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§1. Introduction

Suppose W ,
(
W (t); t> 0

)
is standard one–dimensional Brownian motion

starting at 0. Continuity properties of the processW form a large part of classical
probability theory. In particular, we mention A. Khintchine’s law of the iterated
logarithm (see, for example, [21, Theorem II.1.9]): for each t> 0, there exists a
null set N1(t) such that for all ω 6∈ N1(t),

lim sup
h→0+

|W (t+ h)−W (t)|√
h ln ln(1/h)

=
√

2. (1.1)

Later on, P. Lévy showed that ∪t> 0N1(t) is not a null set. Indeed, he showed
the existence of a null set N2 outside which

lim sup
h→0+

sup
06 r6 1

|W (r + h)−W (r)|√
h ln(1/h)

=
√

2. (1.2)
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See [13, p. 168] or [21, Theorem I.2.7], for example. It was observed in [18] that
the limsup is actually a limit. Further results in this direction can be found in
[2, p. 18]. The apparent discrepancy between (1.1) and (1.2) led S. Orey and S.J.
Taylor to further study the so–called fast (or rapid) points of W . To describe
this work, for all λ > 0, define F1(λ) to be the collection of all times t> 0 at
which

lim sup
h→0+

|W (t+ h)−W (t)|√
h ln(1/h)

>λ
√

2.

The main result of [18] is that with probability one,

dim
(
F1(λ)

)
= 1− λ2. (1.3)

One can think of this as the multi-fractal analysis of white noise. Above and
throughout, “dim(A)” refers to the Hausdorff dimension of A. Furthermore,
whenever dim(A) is (strictly) negative, we really mean A = ?. Orey and Tay-
lor’s discovery of Eq. (1.3) relied on special properties of Brownian motion. In
particular, they used the strong Markov property in an essential way. This ap-
proach has been refined in [3, 4, 11], in order to extend (1.3) in several different
directions.

Our goal is to provide an alternative proof of Eq. (1.3) which is robust
enough to apply to non-Markovian situations. We will do so by (i) viewing F1(λ)
as a random set and considering its hitting probabilities; and (ii) establishing
(within these proofs) links between Eqs. (1.2) and (1.3).

To keep from generalities, we restrict our attention to fractional Brownian
motion. With this in mind, let us fix some α ∈ ]0, 2[ and define X ,

(
X(t); t> 0

)
to be a one–dimensional Gaussian process with stationary increments, mean zero
and incremental standard deviation given by,∥∥X(t)−X(s)

∥∥
2

= |t− s|α/2.
See (1.8) for our notation on Lp(P) norms.

The process X is called fractional Brownian motion with index α —
hereforth written as f BM(α). We point out that when α = 1, X is Brownian
motion.

Let dimM (E) denote the upper Minkowski dimension of a Borel set E ⊂ R
1 ;

see references [17, 24]. Our first result, which is a fractal analogue of Eq. (1.2),
is the following limit theorem:

Theorem 1.1. Suppose X is f BM(α) and E ⊂ [0, 1] is closed. With probability
one,

lim sup
h→0+

sup
t∈E

|X(t+ h)−X(t)|
hα/2

√
ln(1/h)

6
√

2 dimM (E). (1.4)

On the other hand, with probability one,

sup
t∈E

lim sup
h→0+

|X(t+ h)−X(t)|
hα/2

√
ln(1/h)

>
√

2 dim(E). (1.5)
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Loosely speaking, when α = 1, Theorem 1.1 is a converse to (1.3). For all
λ> 0, define Fα(λ) to be the collection of all closed sets E ⊂ [0, 1] such that

lim sup
h→0+

sup
t∈E

|X(t+ h)−X(t)|
hα/2

√
ln(1/h)

>λ
√

2.

One can think of the elements of Fα(λ) as λ–fast sets. Theorem 1.1 can be
recast in the following way.

Corollary 1.2. Suppose X is f BM(α) and E ⊂ [0, 1] is closed. If dimM (E) <
λ2, then E 6∈ Fα(λ) almost surely. On the other hand, if dim(E)>λ2, then
E ∈ Fα(λ).

Remark 1.2.1. An immediate consequence of Theorem 1.1 is the following
extension of (1.2):

lim sup
h→0+

sup
06 t6 1

|X(t+ h)−X(t)|
hα/2

√
ln(1/h)

=
√

2, a.s.

When α ∈]0, 1], this is a consequence of [15, Theorem 7]. When α ∈]1, 2[, the
existence of such a modulus of continuity is mentioned in [16, Section 5].

A natural question is: can one replace E by a random set? The first random
set that comes to our mind is the zero set. When α = 1, the process is Brownian
motion. Its Markovian structure will be used to demonstrate the following.

Theorem 1.3. Suppose W is Brownian motion. Let Z ,
{
s ∈ [0, 1] : W (s) =

0
}
. Then, with probability one,

lim sup
h→0+

sup
t∈Z

|W (t+ h)|√
h ln(1/h)

= sup
t∈Z

lim sup
h→0+

|W (t+ h)|√
h ln(1/h)

= 1.

Thus, the escape of Brownian motion from zero is slower than Lévy’s mod-
ulus (1.2).

Next, we come to dimension theorems; see (1.3) for an example. Define the
λ–fast points for f BM(α) as follows:

Fα(λ) ,
{
t ∈ [0, 1] : lim sup

h→0+

|X(t+ h)−X(t)|
hα/2

√
ln(1/h)

>λ
√

2
}
. (1.6)

In particular, F1(λ) denotes the λ–fast points of Brownian motion. In [9], R.
Kaufman has shown that for any closed E ⊂ [0, 1] and every λ > 0, with proba-
bility one,

dim(E)− λ26dim
(
E ∩ F1(λ)

)
. (1.7)
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Moreover, there exists a certain fixed closed set E ⊂ [0, 1] for which the above is
an equality. Our next aim is to show that the inequality in (1.7) is an equality
for many sets E ⊂ [0, 1], and that this holds for all f BM(α)’s. More precisely,
we offer the following:

Theorem 1.4. Suppose X is f BM(α), E ⊂ [0, 1] is closed and λ > 0. Then,
with probability one,

dim(E) − λ26dim
(
E ∩ Fα(λ)

)
6 dimP(E)− λ2,

where dimP denotes packing dimension.

See [17] and [24] for definitions and properties of dimP.
In particular, (1.3) holds for the fast points of any fractional Brownian

motion. Moreover, when E = Z and α = 1, we have the following dimension
analogue of Theorem 1.3. Note that F1(λ) is the set of fast points of W as
defined earlier. In other words, it is defined by (1.6) with X replaced by W .

