑
j∈Z

(
f(rj+1,n)− f(rj,n)

)
∆rj,nDj,n(t)

= In − IIn,



THE ANNALS OF APPLIED PROBABILITY, 9, 629–667 (1999)

in the obvious notation. We will next show that

In →
∫ Yt

0

f(u)du, (5.1)

IIn → 1
2

∫ t

0

f ′(Yu)du, (5.2)

almost surely and in L2(P) as n →∞.
First observe that∣∣∣∣∣In −

∫ Yt

0

f(u)du

∣∣∣∣∣6
∣∣∣∣∣
∫ Y (τn)

0

f(u)du−
∫ Yt

0

f(u)du

∣∣∣∣∣+
∣∣∣∣∣In −

∫ Y (τn)

0

f(u)du

∣∣∣∣∣
= An + Bn,

in the obvious notation.
Together with an elementary bound, Lemma 2.3 implies,

‖An‖26 ‖f‖C2
b
(R)‖Y (t)− Y (τn)‖2

= O(2−n/8).
(5.3)

By Lemma 2.5,

In =


∑j∗−1

j=0 f(rj,n)∆rj,n if j∗ > 0
0 if j∗ = 0
−∑−1

j=j∗ f(rj,n)∆rj,n if j∗ < 0.

Thus, by Lemma 5.2,
Bn6 ‖f‖C2

b
(R)|Y (τn)|2−n/2.

In the proof of Lemma 2.3, it was shown that {‖Y (τn)‖, n> 0} is bounded in n. It follows that

‖Bn‖2 = O(2−n/2). (5.4)

Combining (5.3) and (5.4), we have the following:

In →
∫ Yt

0

f(u)du,

in L2(P) as n → ∞. By Markov’s inequality and the Borel–Cantelli lemma, this convergence is
almost sure, as well. This verifies (5.1).

Observe that

IIn =
∑
j∈Z

(
f(rj+1,n)− f(rj,n)− f ′(rj,n)∆rj,n

)
∆rj,nDj,n(t)

+
∑
j∈Z

f ′(rj,n)
(
∆rj,n

)2
Dj,n(t)

= An + Bn,

using obvious notation. By Taylor’s theorem,

|An|6 1
2
‖f‖C2

b
(R)2

−3n/2
∑
j∈Z

Dj,n(t)

= O(2−n/2).

(5.5)
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We have used the the fact that
∑

j∈ZDj,n(t)6[2nt] to obtain this last bound. Observe that,∣∣∣∣Bn − 1
2

∫
R

f ′(u)Lu
t (Y )du

∣∣∣∣6B(1)
n +

1
2
B(2)

n ,

where,

B(1)
n = ‖f‖C2

b
(R)2

−n
∑
j∈Z

∣∣∣∣Dj,n(t)− 2n/2

2
L

rj,n

t (Y )
∣∣∣∣ ,

and

B(2)
n =

∣∣∣∣∣∣
∑
j∈Z

f ′(rj,n)Lrj,n

t (Y )∆rj,n −
∫
R

f ′(u)Lu
t (Y )du

∣∣∣∣∣∣ .
By Lemma 3.7,

An6 ‖f‖C2
b
(R)n2−3n/4

∑
j∈Z

K
√

L
rj,n

t (Y ).

Consequently, by the Minkowski and Hölder inequalities,

‖B(1)
n ‖26 ‖f‖C2

b
(R)n2−3n/4

∑
j∈Z

‖K‖4‖Lrj,n

t (Y )‖1/2
2

= O(n2−n/4).
(5.6)

We have used Lemma 3.4 to obtain this last bound.
As in the proof of Proposition 3.3, we have

B(2)
n 6 ‖f‖C2

b
(R)

∑
j∈Z

∫ rj+1,n

rj,n

|Lu
t (Y )− L

rj,n

t (Y )|du.

Consequently, by symmetry,

‖B(2)
n ‖26 2‖f‖C2

b
(R)

∑
j> 0

∫ rj+1,n

rj,n

‖Lu
t (Y )− L

rj,n

t (Y )‖2du.

By Lemma 3.5,
‖Lu

t (Y )− L
rj,n

t (Y )‖26C
√

∆rj,nexp
(−r2

j,n/2
)
.

Thus,
‖B(2)

n ‖26 2‖f‖C2
b
(R)C2−n/4

∑
j> 0

exp
(−r2

j,n/2
)
∆rj,n

= O(2−n/4).
(5.7)

Combining (5.6) and (5.7), we see that,

IIn → 1
2

∫
R

f ′(u)Lu
t (Y )du,

in L2(P) as n → ∞. By Markov’s inequality and the Borel–Cantelli lemma, this convergence is
almost sure, as well. By the occupation times formula, this verifies (5.2).

We can now finish the proof. By (5.1) and (5.2),
[2nt]∑
k=0

f(Yk,n)∆Yk,n →
∫ Yt

0

f(u)du− 1
2

∫ t

0

f ′(Yu)du, (5.8)

almost surely and in L2(P) as n → ∞. Let F (t) =
∫ t

0
f(u)du and apply Itô’s formula to F (Yt) to

see that the right hand side of (5.8) is another way to write
∫ t

0
f(Ys)dYs. This proves the theorem.

�
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Emery, P.A. Meyer and M. Yor)

[6] P. Billingsley (1979), Convergence of Probability Measures, Wiley, New York
[7] E. Bolthausen (1989), A central limit theorem for two-dimensional random walks in random

sceneries, Ann. Prob. 17 (1), 108–115.
[8] K. Burdzy (1993), Some path properties of iterated Brownian motion. Seminar in Stochastic
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[12] E. Csáki, M. Csörgő, A. Földes and P. Révész (1995), Global Strassen type theorems

for iterated Brownian motion. Stoch. Proc. Appl., 59, 321–341
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