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1. Introduction and main results.

Suppose {Z(s); s ≥ 0} is a standard one dimensional Brownian motion starting at

zero. Let {Lx
t ; x ∈ R1 , t ≥ 0} denote its process of local times. In other words, (see

Chapter VI of Revuz and Yor (1991)) with probability one,

(1.1)
∫
R1
f(x)Lx

t dx =
∫ t

0

f(Z(s))ds, for all t ≥ 0 and measurable f : R1 7→ R1 .

That the null set in (1.1) can be chosen to be independent of the choice of f is

a consequence of Trotter’s theorem which states: (t, x) 7→ Lx
t is almost surely contin-

uous. (Up to a modification which we shall take for granted.) For the latter theo-

rem, see Trotter (1958). A modern account appears in Theorem VI.1.7 of Revuz and

Yor (1991). For instance, let {Ψε(·); ε > 0} be an approximation to the identity, i.e.,

Ψ1(x) ≥ 0, for all x ∈ R1 ,
∫
R1 Ψ1(x)dx = 1 and Ψε(x)

df
= ε−1Ψ1

(
xε−1

)
. Then almost

surely, limε→0

∫ t

0
Ψε(Z(s)− x)ds = Lx

t , uniformly over all x ∈ R1 . An important example

is Lévy’s occupation time approximation which is obtained by taking Ψε(x)
df
= ε−11[0,ε](x).

Borodin (1986) has sharpened this by observing that

(1.2) lim sup
ε↓0

sup
x∈R1

| 1
ε

∫ t

0
1[x,x+ε](Z(s))ds− Lx

t |√
ε log(1/ε)

≤ 2(L∗t )
1/2, a.s.

where here and throughout, L∗t
df
=supx∈R1 Lx

t and logx denotes the logarithm of x in base

e. The proof of (1.2) is simple: by (1.1), ε−1
∫ t

0
1[x,x+ε](Z(s))ds = ε−1

∫ x+ε

x
Lu

t du. So

(1.2) follows immediately from Ray’s modulus of continuity (see Ray (1963) and McKean

(1962)), viz.,

(1.3) lim sup
ε↓0

sup
x∈R1

|Lx+ε
t − Lx

t |√
ε log(1/ε)

= 2(L∗t )
1/2, a.s.

Our first theorem improves (1.2) by obtaining an exact asymptotic lower bound as

well as a better upper bound. More precisely, we have the following result:

Theorem 1.1. For every t > 0, with probability one,

lim
ε↓0

sup
x∈R1

|ε−1
∫ t

0
1[x,x+ε](Z(s))ds− Lx

t |√
ε log(1/ε)

= ((4/3)L∗t )
1/2.

–1–



THE ANNALS OF PROBABILITY, 22(3), 1295-1330 (1994)

Remark 1.1.1. A little reflection shows that while the upper bound in Theorem 1.1 is

sharp, it is the lower bound that is difficult to prove. This is due to the fact that the level

sets are highly dependent. So any proof would have to exploit this dependence structure.

We shall do so by using D. Williams’ version of the Ray–Knight theorem. See Section 3.

The local version of Theorem 1.1 (i.e., without the supremum) is somewhat different.

We state it as a formal theorem but omit the proof as it is similar to the proof of Theorem

1.1.

Theorem 1.2. For every t > 0 and x ∈ R1 , with probability one,

lim sup
ε↓0

|ε−1
∫ t

0
1[x,x+ε](Z(r))dr− Lx

t |√
ε log log(1/ε)

= ((4/3)Lx
t )1/2.

It is worth mentioning that the above is a genuine law of the iterated logarithm in the

sense that the liminf of the left quantity in Theorem 1.2 is zero and hence no limit could

possibly exist.

To state and motivate the next theorem, define uε(x, t) to be the total number of

times before time t that Z has upcrossed the interval [x, x+ ε]. It is a well–known result

of P. Lévy that with probability one, limε→0 2εuε(x, t) = Lx
t . See Exercise XII.2.10 of

Revuz and Yor (1991). For other proofs and variants see also Williams (1977), Chung and

Durrett (1976) and Maisonneuve (1981). Chacon et al. (1981) proved that this convergence

is uniform over all x ∈ R1 . This fact is also hinted at in Williams (1979), Exercise II.62.7.

In particular, the null set in question can be chosen to be independent of the “level set”,

x. Borodin (1986) has proven the following refinement of this development:

(1.4) sup
x∈R1

|2εuε(x, t)− Lx
t | = O

(
ε1/2 log(1/ε)

)
, a.s.

as ε ↓ 0. In light of Theorem 1.1, the above theorem is surprising in that the power of

the logarithm has changed. Indeed, one would guess the convergence rate to be of the

order, O
(
(ε log(1/ε))1/2

)
. Theorem 1.4 below shows that this is the case, while Theorem

1.3 provides the corresponding local version.
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Theorem 1.3. For every t > 0 and x ∈ R1 , with probability one,

lim sup
ε↓0

|2εuε(x, t)− Lx
t |√

ε log log(1/ε)
= 2(Lx

t )1/2.

Remark 1.3.1. As is the case with the rest of the results in this paper, the more important

aspect of this theorem is the lower bound. The upper bound has been anticipated to some

degree in the existing literature. See Williams (1979), page 91.

Theorem 1.3 (as well as all of the subsequent theorems) are proved by means of

excursion theory. However, it is interesting that we have not found truely excursion–

theoretic proofs for Theorems 1.1 and 1.2.

Theorem 1.4. For every t > 0, with probability one,

lim
ε↓0

sup
x∈R1

|2εuε(x, t)− Lx
t |√

ε log(1/ε)
= 2(L∗t )

1/2.

To state the final pair of theorems, let eε(x, t) denote the total number of times before

time t that Z makes excursions away from x with lifetimes greater than ε. It is well–known

that limε→0(πε/2)1/2eε(x, t) = Lx
t . For example, see Maisonneuve (1981) or Proposition

XII.2.9 of Revuz and Yor (1991). Theorem 1.1 of Perkins (1981) states that the convergence

is uniform over all x ∈ R1 . (Due to his choice of scale function, Perkins’ local time is half of

ours thus accounting for the extra factor of 2. See (1.2) of Perkins (1981).) More recently,

Csörgő and Révész (1986) have proved the analogue of (1.4) for the process eε. Namely,

as ε ↓ 0,

(1.5) sup
x∈R1

|(πε/2)1/2eε(x, t)− Lx
t | = O

(
ε1/4 log(1/ε)

)
, a.s.

Our next two theorems provide the exact rate of convergence to (1.5) and its local version.

Theorem 1.5. For every t > 0 and x ∈ R1 , with probability one,

lim sup
ε↓0

|(πε/2)1/2eε(x, t)− Lx
t |

ε1/4
√

log log(1/ε)
= (2π)1/4(Lx

t )1/2.

Theorem 1.5 is a special case of Theorem 1 of Horváth (1990).
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Theorem 1.6. For every t > 0, with probability one,

(π/2)1/4(L∗t )
1/2 ≤ lim inf

ε↓0
sup
x∈R1

|(πε/2)1/2eε(x, t)− Lx
t |

ε1/4
√

log(1/ε)

≤ lim sup
ε↓0

sup
x∈R1

|(πε/2)1/2eε(x, t)− Lx
t |

ε1/4
√

log(1/ε)
≤ (2π)1/4(L∗t )

1/2.

We have not been able to identify the exact constant in Theorem 1.6 (or the existence

of a limit, for that matter.) However, the proof leads us to believe the following:

Conjecture 1.7. For each t > 0, with probability one,

lim
ε↓0

sup
x∈R1

|(πε/2)1/2eε(x, t)− Lx
t |

ε1/4
√

log(1/ε)
= (2π)1/4(L∗t )

1/2.

Remark 1.7.1. Many of the approximation theorems for local times are known to hold

uniformly in t ∈ T , where T is an arbitrary nonrandom compact subset of [0,∞). These

include (1.2) through (1.5). Our proofs can be modified to show that Theorems 1.4 and

1.6 hold uniformly over t–compacts. However, the proof of Theorem 1.1 does not extend

to handle t–uniform results.

Much is now known about convergence theorems for local times at a fixed level. An

umbrella method of doing this for Markov processes appears in Fristedt and Taylor (1983).

Various uniform approximation theorems are also known for some Lévy processes. See

Barlow et al. (1986a,b) and the references therein. A host of strong limit theorems related

to Brownian local time can be found in Knight (1981).

In Section 2, we demonstrate some modulus of continuity results for “smoothed”

Brownian motion. These results will then be used in Section 3 to prove Theorem 1.1.

Sections 4 through 7 contain proofs for Theorems 1.3 through 1.6, respectively.

Finally some notation is in order here. Throughout, we shall think of Z as the coor-

dinate functions in the space of continuous functions on the positive half–line, C([0,∞)).

This means that Z(t)(ω)
df
=ω(t) for all ω ∈ C([0,∞)). Define Tx

df
= inf{s : Z(s) = x} and let

(ϑt) be the shifts on the paths of Z. In other words, ϑt(Z)(s) = Z(t+s). More generally, if

Λ = Λ
(
Z(r); a ≤ r ≤ b

)
is a measurable functional of Z, ϑt(Λ) = Λ

(
Z(r); t+a ≤ r ≤ t+b

)
.
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Constants will be denoted by Ci and for the sake of rigor, their dependence on any other

variable will be explicitly stated.

Acknowledgement. Some of the ideas in this paper developed in conversations with

Rich Bass, Chris Burdzy and Ellen Toby on different occasions. Many thanks are also due

to an anonymous referee for some very useful suggestions to improve the presentation of

the paper.

2. Modulus results for Brownian processes.

Throughout this section, {Z(t); t ≥ 0} denotes a one–dimensional Brownian motion

and {βα(t); t ≥ 0} is a Bessel process of dimension α > 0. In other words, (βα) is a

non–negative diffusion with infinitesimal generator given by the following:

Lα(f)(x) =
1
2
f ′′(x) +

α− 1
2x

f ′(x),

for all twice continuously differentiable functions, f : (0,∞) 7→ R1 which satisfy

lim
ε→0

εα−2
(
f(ε)− f(0)

)
= 0.

We next recall Lévy’s modulus of continuity for the processes (βα) and (Z), respec-

tively:

lim
h↓0

sup
t∈T

|βα(t+ h)− βα(t)|
ϕ(h)

=
√

2, a.s.(2.1a)

lim
h↓0

sup
t∈T

|Z(t+ h)− Z(t)|
ϕ(h)

=
√

2, a.s.(2.1b)

where ϕ(t)
df
=

√
t( 1 ∨ log(1/t) ) for t > 0, and T ⊆ [0,∞) is any (nonrandom) compact

set. The proof of (2.1) with limsup instead of the limit can be found, for example, within

the results of Revuz and Yor (1991), Ch. XI. Minor adjustments to the proof establish the

existence of the limit, see for example Csörgő and Révész (1981).