Theorem 1.5. Suppose W is Brownian motion and Z ,
{
s ∈ [0, 1] : W (s) =

0
}
. Then, for all λ > 0, with probability one,

dim
(
Z ∩ F1(λ)

)
=

1
2
− λ2.

A natural question which we have not been able to answer is the following:

Problem 1.5.1. Does Theorem 1.5 have a general analogue for all f BM(α)’s?

The proofs of Theorems 1.1, 1.3, 1.4 and 1.5 rely on parabolic capacity
techniques and entropy arguments. The entropy methods follow the arguments
of [18] closely. On the other hand, the parabolic capacity arguments rely on
relationships between the Hausdorff dimension of random sets and stochastic
co–dimension (see §2). The latter is a formalization of a particular application
of [23, Theorem 4], which can be found in various forms within the proofs of
[1, 7, 14, 19]. We suspect our formulation has other applications. In §3, we
demonstrate (1.4) while (1.5) and the first inequality (i.e., the lower bound) of
Theorem 1.4 are derived in §4. The proof of the upper bound of Theorem 1.3
appears in §5; the upper bounds of Theorems 1.4 and 1.5 can be found in §6
and §7, respectively; and the lower bounds for Theorems 1.3 and 1.5 are proved
simultaneously in §8.

We conclude the Introduction by mentioning some notation which will be
utilized throughout this article. Define the function ψ as

ψ(h) ,
√

2 ln(1/h), h ∈ ]0, 1[ .
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By Φ we mean the tail of a standard normal distribution, i.e.

Φ(x) ,
1√
2π

∫ ∞

x

e−u
2/2 du, x ∈ ]−∞,∞[ .

Furthermore, (Ω,F,P) denotes our underlying probability space. For any real
variable Z on (Ω,F,P) and for every p > 0 we write the Lp(P)–norm of Z by,

‖Z‖p ,
( ∫

Ω

∣∣Z(ω)
∣∣p P(dω)

)1/p

. (1.8)

Throughout, X denotes f BM(α) for any α ∈ ]0, 2[ . However, when we wish to
discuss Brownian motion specifically (i.e., when α = 1), we write W instead.
In accordance with the notation of Theorem 1.3, Z will always denote the zero
set of W restricted to [0, 1]. Finally, the collection of all atomless probability
measures on a set E is denoted by P+(E).

Remark. Since the first circulation of this paper, many of the ‘gaps’ in the
inequalities of this paper have been bridged. For instance, in Theorem 1.1, both
constants of (1.4) and (1.5) can be computed. This and related material can be
found in [10].

Acknowledgements. Much of this work was done while the first author was
visiting Université Paris VI. We thank L.S.T.A. and Laboratoire de Probabilités
for their generous hospitality. Our warmest thanks are extended to Steve Evans,
Mike Marcus, Yuval Peres and Yimin Xiao. They have provided us with countless
suggestions, references, corrections and their invaluable counsel. In particular, it
was Yuval Peres who showed us the rôle played by packing dimensions as well
as allowing us to use his argument (cf. [10]) in the proof of Theorem 2.5.

§2. Preliminaries on Dimension

In this section, we discuss a useful approach to estimating Hausdorff dimen-
sions of random sets via intersection probabilities.

Let S1
0 denote the collection of all Borel measurable subsets of [0, 1]. We say

that E : Ω 7→ S1
0 is a random set, if 1lE(ω) : Ω × S1

0 3 (ω,E) 7→ {0, 1} is a
random variable in the product measure space. An important class of random
sets are the closed stochastic images E , S[0, 1] ,

{
S(t); t ∈ [0, 1]

}
, where S is

a stochastic process with càdlàg sample paths.
Let us begin with some preliminaries on Hausdorff dimension; see [8, 16,

24] for definitions and further details. Given s> 0 and a Borel set E ⊂ [0, 1],
let Λs(E) denote the s–dimensional Hausdorff measure of E. Recall that the
Hausdorff dimension — dim(E) — of E is defined by: dim(E) , inf

{
s > 0 :

Λs(E) < ∞}
. When it is finite, Λs(E) extends nicely to a Carathéodory outer
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measure on analytic subsets of [0, 1]. By a slight abuse of notation, we continue
to denote this outer measure by Λs.

Suppose E is a random set. Since we can economically cover E with intervals
with rational endpoints, dim(E) is a random variable. We will use this without
further mention.

Typically, computing upper bounds for dim(E) is not very difficult: find an
economical cover (Ij) of E, whose diameter is h or less and compute

∑
j |Ij |s.

Obtaining good lower bounds for dim(E) is the harder of the two bounds. The
standard method for doing this is to utilize the connections between Hausdorff
dimension and potential theory. For any µ ∈ P+(E) and all β > 0, define,

Aβ(µ) , sup
0<h6 1/2

sup
t∈[h,1−h]

µ[t− h, t+ h]
hβ

. (2.1)

(It is possible that Aβ(µ) = ∞.) We need the following connection between
Hausdorff dimension and potential theory; while it is only half of Frostman’s
lemma of classical potential theory, we refer to it as ‘Frostman’s lemma’ for
brevity.

Lemma 2.1. (Frostman’s Lemma; [8, p. 130]) Suppose E ∈ S1
0 satisfies

β < dim(E). Then there exists µ ∈ P+(E) for which Aβ(µ) <∞.

Thus, a method for obtaining lower bounds on dim(E) is this: find a prob-
ability measure µ which lives on E and show that Aβ(µ) < ∞. If this can be
done for some β > 0, then dim(E)>β. In general, this is all which can be said.
However, if the set E in question is a random set in the sense of the first para-
graph of this section, there is an abstract version of [23, Theorem 4] which can
be used to bound dim(E) from below; see also [1]. We shall develop this next.
Define the upper stochastic co-dimension (co-dim) of a random set E by

co-dim(E) , inf
{
β ∈ [0, 1] : ∀ G ∈ S1

0 with dim(G) > β, P(E ∩G 6= ?) = 1
}
.

(2.2)
In order to make our definition sensible and complete, we need to define inf ? ,
1.

Remark 2.1.1. In applications, we often need the following fact: if G ∈ S1
0

satisfies dim(G) > co-dim(E), then P(E ∩G 6= ?) = 1.

In this section we present two results about stochastic co-dimension, the
first of which is the following.

Theorem 2.2. Suppose E is a random set. Then, for all G ∈ S1
0,

dim(E ∩G)> dim(G)− co-dim(E), a.s.

As mentioned earlier, Theorem 2.2 is an abstract form of a part of [23,
Theorem 4]. This kind of result has been implicitly used in several works. For
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example, see [7, 14, 19, 20]. To prove it, let us introduce an independent sym-
metric stable Lévy process Sγ ,

(
Sγ(t); t> 0

)
of index γ ∈ ]0, 1[ . The following

two facts are due to J. Hawkes; cf. [6].