Of particular interest to us is that as h ↓ 0,

sup
t∈T

∣∣∣∣h−1

∫ t+h

t

Z(s)ds− Z(t)
∣∣∣∣ ≤ sup

t∈T
h−1

∫ t+h

t

|Z(s)− Z(t)|ds

≤
√

2ϕ(h)(1 + o(1)), a.s.(2.1c)

with a similar estimate holding for (βα). The goal of this section is to prove the exact

version of (2.1c) for the processes (Z), (βα) and (β2
α) (the latter process will be of use in

the next section on local times). More precisely, we have the following:
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Theorem 2.1.

(a) Fix any x ∈ R1 and any compact T ⊆ [0,∞). Then, given Z(0) = x,

lim
h↓0

sup
t∈T

|h−1
∫ t+h

t
Z(s)ds− Z(t)|
ϕ(h)

=

√
2
3
, a.s.

(b) Fix α ≥ 2, x ∈ R1 and compact T ⊆ (0,∞). Then, given βα(0) = x,

lim
h↓0

sup
t∈T

|h−1
∫ t+h

t
βα(s)ds− βα(t)|
ϕ(h)

=

√
2
3
, a.s.

(c) For all α ≥ 2, x ∈ R1
+ and all compact T ⊆ [0,∞), given βα(0) = x,

lim
h↓0

sup
t∈T

|h−1
∫ t+h

t
β2

α(s)ds− β2
α(t)|

ϕ(h)
=

√
8
3

sup
t∈T

βα(t) a.s.

Remark 2.1.1. (i) It is clear from part (a) of Theorem 2.1 that the estimate in (2.1c) is

not sharp.

(ii) With extra effort, one can improve part (b) to all compacts T ⊆ [0,∞). However,

as this extension is unnecessary for our purposes, we shall not present a proof here.

(iii) One can extend this theorem to the α–dimensional Bessel processes with α < 2,

by adapting the proof of part (b) using a localization argument.

(iv) Theorem 2.1 (and the corresponding Theorems 1.1 and 1.2) have recently been ex-

tended by Marcus and Rosen (1993) to a class of symmetric (nearly stable) Lévy processes

using a striking isomorphism theorem of Dynkin (1984).

There is also a local version of Theorem 2.1. To this end, let us define:

ψ(h)
df
=

√
h( 1 ∨ log log(1/h) ),

for all h > 0. The local version of Theorem 2.1 is as follows:

–6–
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Theorem 2.2.

(a) Fix t > 0 and x ∈ R1 . Then given Z(0) = x,

lim sup
h↓0

|h−1
∫ t+h

t
Z(r)dr − Z(t)|
ψ(h)

=

√
2
3
, a.s.

(b) For all α ≥ 2, t > 0 and x ∈ R1 , given βα(0) = x,

lim sup
h↓0

|h−1
∫ t+h

t
β2

α(r)dr − β2
α(t)|

ψ(h)
=

√
8
3
βα(t), a.s.

The remainder of this section contains a proof of Theorem 2.1. This is patterned

after Paul Lévy’s proof of the uniform modulus of continuity of Brownian motion mixed

together with some interpolation ideas. We omit the proof of Theorem 2.2 since it contains

no new ideas.

Proof of Theorem 2.1(a). Without loss of generality, suppose T = [0, 1] and x = 0; the

necessary modifications in the general case are easy to make. For any h and t > 0, define

I(h; t)
df
=h−1

∫ t+h

t

Z(s)ds− Z(t) = h−1

∫ t+h

t

(Z(s)− Z(t))ds.

Therefore, I(h; t) is a Gaussian random variable with mean zero and variance given by,

E ( I(h; t) )2 = 2h−2

∫ t+h

t

∫ s

t

E

(
( Z(s)− Z(t) )( Z(u)− Z(t) )

)
duds

= 2h−2

∫ t+h

t

∫ s

t

(u− t)duds =
h

3
.

In particular, by elementary facts about Gaussian distributions,

lim
x→∞x−2 logP(|I(h; t)| ≥ x

√
h/3) = −1/2.

Moreover, since the distribution of h−1/2I(h; t) is independent of h and t, the limit is

uniform over all h and t > 0. In particular, fixing θ > 0 and ε ∈ (0, 1), it follows that there

exist finite positive constants, C1(θ, ε) ≤ C2(θ, ε) such that for all t, h > 0,

(2.2) C1(θ, ε)hθ(1+ε) ≤ P(|I(h; t)| ≥ ϕ(h)
√

2θ/3) ≤ C2(θ, ε)hθ(1−ε).

–7–
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Now a Borel–Cantelli argument is in order. Indeed, by (2.2), for any fixed ρ > 1,

P(|I(ρ−n; kρ−n)| ≥ ϕ(ρ−n)
√

2θ/3) ≥ C1(θ, ε)ρ−nθ(1+ε),

for all 0 ≤ k ≤ [ρn] and all n ≥ 1. Since {I(ρ−n, kρ−n); 0 ≤ k ≤ [ρn]} is an independent

sequence, for all n large enough,

P

(
max

k≤[ρn]
|I(ρ−n, kρ−n)| ≤ ϕ(ρ−n)

√
2θ/3

)
≤

(
1− C1(θ, ε)ρ−nθ(1+ε)

)[ρn]

≤ exp
(
− 1

2
C1(θ, ε)ρ−nθ(1+ε)+n

)
,

which sums if 0 < θ < (1 + ε)−1. Therefore by the Borel–Cantelli lemma,

lim inf
n→∞ max

k≤[ρn]

|I(ρ−n; kρ−n)|
ϕ(ρ−n)

≥
√

2θ
3
, a.s.

for all θ ∈ (0, (1 + ε)−1). Since ε > 0 and θ < (1 + ε)−1 are arbitrary, letting ε ↓ 0 and

θ ↑ 1 along a countable sequence, it follows that

lim inf
n→∞ sup

0≤t≤1−ρ−n

|I(ρ−n; t)|
ϕ(ρ−n)

≥
√

2
3
, a.s.

Now for each h > 0 there exists a unique integer, Nh, such that ρ−(Nh+1) ≤ h < ρ−Nh .

Writing

I(h; t) = (ρNh+1h)−1I(ρ−(Nh+1); t) + h−1

∫ t+h

t+ρ−(Nh+1)
( Z(s)− Z(t) )ds,

it follows that,

lim inf
h↓0

sup
0≤t≤1−h

|I(h; t)|
ϕ(h)

≥ lim inf
h↓0

sup
0≤t≤1−h

(ρNh+1h)−1 |I(ρ−(Nh+1); t)|
ϕ(h)

−

− lim sup
h↓0

sup
0≤t≤1−h

(hϕ(h))−1

∫ t+h

t+ρ−(Nh+1)
|Z(s)− Z(t)|ds

≥ ρ−3/2

√
2
3
− lim sup

h↓0
sup

0≤s,t≤1

|s−t|≤ρ−Nh

(
h− ρ−(Nh+1)

h

) |Z(s)− Z(t)|
ϕ(ρ−Nh)

≥ ρ−3/2

√
2
3
−
√

2(ρ− 1),
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by (2.1b). In the above, we have used the elementary inequality:

ϕ(h) ≤ ϕ(ρ−Nh) = (1 + o(1))
√
ρϕ(ρ−(Nh+1)),

as h ↓ 0. Since ρ > 1 is arbitrary, the lower bound follows by taking ρ ↑ 1 along a countable

sequence, i.e., we have

lim inf
h↓0

sup
0≤t≤1−h

|I(h; t)|
ϕ(h)

≥
√

2
3
, a.s.

The proof of the upper bound uses an entropy argument together with the upper

estimate in (2.2). To this end, fix ρ > 1 and define

Tn
df
=Tn(θ, ε, ρ) = { t ≥ 0 : t = jρ−nθ(1−ε)n2 for some integer 0 ≤ j ≤ ρnθ(1−ε)n−2 }.

Notice that #Tn ≤ C3(θ, ε)n−2ρnθ(1−ε), for some finite positive constant, C3(θ, ε). There-

fore by (2.2),

P

(
max
t∈Tn

|I(ρ−n; t)| ≥ ϕ(ρ−n)
√

2θ/3
)
≤ C2(θ, ε)#Tnρ

−nθ(1−ε)

≤ C3(θ, ε)C2(θ, ε)n−2,

which sums in n. So by the Borel–Cantelli lemma, for each ρ > 1, ε ∈ (0, 1) and all θ > 0,

(2.3) lim sup
n→∞

max
t∈Tn

|I(ρ−n; t)|
ϕ(ρ−n)

≤
√

2θ
3
.

Now,

(2.4) sup
0≤t≤1

|I(ρ−n; t)| ≤ max
t∈Tn

|I(ρ−n; t)|+ sup
0≤t≤1

|I(ρ−n; t)− I(ρ−n; fn(t))|,

where fn(t) is the point in Tn nearest to t (with some convention about breaking ties.) We

note that,

sup
t∈Tn

|t− fn(t)| = ρ−nθ(1−ε)n2.

Therefore, by (2.1b),

sup
0≤t≤1

|I(ρ−n; t)− I(ρ−n; fn(t))| ≤ 2 sup
0≤t≤2

|Z(t)− Z(fn(t))|

= 23/2(1 + o(1))
√
ρ−nθ(1−ε)n2 log(ρnθ(1−ε)n−2)

= 23/2(1 + o(1))(θ(1− ε) log ρ)1/2ρ−nθ(1−ε)/2n3/2

= o(ϕ(ρ−n)),
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if θ > (1− ε)−1. Therefore, for all θ > (1− ε)−1, by (2.3) and (2.4), almost surely,

lim sup
n→∞

sup
0≤t≤1

|I(ρ−n; t)|
ϕ(ρ−n)

≤
√

2θ
3
.

Since θ > (1− ε)−1 and ε ∈ (0, 1) are arbitrary, we have

(2.5) lim sup
n→∞

sup
0≤t≤1

|I(ρ−n; t)|
ϕ(ρ−n)

≤
√

2
3
, a.s.

It remains to show that the behavior of the limsup in question is the same along any

subsequence. To this end, fix ρ > 1 as above. For each h > 0 (small), there exists a unique

integer, Nh ≥ 1, such that ρ−(Nh+1) ≤ h < ρ−Nh . Proceeding as in the proof of the lower

bound,

I(h; t) = h−1

∫ t+h

t

( Z(s)− Z(t) )ds

= h−1

∫ t+ρ−(Nh+1)

t

( Z(s)− Z(t) )ds+ h−1

∫ t+h

t+ρ−(Nh+1)
( Z(s)− Z(t) )ds

= (ρNh+1h)−1I(ρ−(Nh+1); t) + h−1

∫ t+h

t+ρ−(Nh+1)
( Z(s)− Z(t) )ds.

Therefore by (2.1b), as h ↓ 0 (and hence Nh ↑ ∞), the following holds uniformly in

0 ≤ t ≤ 1:

|I(h; t)| ≤ |I(ρ−(Nh+1); t)|+ ρ(ρ− 1) sup
|s−t|≤ρ−Nh

0≤s,t≤1

|Z(s)− Z(t)|

≤
√

2
3
(1 + o(1))ϕ(ρ−(Nh+1)) +

√
2ρ(ρ− 1)(1 + o(1))ϕ(ρ−Nh).

Note that as h ↓ 0, ϕ(h) ≥ ϕ(ρ−(Nh+1)) = (1 + o(1))ρ−1/2ϕ(ρ−Nh). This implies that for

all ρ > 1,

lim sup
h↓0

sup
0≤t≤1−h

|I(h; t)|
ϕ(h)

≤
√

2
3

+
√

2ρ3/2(ρ− 1).

Since ρ > 1 is arbitrary, the proof of Theorem 2.1(a) is completed upon taking ρ ↓ 1 along

a countable sequence. �

Proof of Theorem 2.1(b). Fix α ≥ 2. Without loss of much generality, suppose that

T = [ε, 1] for some ε > 0. For any E ⊆ R1
+ , let C(E) denote the collection of all continuous

–10–
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functions from E in to R1 . As usual, we endow C(E) with the compact open topology.

An application of Girsanov’s theorem (see Revuz and Yor (1991), p. 419, exercise (1.22))

reveals that for any s, x > 0 and for all measurable A ⊆ C([0, s]),

(2.6) P(πs(βα) ∈ A|βα(0) = x) = x−(α−1)/2E (Ds1A(πs(X))|Z(0) = x),

where T0
df
= inf{s : Z(s) = 0},

Ds
df
=Z(s ∧ T0)(α−1)/2 exp

(
− 1

8
(α− 1)(α− 3)

∫ s

0

Z(r)−2dr

)
,

and for any s > 0 and f ∈ C(E), πs(f) denotes the element of C([0, s]) given by

πs(f)(r)
df
= f(r) for all 0 ≤ r ≤ s.

Taking Ac to be the collection of all elements, f , of C([0, 1]) which satisfy:

lim
h↓0

sup
0≤t≤1−h

|h−1
∫ t+h

t
f(r)dr − f(t)|
ϕ(h)

=

√
2
3
,

part (b) follows for x > 0 as a consequence of (2.6). It is therefore enough to prove part

(b) when x = 0.

By the Markov property and the case x > 0 proved above, for any 0 < ε < 1,

lim
h↓0

sup
ε≤t≤1−h

|h−1
∫ t+h

t
βα(r)dr − βα(t)|
ϕ(h)

=

√
2
3
, a.s.

This proves part (b). �

Proof of Theorem 2.1(c). Fix α ≥ 2. Suppose, without loss of much generality that

T = [0, 1] and x = 0. Define

J(h; t)
df
=h−1

∫ t+h

t

β2
α(r)dr,

J̃(h; t)
df
=h−1

∫ t+h

t

( βα(r)− βα(t) )dr.

Then for all t ∈ [0, 1] and all h > 0,

|J(h; t)− β2
α(t)|

ϕ(h)
= 2βα(t)

|J̃(h; t)|
ϕ(h)

+R(h; t),
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where by (2.1a), as h ↓ 0,

sup
0≤t≤1−h

|R(h; t)| ≤ sup
0≤t≤1−h

h−1
∫ t+h

t
|βα(r)− βα(t)|2dr
ϕ(h)

≤ 2(1 + o(1))ϕ(h) → 0, a.s.

It is therefore enough to prove:

(2.7) lim
h↓0

sup
0≤t≤1−h

βα(t)
|J̃(h; t)|
ϕ(h)

=

√
2
3

sup
0≤t≤1

βα(t),

almost surely. Suppose instead, that we could prove that for any ε > 0, with probability

one,

(2.8) lim
h↓0

sup
ε≤t≤1−h

βα(t)
|J̃(h; t)|
ϕ(h)

=

√
2
3

sup
ε≤t≤1

βα(t).

It is not hard to see that (2.8) implies (2.7). Indeed, (2.8) would imply that for all ε > 0,

lim inf
h↓0

sup
0≤t≤1−h

βα(t)
|J̃(h; t)|
ϕ(h)

≥
√

2
3

sup
ε≤t≤1

βα(t), a.s.

which proves the lower bound in (2.7) by taking ε→ 0 along a countable sequence. (Recall

that t 7→ βα(t) is almost surely continuous.) To see the upper bound in (2.7), note that

sup
0≤t≤1−h

βα(t)
|J̃(h; t)|
ϕ(h)

≤ ( sup
0≤t≤ε

+ sup
ε≤t≤1−h

)βα(t)
|J̃(h; t)|
ϕ(h)

.

Therefore by (2.8),

lim sup
h↓0

sup
0≤t≤1−h

βα(t)
|J̃(h; t)|
ϕ(h)

≤ lim sup
h↓0

sup
0≤t≤ε

βα(t)
|J̃(h; t)|
ϕ(h)

+

√
2
3

sup
ε≤t≤1

βα(t)

≤
√

2 sup
0≤t≤ε

βα(t) +

√
2
3

sup
0≤t≤1

βα(t),

by (2.1a). Since the left hand side of the above inequalities is independent of ε and ε > 0

is arbitrary, (2.7) follows by sample path continuity of t 7→ βα(t). Hence it is sufficient to

prove (2.8) for all ε > 0.

Recall that the compact set mentioned in part (b) is an arbitrary compact subset of

[ε, 1]. As a result, by part (b) of Theorem 2.1, with probability one,

lim
h↓0

sup
a≤t≤b

|J̃(h; t)|
ϕ(h)

=

√
2
3

for all rational a, b : ε ≤ a < b ≤ 1.
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By a condensation argument, this implies that the (random) set, T̃ , defined by

T̃
df
=

{
ε ≤ t ≤ 1 : lim

h↓0
|J̃(h; t)|
ϕ(h)

=

√
2
3

}
,

has a dense trace on [ε, 1], with probability one. (In other words, T̃ ∩ [ε, 1] = [ε, 1], a.s.)

Evidently, with probability one,

lim inf
h↓0

sup
ε≤t≤1−h

βα(t)
|J̃(h; t)|
ϕ(h)

≥ lim inf
h↓0

βα(t0)
|J̃(h; t0)|
ϕ(h)

=

√
2
3
βα(t0),

for all t0 ∈ T̃ ∩ [ε, 1]. Here we have only used the definition of T̃ . Therefore by the (a.s.)

density of T̃ ∩ [ε, 1] in [ε, 1] and the (a.s.) path continuity for t 7→ βα(t), the lower bound

in (2.8) holds. The upper bound in (2.8) is even simpler, for

lim sup
h↓0

sup
ε≤t≤1

βα(t)
|J̃(h; t)|
ϕ(h)

≤ lim sup
h↓0

sup
ε≤t≤1

βα(t) sup
ε≤t≤1

|J̃(h; t)|
ϕ(h)

=

√
2
3

sup
ε≤t≤1

βα(t),

by part (b). This finishes proof of (2.8) and hence part (c) of Theorem 2.1. �

3. Proof of Theorem 1.1.

Let us enlarge the probability space so that it includes an exponential random variable,

λ, which is independent of Z and whose mean is 2. Define,

m
df
= inf

0≤r≤λ
Z(r) and M

df
= sup

0≤r≤λ
Z(r).

Let x0 > 0 be fixed. Moreover, suppose we have enlarged the probability space even further

so that it includes independent Bessel processes, β4, β̃4 and β2, with dimensions: 4, 4 and

2, respectively. The point is that these processes are totally independent of Z and λ as

well as each other, except that they are conditioned to satisfy:

β̃4(0) = β4(0) = 0

β2(1) = β4(1− e2m)

β̃4(e−2x0 − e−2M ) = β2(e2x0).
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Then according to Ray’s description of L·λ, (see Itô and McKean (1965) and Williams

(1974)), one can construct a version of L·λ (which we shall continue to write as L·λ), with

the following realization:

(3.1) 2Lx
λ =




0 if x ≤ m or x ≥M

a(x)
df
= e−2xβ2

4(e2x − e2m) if m ≤ x ≤ 0

b(x)
df
= e−2xβ2

2(e2x) if 0 ≤ x ≤ x0

c(x)
df
= e2xβ̃2

4(e−2x − e−2M ) if x0 ≤ x ≤M

,

conditioned on the event {Z(0) = x0}. (We note here that our speed measure is half of

that of Itô and McKean and hence their 4L·λ is replaced by our 2L·λ.) Applying Theorem

2.1(c) to this version of L·λ, we see that for any compact set T ⊆ R1 , conditioned on

Z(0) = x0 > 0,

lim
ε↓0

sup
x∈T

|ε−1
∫ x+ε

x
2Lx

λdx− 2Lx
λ|

ϕ(ε)

=

√
8
3

max
{

sup
m≤z≤0

a1/2(z), sup
0≤z≤x0

b1/2(z), sup
x0≤z≤M

c1/2(z)
}

=

√
16
3

(sup
x∈T

Lx
λ)1/2.

By considering −Z(·) instead, since P(Z(λ) = 0) = 0, we see from (1.3) that for all compact

T ⊆ R1 , almost surely,

lim
ε↓0

sup
x∈T

|ε−1
∫ λ

0
1[x,x+ε](Z(r))dr − Lx

λ|
ϕ(ε)

= ((4/3) sup
x∈T

Lx
λ)1/2.

Therefore,

P

(
lim
ε↓0

sup
|x|≤n

|ε−1
∫ λ

0
1[x,x+ε](Z(r))dr− Lx

λ|
ϕ(ε)

= ((4/3) sup
|x|≤n

Lx
λ)1/2, for all n ≥ 1

)
= 1.

Taking n = n(ω)
df
=M(ω) ∨ (−m(ω)), it follows from (3.1) that,

sup
|x|>n

Lx
λ = sup

|x|>n

∫ λ

0

1[x,x+ε](Z(r))dr = 0,
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almost surely. Therefore, P(A(λ)) = 1, where for all t ≥ 0,

A(t)
df
=

{
ω : lim

ε↓0
sup
x∈R1

|ε−1
∫ t

0
1[x,x+ε](Z(r)(ω))dr− Lx

t (ω)|
ϕ(ε)

= ((4/3)L∗t (ω))1/2

}
.

By independence,

1 = P(A(λ)) =
∫ ∞

0

P(A(t))P(λ ∈ dt)

=
1
2

∫ ∞

0

P(A(t))e−t/2dt.