Lemma 2.3. Suppose G ∈ S1
0 satisfies dim(G) < 1− γ. Then, with probability

one, Sγ [0, 1] ∩G = ?.

Lemma 2.4. Suppose G ∈ S1
0 satisfies dim(G) > 1− γ. Then, P(Sγ[0, 1]∩G 6=

?) > 0. Furthermore, on
(
Sγ [0, 1] ∩G 6= ?

)
,

dim
(
Sγ [0, 1] ∩G)

= dim(G) + γ − 1, a.s. (2.3)

Historically, the above results are stated with Sγ [0, 1] replaced by Sγ [0, 1].
By symmetry, semi-polar sets are polar for Sγ . Therefore, the same facts hold
for Sγ [0, 1].

We can now proceed with Theorem 2.2.

Proof of Theorem 2.2. Without loss of generality, we can assume that the
compact set G satisfies dim(G) > co-dim(E). With this reduction in mind, let
us choose a number γ ∈ ]0, 1[ satisfying,

γ > 1− dim(G) + co-dim(E). (2.4)

Choose the process Sγ as in the earlier part of this section. Since γ > 1−dim(G),
it follows from Lemma 2.4 that κ , P

(
Sγ [0, 1] ∩G 6= ?

)
> 0. By (2.3),

κ = P
(
Sγ [0, 1] ∩G 6= ? , dim

(
Sγ [0, 1] ∩G)

= dim(G) + γ − 1
)

6P
(
Sγ [0, 1] ∩G 6= ? , dim

(
Sγ [0, 1] ∩G)

> co-dim(E)
)
,

where we have used (2.4) in the last inequality. In view of Remark 2.1.1, κ is
bounded above by P

(
Sγ [0, 1] ∩G ∩E 6= ?

)
. Applying Lemma 2.3 gives

κ6P
(
Sγ [0, 1] ∩G ∩E 6= ? , dim(G ∩ E)> 1− γ

)
6P

(
Sγ [0, 1] ∩G 6= ? , dim(G ∩ E)> 1− γ

)
= κP

(
dim(G ∩E)> 1− γ

)
.

The last line utilizes the independence of Sγ and E. Since κ > 0, it follows that
for all γ satisfying (2.4), dim(G∩E)> 1−γ, almost surely. Let γ ↓ 1−dim(G)+
co-dim(E) along a rational sequence to obtain the result. ♦

Next, we present the second result of this Section. It is an immediate con-
sequence of the estimates of [10, Section 3] and Theorem 2.2 above.
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Theorem 2.5. Suppose
(
En; n> 1

)
is a countable collection of open random

sets. If supn> 1 co-dim(En) < 1, then

co-dim
( ∞⋂
n=1

En

)
= sup
n> 1

co-dim(En).

In particular, P
( ∩n> 1 En 6= ?

)
= 1.

Informally speaking, this is a dual to the fact that for all Fn ∈ S1
0 (n =

1, 2, . . .), dim(∪∞n=1Fn
)

= supn> 0 dim(Fn).

§3. Theorem 1.1: Upper Bound

Define the set of “near–fast points” as follows: for all λ, h > 0,

Fα(λ, h) ,
{
t ∈ [0, 1] : sup

t6 s6 t+h
|X(s)−X(t)|>λhα/2ψ(h)

}
. (3.1)

Next, for any R, η > 1, all integers j> 1 and every integer 06m < Rηj + 1,
define

Iηm,j ,
[
mR−ηj , (m+ 1)R−ηj

]
. (3.2)

Finally, define for the above parameters,

Pλ,αm,j , P
(
Iηm,j ∩ Fα(λ,R−j) 6= ?

)
. (3.3)

The main technical estimate which we shall need in this section is the following:

Lemma 3.1. Let X be f BM(α), where α ∈ ]0, 2[ . For all λ > 0, ε ∈ ]0, 1[ , η > 1
and all R > 1, there exists J1 = J1(ε, α, η, λ,R) ∈ [2,∞[ such that for all j> J1

and all m> 0,

Pλ,αm,j 6R
−λ2(1−ε)j .

Remark 3.1.1. Part of the assertion is that J1 does not depend on the choice
of m.

Proof. By stationarity and scaling,

Pλ,αm,j = P
(

sup
06 t6R−(1−η)j

sup
06 s6 1

|X(s+ t)−X(s)|>λψ(R−j)
)
.

We obtain the lemma by applying standard estimates and [12, Lemma 3.1] to
the Gaussian process

(
X(s+ t)−X(t); s, t> 0

)
. ♦

The proof of the upper bound is close to its counterpart [18]; cf. the first
part of Theorem 2 therein.
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Proof of Theorem 1.1: upper bound. Recall (3.1) and (3.2). Consider a
fixed closed set E ⊂ [0, 1]. Fix R, η > 1 and λ > 0. Define for all integers m> 0,

Jk ,
∑
j> k

∑
m> 0

1l{Iη
m,j

∩Fα(λ,R−j) 6=?}1l{Iη
m,j

∩E 6=?}. (3.4)

By (3.3) and Lemma 3.1, for all ε ∈ ]0, 1[ , there exists J1 = J1(ε, α, η, λ,R) ∈
[2,∞[ such that for all k> J1,

‖Jk‖1 =
∑
j> k

∑
m> 0

Pλ,αm,j1l{Iη
m,j

∩E 6=?}6
∑
j> k

∑
m> 0

R−λ
2(1−ε)j1l{Iη

m,j
∩E 6=?}

6
∑
j> k

R−λ
2(1−ε)jM

(
R−ηj;E

)
,

where M(ε;E) denotes the ε–capacity of E. That is, it is the maximal number
of points in E which are at least ε apart; see [5]. On the other hand, by definition,
for all δ ∈ ]0, 1[ , there exists J2 = J2(δ,R, η) ∈ [2,∞[ , such that for all j> J2,
M

(
R−ηj;E

)
6Rηj(1+δ) dimM (E). Hence, for all k>J1 ∨ J2,

‖Jk‖16
∑
j> k

R−j
(
λ2(1−ε)−η(1+δ) dimM (E)

)
.

It may help to recall that J1∨J2 depends only on the parameters
(
λ, α,R, η, δ, ε

)
.

Let us pick these parameters so that λ2(1 − ε) > η(1 + δ) dimM (E). It is easy
to see that for this choice of parameters,

∑
k ‖Jk‖1 <∞. By the Borel–Cantelli

lemma, with probability one, there exists a finite random variable k0 such that
for all k> k0, Jk = 0. In other words, with probability one, for all j> k0,
Fα(λ,R−j) ∩ E = ?. Rewriting the above, we see that with probability one,
for all j> k0, supt∈E supt6 s6 t+R−j |X(s)−X(t)|6λR−jα/2ψ(R−j). Take any
h6R−k0 . There exists a j> k0, so that R−j−16h6R−j. It follows that for all
h6R−k0 ,

sup
t∈E

|X(t+ h)−X(t)|6 sup
t∈E

sup
t6 s6 t+R−j

|X(s)−X(t)|

6λR−jα/2ψ(R−j)6λRα/2hα/2ψ(h),

since ψ is monotone decreasing. This implies that whenever λ2(1 − ε) > η(1 +
δ) dimM (E),

lim sup
h→0+

sup
t∈E

|X(t+ h)−X(t)|
hα/2ψ(h)

6λRα/2, a.s.

Along rational sequences, let ε, δ → 0+, η,R → 1+ and λ2 ↓ dimM (E) — in
this order — to see that with probability one,

lim sup
h→0+

sup
t∈E

|X(t+ h)−X(t)|
hα/2ψ(h)

6
√

dimM (E) .
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This proves the desired upper bound. ♦

§4. Theorems 1.1 and 1.4: Lower Bounds

For each closed set E ⊂ [0, 1] and for every µ ∈ P+(E) and h, λ > 0, define,

Iµ(h;λ) ,
∫ 1

0

µ(dt) 1l{X(t+h)−X(t)>λhα/2ψ(h)}. (4.1)

The key technical estimate of this section is the following:

Lemma 4.1. Suppose E ⊂ [0, 1] is compact, µ ∈ P+(E). For any ε ∈ ]0, 1[ and
λ > 0, there exists a small h0 ∈ ]0, 1[ such that for all h ∈ ]0, h0[ ,

‖Iµ(h;λ)‖22
‖Iµ(h;λ)‖21

6 1 + ε+ 4 sup
h1−ε6 t6 1−h1−ε

µ
(
[t− h1−ε, t+ h1+ε]

)
Φ

(
λψ(h)

) .

Proof. Since X has stationary increments,

‖Iµ(h;λ)‖1 = Φ
(
λψ(h)

)
. (4.2)

We proceed with the estimate for the second moment. Define,

a , λψ(h),

U ,
X(s+ h)−X(s)

hα/2
,

V ,
X(t+ h)−X(t)

hα/2
,

ρ , ‖UV ‖1.

Then, ignoring the dependence on (h, s, t),

‖Iµ(h;λ)‖22 = Q1 +Q2 +Q3, (4.3)

where,

Q1 ,

∫ 1

0

µ(dt)
∫ 1

0

µ(ds) 1l{ρ6(ln(1/h))−2}P(U > a, V >a),

Q2 , 2
∫ 1

0

µ(dt)
∫ t

0

µ(ds)1l{ρ>(ln(1/h))−2}1l{t−s>2h}P(U >a, V >a),

Q3 , 2
∫ 1

0

µ(dt)
∫ t

0

µ(ds)1l{ρ>(ln(1/h))−2}1l{t−s6 2h}P(U >a, V >a).
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We estimate each term separately. The critical term is Q1. Write x+ = max(x, 0)
for any x. If ρ < 1/4,

P(U > a, V > a) =
1

2π
√

1− ρ2

∫ ∞

a

∫ ∞

a

exp
(
− x2 + y2 − 2ρxy

2(1− ρ2)

)
dx dy

6
1

2π
√

1− ρ2

∫ ∞

a

∫ ∞

a

exp
(
− (1− 4ρ+)(x2 + y2)

2(1− ρ2)

)
dx dy

=

√
1− ρ2

1− 4ρ+

(
Φ

(
a

√
1− 4ρ+

1− ρ2

))2

.

According to Mill’s ratio for Gaussian tails ([22, p. 850]), for any x > 1,

1− x−2

√
2π x

exp
(
−x

2

2

)
6Φ(x)6

1√
2π x

exp
(
−x

2

2

)
. (4.4)

Therefore, using the fact that µ is an atomless probability measure, we have,

Q16 sup
r:−1<r6(ln(1/h))−2

√
1− r2

1− 4r+
(

Φ
(
λψ(h)

√
1− 4r+

1− r2
))2

6
[
Φ(λψ(h))

]2 sup
r:−1<r6(ln(1/h))−2

(
1− 1

(λψ(h))2
)−2 (1− r2)3/2

(1− 4r+)2
×

× exp
( (λψ(h))2(4r+ − r2)

1− r2

)
.

Since (ψ(h))2(ln(1/h))−2 = o(1) (as h goes to 0), this leads to:

Q16B(h;λ)
[
Φ(λψ(h))

]2
, (4.5)

where B(h;λ) is such that, for any λ > 0,

lim
h→0+

B(h;λ) = 1. (4.6)

To estimate Q3, use the trivial inequality P
(
U >a, V >a

)
6P

(
U >a

)
, to see that

Q36 2 sup
2h6 t6 1

µ
(
[t− 2h, t]

)
Φ(λψ(h))

6 2 sup
2h6 t6 1−2h

µ
(
[t− 2h, t+ 2h]

)
Φ(λψ(h)). (4.7)

Finally, we need to approximate Q2. Directly computing, note that when s <
t− 2h,

ρ =
|t− s− h|α + |t− s+ h|α − 2|t− s|α

2hα

=
1
2

( t− s

h

)α[(
1− h

t− s

)α
+

(
1 +

h

t− s

)α
− 2

]
.



SÉMINAIRE DE PROBABILITÉS XXXIV, Lec. Notes in Math. 393–416 (2000)

By Taylor expansion of (1 ± x)α, we see that for all |x|6 1
2 ,

(1− x)α + (1 + x)α − 2 =
α(α − 1)

2

[
(1− ξ1)α−2 + (1− ξ2)α−2

]
x2,

where |ξi|6 1
2 for i = 1, 2. In particular, for all |x|6 1

2 ,∣∣∣(1 − x)α + (1 + x)α − 2
∣∣6 23−αx2.

In other words, when s < t − 2h, ρ6
{
2h/(t − s)

}2−α
. On the other hand,

if we also know that ρ >
(
ln(1/h)

)−2, it follows that for all h small,

|t−s|6 2h
(
ln(1/h)

)2/(2−α)
6h1−ε. Since P(U >a, V > a)6Φ(λψ(h)), we obtain

the following: for all ε > 0, there exists h1 ∈ ]0, 1[ such that for all h ∈ ]0, h1[ ,

Q26 2 sup
h1−ε6 t6 1−h1−ε

µ
(
[t− h1−ε, t+ h1−ε]

)
Φ(λψ(h)).