Let u > 0 be any positive real number. By considering uλ instead of λ, the above analysis

together with Brownian scaling show that for all u > 0,

1 =
1
2u

∫ ∞

0

P(A(t))e−t/(2u)dt.

Therefore, by the inversion theorem for Laplace transforms, P(A(t)) = 1 for all t > 0. This

concludes the proof of Theorem 1.1. �

4. Proof of Theorem 1.3.

By Brownian scaling, it suffices to consider only the case t = 1. Furthermore, since

for all ε > 0:

Lx
t = uε(x, t) = 0, on {t ≤ Tx},

by considering the Brownian motion, {ϑTx
(Z)(t); t ≥ 0}, it suffices to prove the theorem

when x = 0.

For every w > 0, define Qw (· · ·) to be a nice version of the regular conditional prob-

ability, P(· · · |L0
1 = w). In light of the above discussion, it is evidently sufficient to prove

that for all w > 0:

(4.1) lim sup
ε↓0

|2εuε(0, 1)− w|
ψ(ε)

= 2w1/2, Qw − a.s.

where ψ(h)
df
=

√
h( 1 ∨ log log(1/h) ), as in Section 3.

Define the inverse local times by:

τx
t

df
= inf{s > 0 : Lx

s = t},(4.2a)

τ(t)
df
= τ0

t .(4.2b)
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Also define the excursion process, {ex
s (·); s ≥ 0} of (Z) from x as follows:

ex
s (r)

df
=



Z(τx

s− + r) , if 0 < r ≤ τx
s − τx

s−
x , if r = 0
δ , otherwise

,

where δ is the “coffin state”. The reader will note that {ex
s (·); s ≥ 0} is a stochastic process

whose state space is Ux ∪ {δ}, where

Ux
df
=

{
f ∈ C([0,∞)) : f(0) = x, and f(u) = x, for all u ≥ Rf

x, for some Rf
x

}
.

The σ–field on Ux is the one inherited from C([0,∞)). For any t ≥ 0 and all measurable

A ⊆ Ux define, Nx
t (A)

df
=

∑
s≤t 1A(ex

s ). We note that Nx
t (A) is at most a countable sum

and hence well–defined. Define the corresponding Itô measure, nx, by nx(A)
df
= ENx

1 (A).

It is not hard to see that {Nx
t (A); t ≥ 0} is a Poisson process with intensity nx(A), if the

latter is finite. In this case, {Nx
t (A)− nx(A)t; t ≥ 0} is a mean zero martingale and hence

a monotone class argument implies the following “exit system formula” for all t > 0:

E
∑
s≤t

Y (s)f(e0s) = E

∫ t

0

Y (s)nZ(s)(f)L0
ds,

for all bounded (say) predictable processes, (Y ), and all bounded measurable functions, f :

∪xUx ∪ {δ} 7→ R1 , such that f(δ) = 0. Here, as is customary, nx(f)
df
=

∫
Ux∪{δ} f(e)nx(de).

One can write a similar equation for excursions from any other x 6= 0. Moreover, by the

exit system formula, under Qw , N0
w(A) is a Poisson random variable with mean n0(A)w.

Fix w > 0 throughout and define,

A(ε)
df
={f ∈ U0 : sup

0≤r≤Rf
0

f(r) ≥ ε}.

Since |uε(0, 1)−N0
L0

1
(A(ε))| ≤ 1, it is sufficient (by (4.1) and the preceding discussion) to

prove that:

(4.3) lim sup
ε↓0

|2εN0
w(A(ε))− w|
ψ(w)

= 2w1/2, P − a.s.

It is (4.3) that we shall prove; but first, we next need two technical lemmas.
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Lemma 4.1. Suppose {X(α);α ≥ 0} is a R1
+–valued stochastic process satisfying the

following for every α ≥ 0:

(a) EX(α)
df
=µ(α) <∞;

(b) VarX(α)
df
=σ2(α) <∞;

(c) for all t ≥ 0, E exp(itX(α)) = (f(t))α, where f is a characteristic function (indepen-

dent of α).

Then uniformly over x = o(α1/6),

P(|X(α)− µ(α)| ≥ xσ(α)) =

√
2
π
x−1 exp(−x2/2) (1 + o(1)).

Proof. This lemma is a trivial modification of a large deviations theorem of Cramér. See

Theorem 8.1.1 of Ibragimov and Linnik (1971) for Petrov’s refinement of this result. �

Lemma 4.2. Fix w > 0 and θ > 0. Then as ε ↓ 0,

P

(
|2εN0

w(A(ε))− w| ≥ 2
√
θwψ(ε)

)
=

√
2/π

(2θ log log(1/ε))1/2(log(1/ε))θ
(1 + o(1)).

Proof. Fix θ > 0 and let X(ε)
df
=N0

w(A(ε)). Then by the discussion preceding Lemma 4.1,

{X(ε); ε > 0} satisfies the assumptions of Lemma 4.1 with µ(ε) = σ2(ε) = n0(A(ε)), which

is equal to (2ε)−1 by Proposition XII.3.6. of Revuz and Yor (1991). Hence by Lemma 4.1,

uniformly over all x = o(ε−1/12),

P

(
|N0

w(A(ε))− (w/2ε)| ≥
√
w/(2ε)x

)
=

√
2
π
x−1 exp(−x2/2) (1 + o(1)),

as ε ↓ 0. The lemma follows upon letting x
df
=

√
2θ log log(1/ε). �

Now we can finish the proof of (4.3) and hence Theorem 1.3. As in the proof of the

law of the iterated logarithm for Brownian motion, the proof consists of establishing an

upper bound as well as a lower bound. We shall start by proving the former:

Fix ρ ∈ (0, 1) and let ρ(n)
df
= ρn. Then by Lemma 4.2, for any θ > 0,

P

(
|2ρ(n)N0

w(A(ρ(n)))− w| ≥ 2
√
θwψ(ρ(n))

)
= (θπ logn)−1/2(n log(1/ρ))−θ (1 + o(1)),
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as n→∞. Therefore by the Borel–Cantelli lemma, for all θ > 1,

lim sup
n→∞

|2ρ(n)N0
w(A(ρ(n)))− w|
ψ(ρ(n))

≤ 2
√
θw, a.s.

Taking θ ↓ 1 along a countable sequence, it follows that

(4.4) lim sup
n→∞

|2ρ(n)N0
w(A(ρ(n)))− w|
ψ(ρ(n))

≤ 2
√
w, a.s.

Now for every ε ∈ (0, 1), there exists an integer Nε such that ρ(Nε + 1) ≤ ε ≤ ρ(Nε). By

sample path continuity, everytime Z upcrosses [0, ε], it has also upcrossed [0, ρ(Nε + 1)].

Therefore, N0
w(A(ε)) ≤ N0

w(A(ρ(Nε + 1))). Likewise, N0
w(A(ε)) ≥ N0

w(A(ρ(Nε))). Hence

by (4.4) and some arithmetic,

lim sup
ε↓0

|2εN0
w(A(ε))− w|
ψ(ε)

≤ 2
√
w/ρ, a.s.

Since ρ ∈ (0, 1) is arbitrary, we can take ρ ↑ 1 along a countable sequence to arrive at the

desired upper bound in (4.3):

lim sup
ε↓0

|2εN0
w(A(ε))− w|
ψ(ε)

≤ 2
√
w, a.s.

Next we prove the lower bound, thus completing the proof of Theorem 1.3. Through-

out the rest of this proof, let us redefine ρ(n) by ρ(n)
df
=n−n. The key lemma is the

following:

Lemma 4.3. With probability one,

lim sup
n→∞

|ρ(n+ 1)N0
w(A(ρ(n+ 1)))− ρ(n)N0

w(A(ρ(n)))|
ψ(ρ(n))

=
√
w.

Assuming the truth of this lemma for the time being, (4.3) and hence Theorem 1.3

follow from the following inequalities:

lim sup
ε↓0

|2εN0
w(A(ε))− w|
ψ(ε)

≥ lim sup
n→∞

|2ρ(n)N0
w(A(ρ(n)))− w|
ψ(ρ(n))

≥ 2
√
w − 2 lim sup

n→∞
|ρ(n+ 1)N0

w(A(ρ(n+ 1)))− w|
ψ(ρ(n))

(4.6)

= 2
√
w.
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In proving (4.6), we have used Lemma 4.3 together with the proven upper bound in (4.3)

as well as the fact that ψ(ρ(n+ 1))/ψ(ρ(n)) = (en)−1/2(1 + o(1)) → 0, as n→∞.

Proof of Lemma 4.3. Recall that ρ(n) = n−n and w > 0 is fixed. To simplify the nota-

tion, let us define N(n)
df
=N0

w(A(ρ(n))) and ψn
df
=ψ(ρ(n)). From the exit system formula,

it follows that conditioned on {N(n) = k},

N(n+ 1) =
k∑

j=1

∆j,n,

where {∆j,n; j ≥ 1} are i.i.d. geometric random variables with distribution given by,

P(∆1,n = j) =




(
1− ρ(n+1)

ρ(n)

)j−1(
ρ(n+1)

ρ(n)

)
if j = 1, 2, . . .

0 otherwise
.

Therefore, in particular,

E∆1,n =
ρ(n)

ρ(n+ 1)
,(4.6a)

Var ∆1,n =
(ρ(n)− ρ(n+ 1))ρ(n)

ρ2(n+ 1)
.(4.6b)

Let ∆̃j,n
df
=∆j,n − E∆j,n . For θ > 0, define,

Eθ(n)
df
=

{
ω :

|ρ(n+ 1)N(n+ 1)− ρ(n)N(n)|(ω)
ψn

≥ θ
√
w

}
,(4.7a)

Ẽ(n)
df
=

{
k ∈ Z1

+ : |2kρ(n)− w| ≥ 2
√

2wρ(n) logn
}
.(4.7b)

Since N(n) is Poisson with mean w(2ρ(n))−1, Lemma 4.2 implies that as n→∞,

P(N(n) 6∈ Ẽ(n)) =

√
1
2π

(logn)−1/2n−2 (1 + o(1))

= o(n−2).(4.7c)

Therefore,

P(Eθ(n)) =
∞∑

k=0

P(Eθ(n) | N(n) = k)P(N(n) = k)

=
∑

k 6∈Ẽ(n)

P

(
|

k∑
i=1

∆̃j,n| ≥ θ
√
wψn/ρ(n+ 1)

)
P(N(n) = k) + o(n−2).
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Now fix θ ∈ (1,
√

2). Next we will prove that uniformly over all k 6∈ Ẽ(n):

(4.8) P

(
|

k∑
i=1

∆̃j,n| ≥ θ
√
w/ρ(n+ 1)

)
=

1√
πθ

(logn)−1/2n−θ2
(1 + o(1)).