Together with (4.7), we obtain: for all ε > 0, there exists h2 ∈ ]0, 1[ such that
for all h ∈ ]0, h2[ ,

Q2 +Q36 4 sup
h1−ε6 t6 1−h1−ε

µ
(
[t− h1−ε, t+ h1−ε]

)
Φ(λψ(h)).

Combining this with (4.2)–(4.3) and (4.5)–(4.7), we obtain the result. ♦

Now we can prove the lower bounds in Theorems 1.1 and 1.4.

Proof of Theorems 1.1 and 1.4: lower bounds. By Frostman’s lemma
(Lemma 2.1), for any β < dim(E), there exists a µ ∈ P+(E), such that for all
h ∈ ]0, 1[ small,

sup
h6 t6 1−h

µ
(
[t− h, t+ h]

)
6hβ .

For such a µ, use Lemma 4.1 to see that for all ε ∈ ]0, 1[ and λ > 0, there exists
h3 ∈ ]0, 1[ such that whenever h ∈ ]0, h3[ ,

‖Iµ(h;λ)‖22
‖Iµ(h;λ)‖21

6 1 + ε+
4h(1−ε)β

Φ(λψ(h))
.

According to Mill’s ratio for Gaussian tails (see (4.4)), for any λ > 0, there
exists a small h4 > 0, such that for all h ∈ ]0, h4[ , Φ(λψ(h))> hλ

2
/4λ

√
ln(1/h) .

Hence, for all h ∈ ]0, h3 ∧ h4[ ,

‖Iµ(h;λ)‖22
‖Iµ(h;λ)‖21

6 1 + ε+ 16λh(1−ε)β−λ2√
ln(1/h).
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By choosing λ such that (1−ε)β > λ2 we can deduce that for all h ∈ ]0, h3∧h4[ ,
‖Iµ(h;λ)‖22 ‖Iµ(h;λ)‖−2

1 6 1 + 2ε. Applying the Paley–Zygmund inequality ([8,
p. 8]), we see that

P
(
Iµ(h;λ) > 0

)
>

1
1 + 2ε

. (4.8)

We are ready to complete the proof. Define,

Aα(λ, h) ,
{
t ∈ [0, 1] : sup

06 r6h

|X(t+ r) −X(t)|
rα/2ψ(r)

> λ
}
. (4.9)

This is the collection of all h–approximate λ–fast points. Observe that for
each h > 0, Aα(λ, h) is an open subset of [0, 1]. If Iµ(h;λ) > 0 (µ ∈ P+(E)),
then E ∩Aα(λ, h) 6= ?. By (4.8), we see that as long as (1− ε)β > λ2, then for
all h ∈]0, h3 ∧ h4[, P

(
E ∩ Aα(λ, h) 6= ?

)
>(1 + 2ε)−1. Note that if h6h′, then

Aα(λ, h) ⊂ Aα(λ, h′). Hence, for all λ2 ∈ [0, dim(E)[ , P
(
Aα(λ, h)∩E 6= ?, ∀h >

0
)

= 1. By Theorem 2.5, for all λ2 ∈ [0, dim(E)[ , P
(∩h>0Aα(λ, h)∩E 6= ?

)
= 1.

Since
⋂
h>0Aα(λ, h) = Fα(λ), we have shown that

co-dim
(
Fα(λ)

)
6λ2.

Unravelling the notation, this implies Eq. (1.5) (i.e., the lower bound in Theorem
1.1). It also implies the lower bound in Theorem 1.4. ♦

§5. Theorem 1.3: Upper Bound

For η,R > 1, and j> 1, define,

G(j) ,
{
06m6Rηj : |W (mR−ηj)|6 2

√
ηjR−ηj lnR

}
. (5.1)

The notation is motivated by the following description: we think of Iηm,j (see
(3.2)) as “good” if m ∈ G(j). Otherwise, Iηm,j is deemed “bad”. We also recall
Eq. (3.1) with α = 1 (thus replacing X by W in (3.1)). In analogy with the
definition of Jk (see (3.4)), we define,

J′k ,
∑
j> k

∑
m∈G(j)

1l{Iη
m,j

∩F1(λ,R−j) 6=?}. (5.2)

By the independence of the increments of W , {Iηm,j ∩ F1(λ,R−j) 6= ?} is inde-
pendent of {m ∈ G(j)}. Recalling (3.3), we see that

‖J′k‖1 =
∑
j> k

∑
m> 0

P
(
m ∈ G(j)

)
Pλ,1m,j .
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Since |W (1)| has a probability density which is uniformly bounded above by 1,
for all 06m6Rηj ,

P
(
m ∈ G(j)

)
6 4

(√
ηj lnR
m

∧ 1
)
. (5.3)

Next, fix ε ∈ ]0, 1[ . By Lemma 3.1, there exists J3 , J1(ε, 1, η, λ,R) ∈ [2,∞[ ,
such that for all j> J3 and all m> 0, Pλ,1m,j 6R

−λ2(1−ε)j . Using (5.3), we see that
for all k>J3,

‖J′k‖16 4
∑
j> k

[Rηj ]∑
m=0

(√
ηj lnR
m

∧ 1
)
R−λ

2(1−ε)j .

If we choose λ2(1 − ε) > η/2, then a few lines of calculations reveal that∑
k ‖J′k‖1 <∞. By the Borel–Cantelli lemma, there exists a finite random vari-

able k1, such that with probability one, for all k> k1, J′k = 0. In particular, with
probability one, for all j> k1,

1l{m∈G(j)}1l{Iη
m,j

∩F1(λ,R−j) 6=?} = 0. (5.4)

By Lévy’s modulus of continuity for W (cf. (1.2)), there exists a finite random
variable k2(η,R), such that with probability one, for all j> k2(η,R),

1l{m∈G(j)}> 1l{Iη
m,j

∩Z6=?}. (5.5)

Eq. (5.4) shows that with probability one, for all j> k3 , k1 ∨ k2(η,R),
F1(λ,R−j) ∩ Z = ?. That is, almost surely, for all j> k3,

sup
t∈Z

sup
t6 s6 t+R−j

|W (t+ s)|6λR−j/2ψ(R−j).

If h6R−k3 , there exists j> k3, such that R−j−16h6R−j . By monotonicity,

sup
t∈Z

sup
t6 s6 t+h

|W (t+ s)|6λR−j/2ψ(R−j)6λR1/2h1/2ψ(h).

In particular, we have shown that as long as λ2(1−ε) > η/2, then almost surely,

lim sup
h→0+

sup
t∈Z

|W (t+ h)|
h1/2ψ(h)

6λR1/2.

Along rational sequences (and in this order), let η,R→ 1+, ε→ 0+ and λ2 ↓ 1
2

to see that with probability one,

lim sup
h→0+

sup
t∈Z

|W (t+ h)|
h1/2ψ(h)

6
1√
2
.
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This proves the upper bound in Theorem 1.3. ♦

§6. Theorem 1.4: Upper Bound

Recall Eqs. (1.6) and (3.1). We begin with a “regularization scheme” which
is used later in our good covering for dimension calculations.

Lemma 6.1. For all integers k> 1 and all reals θ ∈ ]0, 1[ and R > 1,

Fα(λ) ⊂
⋃
j> k

Fα(θλR−α/2, R−j+1).

Proof. From first principles, it follows that for all β < λ, Fα(λ) ⊂⋃
h>0

⋃
0<δ<h Fα(β, δ). Let δ < h < 1, say R−j 6 δ6R−j+1. For all t ∈ Fα(β, δ),

sup
t6 s6 t+R−j+1

|X(s)−X(t)|>βR−jα/2ψ(R−j+1) = βR−α/2R−(j−1)α/2ψ(R−j+1).

We have used the monotonicity properties of ψ. This implies that t ∈
Fα(βR−α/2, R−(j−1)). The result follows. ♦

We are prepared to demonstrate the upper bound in Theorem 1.4.

Proof of Theorem 1.4: upper bound. Fix R, η > 1, θ ∈ ]0, 1[ and recall Iηm,j
from (3.2). From Lemma 6.1, it is apparent that for any integer k> 1, we have
the following covering of Fα(λ):

Fα(λ) ⊂
∞⋃
j=k

∞⋃
m=1

Iηm,j ∩ Fα(θλR−α/2, R−j+1). (6.1)

By (3.3) and Lemma 3.1, for all ε > 0, there exists J4 = J4(ε, α, η, λ,R, θ) ∈
[2,∞[, such that for all j>J4,

P
(
Iηm,j ∩ Fα(θλR−α/2, R−j+1) 6= ?

)
6R−(1−ε)θ2λ2R−2αj . (6.2)

For any s> 0 and every integer k> 1, define,

Jk(s) ,
∑
j> k

∑
m6Rηj+1

∣∣Iηm,j ∣∣s1l{Iη
m,j∩E 6=?}1l{Iη

m,j
∩Fα(θλR−α/2,R−j+1) 6=?}.

By (6.2), for all k>J4,∥∥Jk(s)∥∥1
6

∑
j> k

M
(
(1 +Rηj)−1;E

)
R−ηsjR−(1−ε)θ2λ2R−2αj .
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(Recall from §3 that M(ε;E) is the ε–capacity of E.) Note that if we enlarge
J4 further, then for all β > dimM (E) and all j> J4, we can also ensure that
M

(
(1 +Rηj)−1;E

)
6Rηβj. Suppose β > dimM (E) and

ηs > ηβ − (1− ε)θ2λ2R−2α. (6.3)

It follows that
∑

k

∥∥Jk(s)∥∥1
<∞. By the Borel–Cantelli lemma, limk→∞ Jk(s) =

0, a.s. From (6.1) and the definition of Hausdorff dimension, it follows that for
any s satisfying (6.3),

Λs
(
E ∩ Fα(λ)

)
6 lim
k→∞

Jk(s) = 0, a.s.

Therefore, almost surely,

dim
(
E ∩ Fα(λ)

)
6 s.

Letting β ↓ dimM (E), ε ↓ 0, η,R ↓ 1, θ ↑ 1 in this order and along rational
sequences, we obtain

dim
(
E ∩ Fα(λ)

)
6 dimM (E)− λ2, a.s.

By [17, pp. 57 and 81], for every G ∈ S1
0,

dim(G) = inf
G=∪∞

i=1Gi

sup
i

dim(Gi),

dimP(G) = inf
G=∪∞

i=1Gi

sup
i

dimM (Gi),

where the Gi’s are assumed to be bounded. Thus,

dim
(
E ∩ Fα(λ)

)
6dimP(E)− λ2, a.s.,

which is the desired upper bound. ♦

§7. Proof of Theorem 1.5: Upper Bound

Recall the notation of §3 and §6, and G(j) from (5.1). By Lemma 6.1 and
(5.5), for any η,R > 1 and θ ∈ ]0, 1[ , there exists a finite random variable K
such that almost surely for all k>K,

Z ∩ F1(λ) ⊂
⋃
j> k

⋃
m∈G(j)

Iηm,j ∩ F1(θλR−1/2, R−j+1). (7.1)

Next, we show that the above is a fairly economical covering. Since W has
independent increments, for any s > 0,∑

j> k

∑
06m<Rηj+1

∣∣Iηm,j∣∣s P(
Iηm,j ∩ F1(θλR−1/2, R−j+1) 6= ? , m ∈ G(j)

)
=

∑
j> k

∑
06m<Rηj+1

∣∣Iηm,j∣∣s P(
Iηm,j ∩ F1(θλR−1/2, R−j+1) 6= ?

)
P
(
m ∈ G(j)

)
.
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By (5.3),∑
j> k

∑
06m<Rηj+1

∣∣Iηm,j∣∣s P(
Iηm,j ∩ F1(θλR−1/2, R−j+1) 6= ? , m ∈ G(j)

)

6 4
∑
j> k

[Rηj ]+1∑
m=0

∣∣Iηm,j∣∣s P(
Iηm,j ∩ F1(θλR−1/2, R−j+1) 6= ?

)(√
ηj lnR
m

∧ 1
)
.

Using Lemma 3.1, we see that for all ε ∈ ]0, 1[ , there exists J5 = J5(ε, θ, η, λ,R) ∈
[2,∞[ , such that for all k> J5,∑

j> k

∑
06m<Rηj+1

∣∣Iηm,j∣∣s P(
Iηm,j ∩ F1(θλR−1/2, R−j+1) 6= ? , m ∈ G(j)

)

6 4
∑
j> k

R−ηsjR−(1−ε)θ2λ2R−1j

[Rηj ]+1∑
m=0

(√
ηj lnR
m

∧ 1
)
.

In particular, if
ηs >

η

2
− (1 − ε)θ2λ2R−1, (7.2)

then,

lim
k→∞

∑
j> k

∑
m∈G(j)

∣∣Iηm,j∣∣s 1l{Iη
m,j

∩F1(θλR−1/2,R−j+1) 6=?} = 0, a.s.