Indeed, by (4.6b), for all k 6∈ Ẽ(n),

Var (
k∑

i=1

∆j,n) =
wρ(n)

2ρ2(n+ 1)
(1 + o(αn)),

where αn
df
=n−(n−1)/2(logn)1/2. Therefore,

P

(
|

k∑
j=1

∆̃j,n| ≥ θ
√
wψn/ρ(n+ 1)

)
= P

(
|Sk,n| ≥ θ

√
2(1 + o(αn)) logn

)

= P

(
|Sk,n| ≥ θ

√
2

ψn√
ρ(n)

)

=

√
2
πθ

(logn)−1/2n−θ2
(1 + o(1)),

proving (4.8). In the above, we have applied Lemma 4.1 to the normalized sum:

Sk,n
df
=(Var

k∑
i=1

∆̃i,n)−1/2
k∑

i=1

∆̃j,n.

As a result, (4.7c) and (4.9) together imply the following:

(4.9) P(Eθ(n)) =
1√
πθ

(logn)−1/2n−θ2
(1 + o(1)).

In particular, picking θ ∈ (1,
√

2), we see that
∑

n P(Eθ(n)) < ∞, and hence by the

Borel–Cantelli lemma — letting θ ↓ 1 along a countable sequence — it follows that with

probability one,

lim sup
n→∞

|ρ(n+ 1)N(n+ 1)− ρ(n)N(n)|
ψn

≤ √
w,

which proves the upper half of Lemma 4.3.

For the lower half, fix any θ ∈ (0, 1). Then by (4.9),

(4.10)
∞∑

n=1

P(Eθ(n)) = ∞.
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By the strong Markov property (or by using the exit system formula), conditioned on

N(n+m), Eθ(n+m) and Eθ(n) are independent. Therefore,

P(Eθ(n+m) ∩ Eθ(n)) =

=
∞∑

k=0

P(Eθ(n+m) | N(n+m) = k)P(Eθ(n) | N(n+m) = k)P(N(n+m) = k)

=
∑

k 6∈Ẽ(n+m)

(· · ·) + o((n+m)−2),(4.11)

by (4.7c). By (4.8), however, uniformly over all k 6∈ Ẽ(n+m),

P(Eθ(n+m) | N(n+m) = k) =
1√
πθ

(log(n+m))−1/2(n+m)−θ2
(1 + o(1)).

Therefore by (4.11), (4.9) and (4.7c):

P(Eθ(n+m) ∩ Eθ(n)) =
1√
πθ

(log(n+m))−1/2(n+m)−θ2×

× P(Eθ(n);N(n+m) 6∈ Ẽ(n+m)) (1 + o(1))

= (1 + o(1)) P(Eθ(n+m))P(Eθ(n)).(4.12)

Hence, by Kochen and Stone (1964), (4.10) and (4.12) imply that P(Eθ(n), i.o.) = 1.

Taking θ ↑ 1 along a countable sequence, we arrive at the lower bound in Lemma 4.3. This

finishes the proof. �

5. Proof of Theorem 1.4.

Let λ be an exponential holding time — independent of the process Z — such that

Eλ = 1. We shall start with some technical lemmas.

Lemma 5.1. For all x ∈ R1 , P(Tx < λ) = exp(−√2|x|).

Proof. Since P(T0 = 0) = 1, it suffices to prove the lemma for x > 0. By independence of

Tx and λ:

P(λ > Tx) =
∫ ∞

0

P(λ > a)P(Tx ∈ da) = E exp(−Tx).

Now from Itô’s formula (see Theorem IV.3.3 of Revuz and Yor (1991)),

{exp(
√

2Z(t ∧ Tx)− Tx ∧ t); t ≥ 0},
is a positive bounded martingale. Therefore, by the Doob’s optional stopping theorem:

E exp(−Tx) = exp(−√2x). The result follows. �
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Lemma 5.2. For all x ∈ R1 ,

P(Lx
λ > a) = exp(−

√
2(|x|+ a))1(0,∞)(a) + ( 1− exp(−

√
2|x|) )1{0}(a).

Proof. We first write,

(5.1) P(Lx
λ > a) = E

(
1[0,λ)(Tx)P(Lx

λ > a | FTx
)
)
.

However, on {ω : Tx(ω) < λ(ω)}: λ = Tx + ϑTx
(λ), almost surely. (Notation being

obvious.) Since t 7→ Lx
t is an additive functional, it follows that on {ω : Tx(ω) < λ(ω)}:

Lx
λ = Lx

Tx
+ ϑTx

(Lx
λ−Tx

) = ϑTx
(Lx

λ). Therefore if a > 0, by (5.1),

(5.2) P(Lx
λ > a) = P(Tx < λ)P(L0

λ > a).

It remains to compute P(L0
λ > a). First off, for any a, b > 0,

P(L0
λ > a+ b) = P(τ(b) ≤ λ, L0

λ > a+ b),

where τ(·) is the inverse local time at zero as defined in (4.2b). But by independence,

on {ω : τ(b)(ω) ≤ λ}: λ = τ(b) + ϑτ(b)(λ), almost surely. Therefore, on {τ(b) ≤ λ}:
L0

λ = L0
τ(b) + ϑτ(b)(L0

λ) = b + ϑτ(b)(L0
λ). Since Z(τ(b)) = 0, a.s., we see from the strong

Markov property that,

P(L0
λ > a+ b) = P(τ(b) ≤ λ, ϑτ(b)(L0

λ) > a) = P(τ(b) ≤ λ)P(L0
λ > a)

= P(L0
λ ≥ b)P(L0

λ > a).

Evidently, P(L0
λ = b) = 0. From this fact, it follows that L0

λ has an exponential distri-

bution. To compute its mean, we recall that by Tanaka’s formula (see Theorem VI.1.2 of

Revuz and Yor (1991)),

|Z(λ)| =
∫ λ

0

sgn (Z(s))dZ(s) + L0
λ.

Since the stochastic integral in question has mean zero,

EL0
λ = E |Z(λ)| =

√
2
π
E
√
λ = 2−1/2.

Therefore, P(L0
λ > a) = exp(−√2a)1[0,∞)(a). If x 6= 0 and a > 0, by (5.2) and Lemma 5.1,

P(Lx
λ > a) = exp(−

√
2(a+ |x|)).

If a = 0: P(Lx
λ = 0) = P(Tx ≥ λ) = 1− exp(−√2|x|). This finishes the proof of the lemma.

�
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Lemma 5.3. Let θ > 0 be fixed. Then as ε ↓ 0,

P

(
|2εuε(x, λ)−Lx

λ| ≥ 2ϕ(ε)
√
θLx

λ, Tx < λ

)
= (θπ log(1/ε))−1/2εθ exp(−

√
2|x|) (1+o(1)),

where the o(1) term is independent of x ∈ R1 .

Proof. Using the excursion theory notation (cf. the paragraph following (4.2)), let us

define,

(5.3) A(ε)
df
=

⋃
x∈R1

{
f ∈ Ux : sup

0≤r≤Rf
x

f(r) ≥ x+ ε

}
.

(One can alternatively take the union over the rationals to avoid measurability problems.)

As noted earlier, almost surely, supx∈R1 |Nx
Lx

λ
(A(ε))−uε(x, λ)| ≤ 1. Therefore by increasing

θ a little bit we see that it suffices to prove the lemma with Nx
Lx

λ
(A(ε)) replacing uε(x, λ).

Since, Nx
Lx

λ
(A(ε)) = ϑTx

(Nx
Lx

λ
(A(ε))), and Lx

λ = ϑTx
(Lx

λ), an application of the strong

Markov property shows that,

P

(
|2εNx

Lx
λ
(A(ε))− Lx

λ| ≥ 2ϕ(ε)
√
θLx

λ, Tx < λ

)

= P(Tx < λ)P
(
|2εN0

L0
λ
(A(ε))− L0

λ| ≥ 2ϕ(ε)
√
θL0

λ

)

= e−
√

2|x|
∫ ∞

0

P

(
|2εN0

w(A(ε))− w| ≥ 2ϕ(ε)
√
wθ

)
P(L0

λ ∈ dw) (by Lemma 5.1)

= e−
√

2|x|
(∫ θ log(1/ε)

0

+
∫ ∞

θ log(1/ε)

)
· · ·

· · · P
(
|2εN0

w(A(ε))− w| ≥ 2ϕ(ε)
√
wθ

)√
2e−

√
2wdw (by Lemma 5.2)

df
=
√

2e−
√

2|x|
∫ θ log(1/ε)

0

P(· · ·)e−
√

2wdw +R(x, ε),

where R(x, ε) ≥ 0 for all x ∈ R1 and ε > 0 and satisfies:

(5.4) sup
x∈R1

R(x, ε) ≤
√

2
∫ ∞

θ log(1/ε)

exp(−
√

2w)dw = ε
√

2θ.

On the other hand, as pointed out in Section 4, N0
w(A(ε)) is a Poisson random variable

with mean (w/2ε). Therefore proceeding as in Lemma 4.2, by Lemma 4.1, uniformly over

all w ∈ (0, θ log(1/ε)):

P

(
|2εN0

w(A(ε))− w| ≥ 2ϕ(ε)
√
wθ

)
= (θπ log(1/ε))−1/2εθ (1 + o(1)),
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as ε ↓ 0. This and (5.4) together finish the proof of the lemma. �

We are now ready to prove the upper bound in Theorem 1.5. Fix R, η, θ > 0 and

define:

K(ε, η, R)
df
=

{
s ∈ R1 : s ∈ εη

(
Z1 ∩ [−R,R]

)}

G(x; θ, ε)
df
=

{
ω : |2εuε(x, λ)(ω)− Lx

λ(ω)| ≥ 2ϕ(ε)
√
θLx

λ(ω)
}
.

It is clear that for all ε ∈ (0, 1/10), #K(ε, η, R) ≤ C4(η, R)ε−η, where C4(η, R) is a

positive finite constant. Lemma 5.3 guarantees the existence of a positive finite constant

C5(θ, η, R), such that for all ε ∈ (0, 1/10):

P

( ⋃
x∈K(ε,η,R)

G(x; θ, ε) ∩ {Tx < λ}
)
≤ #K(ε, η, R) max

x∈K(ε,η,R)
P

(
G(x; θ, ε) ∩ {Tx < λ}

)

≤ C5(θ, η, R)
(
log(1/ε)

)−1/2
εθ−η.