Thanks to (7.1), we can deduce that for any s satisfying (7.2), Λs
(
Z∩F1(λ)

)
= 0,

almost surely. In particular, almost surely, dim
(
Z ∩ F1(λ)

)
6 s. Let ε ↓ 0, θ ↑ 1

and R, η ↓ 1 in this order to see that with probability one, dim
(
Z∩F1(λ)

)
6 1

2 −
λ2. This is the desired upper bound. ♦

§8. Proofs of Theorems 1.3 and 1.5: Lower

Bounds

The main result of this section is the following which may be of independent
interest.

Theorem 8.1. Fix a compact set E ⊂ [0, 1]. Then,

dim(E) > λ2 +
1
2

=⇒ P
(
Z ∩ F1(λ) ∩ E 6= ?

)
= 1.

As the lower bounds in Theorems 1.3 and 1.5 follow immediately from the
above, the rest of this section is devoted to proving Theorem 8.1.

Suppose E ⊂ [0, 1] is compact, µ ∈ P+(E) and h, λ > 0. Define,



SÉMINAIRE DE PROBABILITÉS XXXIV, Lec. Notes in Math. 393–416 (2000)

Jµ(h;λ) ,
∫ 1

0

µ(ds) 1l{|W (s)|<h}1l{W (s+h)−W (s)>λh1/2ψ(h)}.

For all µ ∈ P+(E) and any h, β > 0, define the following:

Sh(µ) , sup
06 s6h

∫ h

s

µ(dt)√
t− s

,

S̃h(µ) , sup
06 s6 1

∫ (s+h)∧1

s

µ(dt)√
t− s

.

The proof of Theorem 8.1 is divided into several steps. In analytical terms,
our first result is an estimate, uniform in s ∈ [0, h], for the 1/2–potential of a
measure µ restricted to an interval [s, h]. Indeed, recalling Aβ(µ) from (2.1), we
have the following:

Lemma 8.2. Suppose µ ∈ P+(E). Then for all β > 1/2 and all h > 0,

Sh(µ)6
2eβ

2β − 1
Aβ(µ)hβ−

1
2 , (8.1)

S̃h(µ)6
2eβ

2β − 1
Aβ(µ)hβ−

1
2 . (8.2)

Proof. Without loss of generality, we can assume that Aβ(µ) < ∞ for some
β > 1/2 (otherwise, there is nothing to prove). We proceed with an approximate
integration by parts: for all 06 s6h,∫ h

s

µ(dt)(t− s)−1/2 =
∞∑
j=0

∫ s+(h−s)e−j

s+(h−s)e−j−1
µ(dt)(t− s)−1/2

6(h− s)−1/2
∞∑
j=0

e(j+1)/2µ[s+ (h− s)e−j−1, s+ (h− s)e−j]

6 e1/2(h− s)β−1/2Aβ(µ)
∞∑
j=0

exp
(− j(β − 1

2
)
)
,

which yields (8.1). The estimate (8.2) can be checked in the same way. ♦
Our next two lemmas are moment estimates for Jµ.

Lemma 8.3. Suppose µ ∈ P+(E) is fixed. For every ε > 0, there exists an
hε > 0, such that for all h ∈ ]0, hε[ , and all λ > 0,

∥∥Jµ(h;λ)∥∥1
>

√
2
πe

(1 − ε)hΦ
(
λψ(h)

)
.
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Proof. By the independence of the increments of W ,

∥∥Jµ(h;λ)∥∥1
= Φ

(
λψ(h)

) ∫ 1

0

µ(ds)P
(|W (s)|6h).

A direct calculation reveals that if r ∈ ]0, 1[ , P
(|W (1)|6 r)>√

2/(πe) r. There-
fore, by Brownian scaling, for every h ∈ ]0, 1[ ,

∥∥Jµ(h;λ)∥∥1
>

√
2
πe

hΦ
(
λψ(h)

) ∫ 1

h2

µ(ds)√
s

>

√
2
πe

µ[h2, 1]hΦ
(
λψ(h)

)
.

The lemma follows upon taking h > 0 small enough. ♦

Lemma 8.4. Fix µ ∈ P+(E). Suppose Aβ(µ) <∞ for some β > 1/2 . Then, for
all h, λ > 0,

∥∥Jµ(h;λ)∥∥2

2
6

8e2β

(2β − 1)2
A2
β(µ)

{
2 hβ+3/2Φ

(
λψ(h)

)
+ h2 Φ

2(
λψ(h)

)}
.

Proof. To save space, for all h, t> 0, define,

∆hW (t) ,W (t+ h)−W (t).

By the independence of the increments of W ,

∥∥Jµ(h;λ)∥∥2

2
= 2

∥∥∥∫ 1

0

µ(dt)1l{|W (t)|6h}1l{∆hW (t)>λh1/2ψ(h)}×

×
∫ t

0

µ(ds)1l{|W (s)|6h}1l{∆hW (s)> λh1/2ψ(h)}
∥∥∥

1

= 2Φ
(
λψ(h)

)∥∥∥ ∫ 1

0

µ(dt)1l{|W (t)|6h}

∫ t

0

µ(ds)1l{|W (s)|6h}1l{∆hW (s)>λh1/2ψ(h)}
∥∥∥

1

6 2Φ
(
λψ(h)

)[
T1 + T2

]
, (8.3)

where,

T1 ,
∥∥∥ ∫ 1

h

µ(dt)1l{|W (t)|6h}

∫ (t−h)+

0

µ(ds)1l{|W (s)|6h}1l{∆hW (s)>λh1/2ψ(h)}
∥∥∥

1
,

T2 ,
∥∥∥ ∫ 1

0

µ(dt)1l{|W (t)|6h}

∫ t

(t−h)+
µ(ds)1l{|W (s)|6h}

∥∥∥
1
.

We will estimate T1 and T2 in turn.
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We will need the following consequence of Gaussian laws: for all s, h > 0,

P
(|W (s)|6h)6 s−1/2h. (8.4)

First, we estimate T1. Note that,

T1 =
∫ 1

h

µ(dt)
∫ t−h

0

µ(ds)P
(|W (t)|6h, |W (s)|6h,∆hW (s)>λh1/2ψ(h)

)
.

(8.5)
Suppose t ∈ [h, 1] and s ∈ [0, t− h]. Then s6 s+ h6 t, and we have,

P
(|W (t)|6h ∣∣ W (r); r6 s+ h

)
= P

(|W (t)−W (s+ h) +W (s+ h)|6h ∣∣ W (r); r6 s+ h
)

6 sup
ζ∈R

P
(|W (t− s− h) + ζ|6h).