Fix ρ ∈ (0, 1), η > 1 and θ > η. Replacing ε by ρ(n)
df
= ρn in the above, it follows that

∞∑
n=1

P

( ⋃
x∈K(ρ(n),η,R)

G(x; θ, ρ(n))∩{Tx < λ}
)
≤ C6(θ, η, R, ρ)

∞∑
n=1

ρn(θ−η)(logn)−1/2 <∞,

for some positive finite constant, C6(θ, η, R, ρ). However, on the set {Tx ≥ λ}, eε(x, λ) =

Lx
λ = 0 for all ε > 0, the null set being independent of x ∈ R1 . Moreover, it is trivial

that for all ω: supx∈K(ε,η,R) L
x
λ(ω) ≤ L∗λ(ω). Therefore, by the Borel–Cantelli lemma, the

following holds with probability one:

(5.5) lim sup
n→∞

sup
x∈K(ρ(n),η,R)

|2ρ(n)uρ(n)(x, λ)− Lx
λ|

ϕ(ρ(n))
≤ 2

(
θ sup

x∈R1
Lx

λ

)1/2
.

Let x ∈ [−R,R]. By fn(x) we shall mean the element of K(ρ(n), η, R) which is the closest

to x. To make this choice unique, we shall require that fn(x) ≤ x. We futher point out

that, supx∈[−R,R] |x−fn(x)| = ρηn. By (1.3), the uniform modulus of continuity of x 7→ Lx
λ

implies that with probability one,

sup
x∈[−R,R]

|Lx
λ − L

fn(x)
λ | = O

(√|x− fn(x)| log |x− fn(x)|−1
)

= O(ρnη/2
√

logn),

= o(ϕ(ρ(n))),(5.6)
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as n → ∞. On the other hand, since K(ε, ρ(n), R) ⊆ K(ε, ρ(n + 1), R) and t 7→ Z(t) is

continuous (a.s.),

uρ(n)(fn(x), λ) ≤ uρ(n+1)(x, λ) ≤ uρ(n+1)(fn(x+ ρ(n)η), λ).

The above, together with (5.5) and (5.6) imply that almost surely:

lim sup
n→∞

sup
x∈[−R,R]

|2ρ(n)uρ(n)(x, λ)− Lx
λ|

ϕ(ρ(n))
≤ 2

(
θL∗λ

)1/2
.

We recall that η, R > 0, θ > η and ρ ∈ (0, 1) were arbitrary. Arguing as in the previous

section, it follows that

(5.7) lim sup
ε↓0

sup
x∈R1

|2εuε(x, λ)− Lx
λ|

ϕ(ε)
≤ 2

(
L∗λ

)1/2
.

By scaling, the above still holds, if λ is an exponential holding time with mean u, for any

u > 0. Therefore, by considering inverse Laplace transforms — as in the end of Section 3

— the upper bound follows, i.e., (5.7) holds with λ replaced by any fixed t > 0.

To conclude, we next provide a proof for the lower bound corresponding to (5.7).

Throughout, fix M > 1 and for all x ∈ R1 and ε > 0 define,

A(x, ε)
df
=

{
f ∈ Ux : sup

0≤r≤Rf
x

f(r) ∈ [x+ ε, x+Mε)
}
.

Thus the excursions in A(x, ε) are exactly those which have upcrossed [x, x + ε] but not

[x, x+Mε). Let N(x, ε) denote the corresponding counting measure to A(x, ε), i.e.,

N(x, ε)
df
=Nx

Lx
λ
(A(x, ε)).

For all x ∈ R1 and all ε, θ > 0, define

G̃(x; θ, ε)
df
=

{
ω : |2εN(x, ε)(ω)− (1−M−1)Lx

λ(ω)| ≤ 2ϕ(ε)
√
θ
(
1−M−1

)
Lx

λ(ω)
}
.

Note that:

(R1) When M is large, the collection, G̃, is approximately the same as the complement of

G where the latter was defined earlier in this section.
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(R2) For each x ∈ R1 and ε, θ > 0, on the set, {Tx ≤ λ}, G̃(x; θ, ε) = ϑTx
(G̃(x; θ, ε)),

almost surely.

(R3) Fix w > 0. Then given {Lx
λ = w}, we have Tx ≤ λ, almost surely, since the support

of t 7→ Lx
t is with probability one equal to {s : Z(s) = x}.

(R4) Fix w > 0 and x ≥ Mε. Then given {Lx
λ = w}, N(x, ε) is independent of L0

λ

and N(0, ε). This is a consequence of the exit system formula and the fact that

A(x, ε) ∩ A(0, ε) = ∅.
Next we state and prove two lemmas which shall be of use in the proof of the lower

bound.

Lemma 5.4. Fix w, x > 0. Then there exist an i.i.d. sequence of random variables,

{δ1, δ2, · · ·} which are exponentially distributed with mean 2x and an independent random

variable, N , such that (N − 1) is Poisson with mean w/2x, and that given {Lx
λ = w},

N∑
j=0

δj ≤ L0
λ ≤

N+1∑
j=0

δj ,

almost surely.

Proof. Let U0
df
=0 and iteratively define,

U2j+1
df
=U2j + ϑU2j

(Tx) (j ≥ 0)

U2j
df
=U2j−1 + ϑU2j−1(T0), (j ≥ 1).

Then the Ui’s are the uppcrossing times of the interval [0, x]. Since the support of the

increasing function: t 7→ L0
λ is almost surely the set {s : Z(s) = 0},

L0
λ =

N∑
j=0

(
L0

U2j+1
− L0

U2j

)
+

(
L0

λ − L0
U2N+1

)
df
=

N∑
j=0

δj +
(
L0

λ − L0
U2N+1

)
,

where N
df
=max{j : U2j+1 ≤ λ}. Note that N − 1 is the number of downcrossings of [0, x]

before time λ. Therefore, by the exit system formula, given {Lx
λ = w}, (N − 1) is Poisson

with mean w/2x. Moreover, given {Lx
λ = w},

N∑
j=0

δj ≤ L0
λ ≤

N+1∑
j=0

δj ,
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and the δi’s are i.i.d. exponential and are independent of N . It remains to compute the

mean of δ1. By Tanaka’s formula (Theorem VI.1.2 of Revuz and Yor (1991)),

Z(t)+ =
∫ t

0

1(0,∞)(Z(s))dZ(s) +
1
2
L0

t .

The above and Doob’s optional sampling theorem together imply that Eδ1 = EL0
Tx

= 2x.

The lemma follows. �

Lemma 5.5. With the notation of Lemma 5.4, for all ξ ∈ (
0, (2x)−1

)
,

E exp
(
ξ

N+1∑
j=0

δj

)
= (1− 2xξ)−3 exp

(
wξ

1− 2xξ

)
.

The proof of Lemma 5.5 is omitted as it only involves basic calculations with Gamma

distributions.

We are ready to proceed with the proof of the lower bound. Fix for now ε ∈ (
0,M−1

)
,

some x ∈ [Mε, 1] and an arbitrary θ ∈ (0, 1). For typographical ease, we shall suppress

the θ and ε in the definition of G̃, i.e., we write G̃(x) for G̃(x; θ, ε). We first estimate

P(G̃(0) ∩ G̃(x) ∩ {Tx ≤ λ}). Indeed,

P(G̃(0) ∩ G̃(x) ∩ {Tx ≤ λ}) =

=
√

2
∫ ∞

0

P
(
G̃(0) ∩ G̃(x) | Lx

λ = w
)
exp

(−√
2(x+ w)

)
dw (by Lemma 5.2)

=
√

2e−
√

2x

∫ ∞

0

P
(
G̃(x) | Lx

λ = w
)
P
(
G̃(0) | Lx

λ = w
)
exp(−

√
2w)dw (by (R4))

≤
√

2
( ∫ ε

0

+
∫ 2 log(1/ε)

ε

+
∫ ∞

2 log(1/ε)

)
· · ·

· · ·P(
G̃(x) | Lx

λ = w
)
P
(
G̃(0) | Lx

λ = w
)
exp(−

√
2w)dw

=
√

2
( ∫ ε

0

+
∫ 2 log(1/ε)

ε

+
∫ ∞

2 log(1/ε)

)
· · ·

· · ·P(
G̃(0) | L0

λ = w
)
P
(
G̃(0) | Lx

λ = w
)
exp(−

√
2w)dw.

The last statement follows from the strong Markov property and (R2). Thus, it suffices to

estimate seperately the following terms:

E1(ε)
df
=
√

2
∫ ε

0

P
(
G̃(0) | L0

λ = w
)
P
(
G̃(0) | Lx

λ = w
)
exp(−

√
2w)dw(5.8a)
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E2(ε)
df
=
√

2
∫ 2 log(1/ε)

ε

P
(
G̃(0) | L0

λ = w
)
P
(
G̃(0) | Lx

λ = w
)
exp(−

√
2w)dw(5.8b)

E3(ε)
df
=
√

2
∫ ∞

2 log(1/ε)

P
(
G̃(0) | L0

λ = w
)
P
(
G̃(0) | Lx

λ = w
)
exp(−

√
2w)dw.(5.8c)

Estimating E1 and E3 is easy. Indeed,

E1(ε) ≤
√

2ε(5.9a)

E3(ε) ≤
√

2
∫ ∞

2 log(1/ε)

exp(−
√

2w)dw = ε2
√

2 ≤ ε.(5.9b)

We shall next estimate the terms in E2. First we note that,

P
(
G̃(0) | L0

λ = w
)

= P
(|2εN0

w(A(0, ε))− w| ≤ 2ϕ(ε)
√
θ(1−M−1)w

)
,

and N0
w(A(0, ε)) is Poisson with mean, n0(A(0, ε)) = n0(A(ε))−n0(A(Mε)) = (w/2ε)(1−

M−1), where A(ε) is given by (5.3). Therefore, as in Lemma 4.2,

(5.10) P
(
G̃(0) | L0

λ = w
)

= 1− (
θπ log(1/ε)

)−1/2
εθ (1 + o(1)),

uniformly over all w ∈ (0, 2 log(1/ε)). To estimate the other terms in E2(ε), we note that

for all w ∈ (
0, 2 log(1/ε)

)
and all x ≥Mε:

P
(
G̃(0) | Lx

λ = w
)

=
∫ ∞

0

P
(
G̃(0), L0

λ ∈ dz | Lx
λ = w

)
=

∫ ∞

0

P
(
G̃(0) | L0

λ = z
)
P
(
L0

λ ∈ dz | Lx
λ = w

)
,

since by the exit system formula, G̃(0) is independent of Lx
λ, conditioned on L0

λ. Hence,

P
(
G̃(0) | Lx

λ = w
)

=
( ∫ 4 log(1/ε)

0

+
∫ ∞

4 log(1/ε)

)
· · ·

· · ·P(
G̃(0) | L0

λ = z
)
P
(
L0

λ ∈ dz | Lx
λ = w

)
(5.11)

df
=E4(ε, w) + E5(ε, w).

By Lemma 5.4, for all ξ ∈ (
0, (2x)−1

)
,

E5(ε, w) ≤ P

( N+1∑
j=0

δj ≥ 4 log(1/ε)
)

≤ (1− 2xξ)−3 exp
(

wξ

1− 2xξ
− 4ξ log(1/ε)

)
.
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Pick ξ
df
=(2x)−1

(
1−√

w/4 log(1/ε)
)
, we get the following estimate for E5:

E5(ε, w) ≤
(

4 log(1/ε)
w

)3/2

exp
(
− 1

2x
(√
w −

√
4 log(1/ε)

)2
)
.

Since θ ∈ (0, 1), uniformly over all x ∈ [Mε, 1],

sup
ε≤w≤2 log(1/ε)

E5(ε, w) ≤ (
4ε−1 log(1/ε)

)3/2 exp
( − (

2xε
)−1 )

≤ C7(M)ε.(5.12)

for some finite positive constant C7(M). Furthermore, as in Lemma 4.2, uniformly over

all z ∈ (
0, 4 log(1/ε)

)
:

P
(
G̃(0) | L0

λ = z
)

= 1− (
θπ log(1/ε)

)−1/2
εθ (1 + o(1)),

where the o(1) term is independent of x ≥Mε. Hence uniformly over all w and all x ≥Mε,

E4(ε, w) ≤ 1− (
θπ log(1/ε)

)−1/2
εθ (1 + o(1))

≤ exp
(− C8(θ,M) log−1/2(1/ε)εθ

)
,

for some finite positive constant C8(θ,M). Therefore, by (5.11) and (5.12),

P
(
G̃(0) | Lx

λ = w
) ≤ exp

(− C8(θ,M) log−1/2(1/ε)εθ
)

+ C7(M)ε

≤ C9(θ,M) exp
(− C8(θ,M) log−1/2(1/ε)εθ

)
.

uniformly over all x ∈ [Mε, 1] and every w ∈ [Mε, 2 log(1/ε)]. Here C9(θ,M) is some finite

positive constant. Therefore by (5.8b) and (5.10), there exist finite positive constants

C10(θ,M) and C11(θ,M) such that,

sup
x∈[Mε,1]

E2(ε) ≤ C10(θ,M) exp
(− C8(θ,M) log−1/2(1/ε)εθ

)×
×

(
1− (

θπ log(1/ε)
)−1/2

εθ (1 + o(1))
)

≤ C10(θ,M) exp
(
− 2C11(θ,M) log−1/2(1/ε)εθ

)
.

–29–



THE ANNALS OF PROBABILITY, 22(3), 1295-1330 (1994)

Hence, from (5.9) it follows that for some finite constant C12(θ,M),

(5.13) P
(
G̃(0) ∩ G̃(x) ∩ {Tx ≤ λ}) ≤ C12(θ,M) exp

(− 2C11(θ,M) log−1/2(1/ε)εθ
)
.

By induction, the proof of (5.13) shows the existence of positive finite constants, C13 =

C13(θ,M) and C14 = C14(θ,M), such that for any integer ν ∈ [
2, (Mε)−1

]
and all

x1, x2, · · · , xν ∈ [Mε, 1], which satisfy xi ≥ xi−1 +Mε,

P

(
G̃(0) ∩ G̃(x1) ∩ · · · G̃(xν) ∩ {Txν

≤ λ}
)
≤ C12ν exp

(− C11 log−1/2(1/ε)νεθ
)

≤ C13 exp
(
− C14νε

θ

)
.

We shall let xj
df
= jMε, j = 0, . . . ,

[
(Mε)−1

]
. It follows that ν =

[
(Mε)−1

]
in the above.

Moreover,

P

(
G̃(x; θ, ε) ∩ {Tx ≤ λ} for all x ∈ [0, 1]

)

≤ P

(
G̃(0) ∩ G̃(x1) ∩ · · · G̃(xν) ∩ {Txν

≤ λ}
)

≤ C13(θ,M) exp
(
− C14(θ,M)M−1[ε]θ−1

)
.(5.14)

With no essential changes, the proof of (5.14) can be extended to show that for all real–

valued a ≤ b, there exist positive finite constants, C15(θ,M, a, b) and C16(θ,M, a, b) such

that

P

(
G̃(x; θ, ε) ∩ {Tx ≤ λ} for all x ∈ [a, b]

)

≤ C16(θ,M, a, b) exp
(
− C15(θ,M, a, b)[ε]θ−1

)
.

Fix ρ ∈ (0, 1) and define ρ(n)
df
= ρn. Since we had fixed θ ∈ (0, 1), it follows at once that

for all a ≤ b: ∑
n

P

(
G̃

(
x; θ, ρ(n)

)∩ {Tx ≤ λ} for all x ∈ [a, b]
)
<∞.

The Borel–Cantelli lemma and a sample path argument together show that

lim inf
n→∞ sup

x∈R1

|2ρ(n)N
(
x, ρ(n)

)− (
1−M−1

)
Lx

λ|
ϕ
(
ρ(n)

) ≥ 2 inf
a≤x≤b

√
θ(1−M−1) Lx

λ.
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Letting θ ↑ 1 along a countable sequence, since a ≤ b is arbitrary and x 7→ Lx
λ is continuous,

lim inf
n→∞ sup

x∈R1

|2ρ(n)N
(
x, ρ(n)

)− (
1−M−1

)
Lx

λ|
ϕ
(
ρ(n)

) ≥ 2
√
L∗λ(1−M−1).

However, as pointed out earlier,

Nx
Lx

λ

(
A(ρ(n))

)
= N

(
x, ρ(n)

)
+Nx

Lx
λ

(
A(Mρ(n))

)
,

and |uε(x, λ)−Nx
Lx

λ

(
A(ε)

)| ≤ 1. Therefore,

lim inf
n→∞ sup

x∈R1

|2ρ(n)uρ(n)

(
x, λ

)− Lx
λ|

ϕ
(
ρ(n)

)

≥ lim inf
n→∞ sup

x∈R1

|2ρ(n)N
(
x, ρ(n)

)− (
1−M−1

)
Lx

λ|
ϕ
(
ρ(n)

)
− lim sup

n→∞
sup
x∈R1

|2ρ(n)Nx
Lx

λ

(
A(Mρ(n))

)−M−1Lx
λ|

ϕ
(
ρ(n)

)

≥ 2
√
L∗λ ·

(√
1−M−1 −

√
M−1

)
.

The last inequality holding because of the (already proven) upper bound, (5.7). Since

M > 1 is arbitrary, letting M ↑ ∞ along a countable sequence, we see that

lim inf
n→∞ sup

x∈R1

|2ρ(n)uρ(n)

(
x, λ

)− Lx
λ|

ϕ
(
ρ(n)

) ≥ 2
√
L∗λ.

By a monotonicity argument and taking inverse Laplace transforms as in the previous

section, the lower bound follows. �

6. Proof of Theorem 1.5.

As in Section four’s proof of Theorem 1.3, we can reduce the problem to the case

where x = 0 and t = 1. Moreover, much as in the derivation of (4.1), one can argue that

it is sufficient to show that for all w > 0,

(6.1) lim sup
ε↓0

|(πε/2)1/2eε(0, 1)− w|
κ(ε)

= (2π)1/4w1/2, a.s.
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where κ(ε)
df
= ε1/4

√
1 ∨ log log(1/ε). Therefore, from now on we shall hold fixed a w > 0.

Recall the process of excursions from zero: {e0s; s ≥ 0} and the associated counting

process, {N0
t (A); t ≥ 0} for measurable A ⊆ U0 ∪ {δ}. Define,

A(ε)
df
=

{
f ∈ U0 ∪ {δ} : Rf

0 ≥ ε

}
.

We recall that Rf
0 was the lifetime of the excursion, f , from zero. Since Qw–almost surely,

|Nw(A(ε))− eε(0, 1)| ≤ 1,

(where Qw is defined in Section 4), by (6.1) it suffices to show that P–almost surely,

lim sup
ε↓0

|(πε/2)1/2N0
w(A(ε))− w|

κ(ε)
= (2π)1/4w1/2.

However, by the exit system formula, N0
w(A(ε)) is a Poisson random variable with mean

n0(A(ε)) = (2/πε)1/2w. The calculation of the latter excursion law can be found, for

example, in Proposition XII.2.8 of Revuz and Yor (1991). Therefore, arguing as in the

proof of Lemma 4.2, for all θ > 0,

P

(
|(πε/2)1/2N0

w(A(ε))− w| ≥ (2π)1/4(wθ)1/2κ(ε)
)

=

√
2/π

(2θ log log(1/ε))1/2(log(1/ε))θ
(1 + o(1)),(6.2)

as ε ↓ 0. Define for all ε > 0 and θ > 0,

Sθ(ε)
df
=

{
ω : |(πε)1/2N0

w(A(ε))(ω)− w| ≥ (2π)1/4(θw)1/2κ(ε)
}
.

First we will prove the upper bound for the limsup. Fix ρ ∈ (0, 1) and θ > 1 and define

ρ(n)
df
= ρn. Then by (6.2),

∞∑
n=1

P(Sθ(n))) ≤ C17(θ)
∞∑

n=1

(logn)−1/2n−θ <∞,

for some finite constant, C17(θ). Therefore, by the Borel–Cantelli lemma (and letting θ ↑ 1)

it follows that,

lim sup
n→∞

|(πρ(n)/2)1/2N0
w(ρ(n)))− w|

κ(ρ(n))
≤ (2π)1/4w1/2,
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almost surely. However, as ε ↓ 0, there are integers, Nε, for which ρ(Nε + 1) ≤ ε ≤ ρ(Nε).

Since, A(ρ(Nε)) ⊆ A(ε) ⊆ A(ρ(Nε + 1)), it follows that,

N0
w(A(ρ(Nε))) ≤ N0

w(A(ε)) ≤ N0
w(A(ρ(Nε + 1))).

Hence using some arithmetic,

lim sup
ε↓0

|(πε/2)1/2N0
w(A(ε))− 2|

κ(ε)
≤ (2π)1/4(w/ρ)1/2,

almost surely. Letting ρ ↑ 1 along a countable sequence, we arrive at the desired upper

bound.

For the proof of the lower bound define, ρ(n)
df
=n−n, and let

B(n+ 1)
df
=A(ρ(n+ 1)) \A(ρ(n));

N(n)
df
=N0

w(B(n)).

Let us note that N(n) = N0
w(A(ρ(n+1)))−N0

w(A(ρ(n))). Since {B(n);n ≥ 0} is a disjoint

sequence of sets in U0 ∪ {δ}, by the exit system formula, {N(n);n ≥ 0} are independent

Poisson random variables with mean,

n0(A(ρ(n+ 1)) \A(ρ(n))) = n0(A(ρ(n+ 1)))− n0(A(ρ(n)))

= (πρ(n+ 1)/2)−1/2w (1 +O(n−1/2)).