On the other hand, W (t − s − h) has a Gaussian distribution. By unimodality
of the latter,

P
(|W (t)|6h ∣∣ W (r); r6 s+ h

)
6P

(|W (t− s− h)|6h).
(This actually is a particular case of T.W. Anderson’s inequality for general
Gaussian shifted balls). Using (8.5) and the principle of conditioning,

T16

∫ 1

h

µ(dt)
∫ t−h

0

µ(ds) P
(|W (t− s− h)|6h)×

× P(|W (s)|6h,∆hW (s)>λh1/2ψ(h)
)

6Φ
(
λψ(h)

) ∫ 1

h

µ(dt)
∫ t−h

0

µ(ds)P
(|W (t− s− h)|6h)P(|W (s)|6h).

By (8.4),

T16h
2 Φ

(
λψ(h)

) ∫ 1

h

µ(dt)
∫ t−h

0

µ(ds)
1√

s(t− s− h)
.

Changing the order of integration, we arrive at the following estimate:

T16h
2 Φ

(
λψ(h)

) ∫ 1−h

0

µ(ds)√
s

∫ 1

s+h

µ(dt)√
t− s− h

6h2 Φ
(
λψ(h)

)
S2

1(µ)

6
4e2β

(2β − 1)2
A2
β(µ)h2 Φ

(
λψ(h)

)
, (8.6)

by Lemma 8.2. Next, we estimate T2. By another unimodality argument, for all
t> s and all h > 0,

P
(|W (s)|6h, |W (t)|6h)6P(|W (s)|6h) P(|W (t− s)|6h).
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Applying (8.4), P
(|W (s)|6h, |W (t)|6h)6h2/

√
s(t− s). Therefore,

T26h
2

∫ 1

0

µ(dt)
∫ t

(t−h)+
µ(ds)

1√
s(t− s)

= h2
(
T2,1 + T2,2

)
, (8.7)

where,

T2,1 ,

∫ h

0

µ(dt)
∫ t

0

µ(ds)
1√

s(t− s)

T2,2 ,

∫ 1

h

µ(dt)
∫ t

t−h
µ(ds)

1√
s(t− s)

.

To estimate T2,1, reverse the order of integration:

T2,1 =
∫ h

0

µ(ds)√
s

∫ h

s

µ(dt)√
t− s

6S2
h(µ)

6
4e2β

(2β − 1)2
A2
β(µ)h2β−1, (8.8)

by Lemma 8.2. Similarly,

T2,2 =
∫ 1

0

µ(ds)√
s

∫ (s+h)∧1

s

µ(dt)√
t− s

6S1(µ)S̃h(µ)

6
4e2β

(2β − 1)2
A2
β(µ)hβ−1/2.

Since h < 1 and β > 1/2 , using the above, (8.8) and (8.7), we arrive at the
following:

T26
8e2β

(2β − 1)2
A2
β(µ)hβ+3/2.

Use this, together with (8.6) and (8.3) in this order to get the result. ♦
We are ready for the main result of this section:

Proof of Theorem 8.1. For λ, h > 0, recall (4.9) and define,

Z(h) ,
{
s ∈ [0, 1] : |W (s)| < h

}
.

Path continuity of W alone implies that Z(h)∩A1(λ, h) is an open random set.
We estimate the probability that it intersects E. By Frostman’s lemma, for all
β < dim(E), there exists µ ∈ P+(E) such that Aβ(µ) < ∞. Let us fix a µ
corresponding to an arbitrary but fixed choice of β satisfying:

λ2 +
1
2
< β < dim(E). (8.9)
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Applying Lemmas 8.3 and 8.4 to this choice of µ, we see that for all ε > 0, there
exists hε > 0, such that for all h ∈ ]0, hε[ ,∥∥Jµ(h;λ)∥∥2

1∥∥Jµ(h;λ)∥∥2

2

> γε,β
[ 2 hβ−1/2

Φ
(
λψ(h)

) + 1
]−1

,

where,

γε,β ,
(2β − 1)2(1 − ε)2

4πe1+2βA2
β(µ)

.

According to Mill’s ratio for Gaussian tails (see (4.4)), we can pick hλ so small
that for each and every h ∈ ]0, hλ[ , Φ

(
λψ(h)

)
>hλ

2
/4λ

√
ln(1/h). Therefore, for

all h ∈ ]0, hε ∧ hλ[ ,∥∥Jµ(h;λ)∥∥2

1∥∥Jµ(h;λ)∥∥2

2

> γε,β
[
8λhβ−λ

2−1/2
√

ln(1/h) + 1
]−1

.

By (8.9), lim infh→0+

∥∥Jµ(h;λ)∥∥2

1

∥∥Jµ(h;λ)∥∥−2

2
> γε,β > 0. By the Paley–

Zygmund inequality ([8, p. 8]),

lim inf
h→0+

P
(
Jµ(h;λ) > 0

)
> γε,β > 0.

Note that the event
(
Jµ(h;λ) > 0

)
implies that Z(h) ∩ A1(λ, h) intersects E.

Hence,
lim inf
h→0+

P
(
Z(h) ∩A1(λ, h) ∩ E 6= ?

)
> γε,β > 0.

However, as h ↓ 0, the (random) open set Z(h)∩A1(λ, h) decreases to Z∩F1(λ).
Adapting Theorem 2.5 to the positive probability case, we can conclude that
P
(
Z∩F1(λ)∩E 6= ?

)
> γε,β > 0. Note that the only requirement on E was that

dim(E) > λ2 + 1/2 . Since Hausdorff dimension is scale invariant, we see that for
any real number s ∈]0, 1[,

P
(
Z ∩ F1(λ) ∩ s−1E 6= ?

)
> γε,β ,

where s−1E ,
{
r/s : r ∈ E}

. We finish the proof by showing that this probabil-
ity is actually 1. Fix s ∈ ]0, 1[ and observe from Brownian scaling that Z∩F1(λ)
has the same distribution as Z ∩ F1(λ) ∩ [0, s] in the sense that for all G ∈ S1

0,

P
(
Z ∩ F1(λ) ∩G 6= ?

)
= P

(
Z ∩ F1(λ) ∩ [0, s] ∩ sG 6= ?

)
.

In particular, for all s ∈]0, 1[, P
(
Z∩F1(λ)∩ [0, s]∩E 6= ?

)
> γε,β > 0, Note that

Z ∩ F1(λ) ∩E ∩ [0, s] is increasing in s. Thus,

P

( ⋂
s∈]0,1[

{
Z ∩ F1(λ) ∩ E ∩ [0, s] 6= ?

})
> γε,β .

Let C , ∩s∈]0,1[

(
Z∩F1(λ)∩E ∩ [0, s] 6= ?

)
. Observe that C is measurable with

respect to the germ field of W at 0 and we have just argued that P(C)> γε,β > 0.
By Blumenthal’s 0–1 law, P(C) = 1. Since

(
Z∩ F1(λ) ∩E 6= ?

) ⊃ C, the result
follows for F1. ♦
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