Let

S̃θ(n)
df
=

{
ω : |(πρ(n+ 1)/2)1/2N(n)(ω)− w| ≥ (2π)1/4(wθ)1/2κ(ρ(n+ 1))

}
,

where θ ∈ (0, 1). Then arguing as in (6.2),

P(S̃θ(n)) = (πθ logn)−1/2n−θ (1 + o(1)).

Therefore, since θ ∈ (0, 1),
∑

n P(S̃θ(n)) = ∞. By the independence half of the Borel–

Cantelli lemma, P(S̃θ(n), i.o.) = 1. In other words, letting θ ↑ 1 along a countable

sequence,

lim sup
n→∞

|(πε/2)1/2N(n)− w|
κ(ρ(n+ 1))

≥ (2π)1/4w1/2,
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almost surely. Therefore,

lim sup
ε↓0

|(πε/2)1/2N0
w(A(ε))− w|

κ(ε)
≥ lim sup

n→∞
|(πε/2)1/2N0

w(A(ρ(n+ 1)))− w|
κ(ρ(n+ 1))

≥ (2π)1/4w1/2 − lim sup
n→∞

|(πε/2)1/2N0
w(A(ρ(n)))− w|

κ(ρ(n+ 1))

= (2π)1/4w1/2,

by the upper bound half (which we have already proven) together with the fact that

κ(ρ(n)) = κ(ρ(n+ 1))(en)−1/4 (1 + o(1)) = o(κ(ρ(n+ 1)), as n→∞. This completes the

proof. �

7. Proof of Theorem 1.6.

Theorem 1.6 is proved much like Theorem 1.4. Therefore, for the sake of brevity, we

shall point out the differences in proofs. As in Section 5, we start with the proof of the

upper bound. The first result is the analogue of Lemma 5.3.

Lemma 7.1. Let θ > 0 be fixed. Then as ε ↓ 0,

P

(
|(πε/2)1/2eε(x, λ)−Lx

λ| ≥ 2κ(ε)
√
θLx

λ, Tx < λ

)
=

(
θπ log(1/ε)

)−1/2
εθe−

√
2|x| (1+o(1)),

where the o(1) term is independent of x ∈ R1 .

Proof. We proceed almost exactly as in the proof of Lemma 5.3 with some minor adjust-

ments. Let

(7.1) D(ε)
df
=

⋃
x∈R1

{
f ∈ Ux : Rf

x ≥ ε

}
.

Following the argument in Lemma 5.3,

P

(
|(πε/2)1/2Nx

Lx
λ

(
D(ε)

)− Lx
λ| ≥ (2π)1/4κ(ε)

√
θLx

λ, Tx < λ

)

=
√

2e−
√

2|x|
∫ θ log(1/ε)

0

P

(
|(πε/2)1/2N0

w

(
D(ε)

)− w| ≥ (2π)1/4κ(ε)
√
θw

)
e−

√
2wdw

+R(x, ε),
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where R(x, ε) ≥ 0 for all x ∈ R1 and ε > 0; moreover,

(7.2) sup
x∈R1

R(x, ε) ≤ ε
√

2θ.

From Section 6, N0
w

(
D(ε)

)
is a Poisson random variable with mean (2/πε)1/2w. Therefore,

as in Lemma 5.3,

P

(
|(πε/2)1/2N0

w

(
D(ε)

)− w| ≥ (2π)1/4κ(ε)
√
θw

)
=

(
θπ log(1/ε)

)−1/2
εθ (1 + o(1)),

uniformly over all w ∈ (
0, θ log(1/ε)

)
. The lemma follows from (7.2). �

Fix R, η, θ > 0 and define as in Section 5,

K(ε, η, R)
df
=

{
s ∈ R1 : s ∈ εη

(
Z1 ∩ [−R,R]

)}

V (x; θ, ε)
df
=

{
ω :

∣∣(πε/2)1/2eε(x, λ)(ω)− Lx
λ(ω)

∣∣ ≥ (2π)1/4κ(ε)
√
θLx

λ(ω)
}
.

Then exactly as in Section 5, (using Lemma 7.1 instead of Lemma 5.3)

P

( ⋃
x∈K(ε,η,R)

V (x; θ, R)
⋂{

Tx < λ
})

≤ C18

(
θ, η, R

)(
log(1/ε)

)−1/2
εθ−η.

Fix ρ ∈ (0, 1), η > 1 and θ > η. Replace ε by ρ(n)
df
= ρn to see that

∑
n

P

( ⋃
x∈K(ρ(n),η,R)

V (x; θ, ρ(n))∩ {Tx < λ}
)
<∞.

Therefore, as in the argument leading to (5.5):

(7.3) lim sup
n→∞

sup
x∈K(ρ(n),θ,R)

|(πρ(n)/2
)1/2

eρ(n)(x, λ)− Lx
λ|

κ
(
ρ(n)

) ≤ (2π)1/4
√
θL∗λ.

Temporarily fix some ζ ∈ (0, 1/2). By the modulus of continuity of t 7→ Z(t), (see (2.1b)),

a sample path argument reveals that uniformly over all x ∈ R1 , and t ∈ [0, 1]:

eε0(x− δ, t) ∧ eε0(x+ δ, t) ≤ eε(x, t) ≤ eε1(x− δ, t) ∨ eε1(x+ δ, t),

where ε0
df
= ε + δζ , ε1

df
= ε − δζ , and ε > δ > 0 are small. Arguing as in the proof of (5.7),

we are led to the following:

(7.4) lim sup
ε↓0

sup
x∈R1

|(πε/2)1/2eε(x, λ)− Lx
λ|

κ(ε)
≤ (2π)1/4

√
L∗λ,

–35–



THE ANNALS OF PROBABILITY, 22(3), 1295-1330 (1994)

which is the desired upper bound. To get the lower bound, the ideas are again similar to

those appearing in Section 5. Fix M > 1, x ∈ R1 , θ ∈ (0, 1/2) and ε ∈ (
0,M−1

)
. Define,

D(x, ε)
df
=

{
f ∈ Ux : Rf

x ≥ ε and sup
0≤r≤Rf

x

|f(r)| ≤ x+ (Mε)1/2

}
.

Also define,

W (x, ε)
df
=

{
f ∈ Ux : sup

0≤r≤Rf
x

|f(r)| ≥ x+ (Mε)1/2

}
.

Let Ñ be the counting process associated to D(x, ε), i.e., Ñ(x, ε)
df
=Nx

Lx
λ

(
D(x, ε)

)
. Define,

n(ε)
df
=(πε/2)1/2n0

(
D(0, ε)

)
and n̄(ε)

df
=(πε/2)1/2

[
n0

(
D(0, ε)

) − n0
(
D(0, ε)

) ]
. Based on

the above definitions, we define:

D̃(x; θ, ε)
df
=

{
ω : |(πε/2)1/2Ñ(x, ε)(ω)− n(ε)Lx

λ(ω)| ≤ (2π)1/4κ(ε)
√
θn(ε)Lx

λ(ω)
}
.

The event D̃(x; θ, ε) is this section’s analogue of G̃(x; θ, ε) of Section 5. The following

lemma estimates n(ε):

Lemma 7.2. For all ε ∈ (0,M−1):

n̄(ε) ∈ [
0, (2/Mπ)1/2

]
n(ε) ∈ [

1− (2/Mπ)1/2, 1
]
.

Proof. Recall the definition of D(ε) from (7.1). Then for all w ∈ R1 and ε > 0,

N0
w

(
D(ε)

) ≥ N0
w

(
D(0, ε)

) ≥ N0
w

(
D(ε)

)−N0
w

(
W (0, ε)

)
.

Letting w = 1 and taking expectations:

(πε/2)1/2n0
(
D(ε)

) ≥ n(ε) ≥ (πε/2)1/2
[
n0

(
D(ε)

)− n0
(
W (0, ε)

) ]
.

The lemma follows since from Section 6: n0
(
D(ε)

)
= (2/πε)1/2 and from Section 5 and

the exit sytem formula: n0
(
W (0, ε)

)
= (Mε)−1/2. �

Let xj
df
= j(Mε)1/2 for j = 0, . . . , ν

df
=

[
(Mε)−1/2

]
. Writing D̃(x) for D̃(x; θ, ε), as in

Section 5 we obtain:

P
(
D̃(0) ∩ D̃(x1) ∩ . . . ∩ D̃(xν) ∩ {Txν ≤ λ}) ≤ C19ε

−1/2 exp
(− C20ν

(
log(1/ε)

)−1/2
εθ

)
≤ C21 exp

(− C22ε
θ−1/2

)
,
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for some positive finite constants, Cj
df
=Cj(θ,M), j = 19, · · · , 22. Fix ρ ∈ (0, 1) and define

ρ(m)
df
= ρm for m ≥ 1. By Lemma 7.2 and the Borel–Cantelli arguments of Section 5, since

θ ∈ (0, 1/2) is arbitrary,

(7.5) lim inf
m→∞ sup

x∈R1

|(πρ(m)/2)1/2Ñ
(
x, ρ(m)

)− n
(
ρ(m)

)
Lx

λ|
κ
(
ρ(m)

) ≥ (π/2)1/4
√
βML∗λ,

where βM
df
=

(
1− (2/Mπ)1/2

)
. On the other hand, let us define,

˜̃
N(x, ε)

df
=Nx

Lx
λ

(
D(ε) \D(x, ε)

)
= Nx

Lx
λ

(
D(ε)

)− Ñ(x, ε).

Then as in (7.3), we see that for all θ0 > 1,

lim sup
m→∞

sup
x∈K(ρ(m),θ0,∞)

|(πρ(m)/2
)1/2 ˜̃

N
(
x, ρ(m)

)− n̄
(
ρ(m)

)
Lx

λ|
κ
(
ρ(m)

)
≤ (2π)1/4

√
(2/Mπ)θ0L∗λ

= 23/4π−1/4M−1/2
√
θ0L

∗
λ.(7.6)

Since ˜̃
N(x, ε) + Ñ(x, ε) differs from eε(x, λ) by at most one, (7.5) and (7.6) together yield

the following:

lim inf
m→∞ sup

x∈R1

|(πρ(m)/2
)1/2

eρ(m)(x, λ)− Lx
λ|

κ
(
ρ(m)

) ≥ (π/2)1/4αM

√
L∗λ,

where αM = αM (θ0)
df
=β

1/2
M − 2(θ0/Mπ)1/2. But M > 1 is arbitrary. Therefore, we can

let M ↑ ∞ along a countable sequence. Since limM→∞ βM = 1, limM→∞ αM = 1 as well.

Hence the desired lower bound follows from the monotonicity argument of the previous

sections. �
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