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Abtract. We prove a space–time estimate for a Lévy process to hit a
small set. As an application, we present escape rates for Lévy processes with
strictly stable components.

§1. Introduction. Let X denote a d–dimensional Lévy process. It is a classical fact that a
Borel set A ⊂ R

d is polar for X if and only if A has positive X–capacity; cf. Blumenthal and
Getoor BG]. A sharper variant of the aforementioned fact is the consequence of more recent
investigations such as those of Benjamini et al. [BPP], Fitzsimmons and Salisbury [FS],
Peres [Pe] and Salisbury [Sa]. Roughly speaking, these results provide in a variety of different
contexts, qualitiative estimates of the type: P0(Xt ∈ A, for some t > 0

) � e−1(A), where f � g
implies the existence of some universal C > 1, such that C−1g ≤ f ≤ Cf pointwise, and e(A) is
the X–energy integral associated with A. One of the many uses of such an estimate is that one
can often approximate the chance that X ever hits a small set. Wishing to study escape rates, we
present a different sort of a qualitative estimate below. Our notation is more or less that of Markov
process theory.

(1.1) Theorem. Suppose X is a d–dimensional Lévy process. For any b > a > 0 and ε > 0,

1
2

∫ b

a
P

0(|Xr| ≤ ε)dr∫ b

0
P0(|Xr | ≤ ε)

≤ P
0
(|Xr| ≤ ε, for some a ≤ t ≤ b

) ≤
∫ 2b−a

a
P

0(|Xr| ≤ 2ε)dr∫ b−a

0
P0(|Xr| ≤ ε)dr

,

whenever the integrals exist and are nonzero.

The above extends the estimates of Perkins and Taylor [PT], Takeuchi [T1,T2] and
Takeuchi and Watanabe [TW], to cite a few examples. To illustrate the use of such a general
inequality, let us restrict attention to the class of processes described in Hendricks [H1,H2,H3].
Namely, we consider the case where X is a d–dimensional Lévy process with strictly stable com-
ponents. In other words, there exists υ, χ ∈ R

d
+ and α ∈ (0, 2]d, such that for all t > 0 and all

ζ ∈ R
d ,

(1.2) P
0 exp

(
iζ ′Xt

)
= exp

(
−t

d∑
j=1

|ζjχj |1/αj − i

d∑
j=1

υjsgn(ζj)
)
.
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Throughout, we shall assume that the coordinate processes are not completely asymmetric, i.e,.

(1.3)
∣∣∣υj

χj

∣∣∣ < tan
(
παj/2

)
, |χj | > 0, for all j = 1, · · · , d.

Viewed coordinate by coordinate, such processes scale, albeit differently in each. Define,

(1.4) β =
d∑

j=1

1
αj
.

Our intended application of Theorem (1.1) is the following:

(1.5) Theorem. Suppose X is a Lévy process with stable components with parameters given by
(1.2)–(1.4). When β < 1, X hits points. When β = 1, singletons are polar, but X is neighborhood
recurrent. When β > 1, X is transient. For β ≥ 1, let ϕ : R1

+ 7→ R
1
+ be an decreasing function and

define

J(ϕ) =




∫∞
1
ϕβ−1(t)t−1dt, if β > 1

∫∞
1

(
t| lnϕ(t)|)−1

dt, if β = 1
.

When β ≥ 1, P0–almost surely,

lim inf
t→∞

(t→0+)

max16 j6 d |Xj
t |αj

tϕ(t)
=



∞, if J(ϕ) <∞

0, if J(ϕ) = ∞
.

When α is a constant vector, the above appears to various degrees of generality in Dvoretsky
and Erdős [DE], Spitzer [Sp], Takeuchi [T1,T2] and Takeuchi and Watanabe [TW]. When
α is not a constant vector, a different but equivalent formulation can be found in Hendricks [H1]
with a longer proof. Our formulation has two distinct advantages over the latter: (1) the large–time
results and the small–time results are the same; (2) ours incorporates all the known results as one.
Note that the critical case (i.e., β = 1) only applies to two cases: d = 1 and α = 1 (Cauchy process
on R

1 ) or d = 2 and α1 = α2 = 2 (planar Brownian motion).
Above and throughout, we have used the notation: lnx , loge(x ∨ 1), x> 0.

§2. The Proof of Theorem (1.1). Fix 0 < a < b and define T , inf
(
s > 0 : |Xs| ≤ ε

)
. Apply

the strong Markov property at time T to see that

P
0

∫ 2b−a

a

1
(|Xr| ≤ 2ε

)
dr ≥ P

0
(∫ 2b−a

a

1
(|Xr| ≤ 2ε

)
dr

∣∣ T ≤ b
)
· P0(T ≤ b)

≥ inf
|x|≤ε

P
x

∫ b−a

0

1
(|Xr| ≤ 2ε

)
dr · P0(T ≤ b)

≥ P
0

∫ b−a

0

1
(|Xr| ≤ ε

)
dr · P0(T ≤ b).

Divide to obtain the upper bound. The lower bound follows along similar lines. Consider,

P
0
(∫ b

a

1
(|Xr| ≤ ε

)
dr

)2

= 2P0

∫ b

a

∫ r

a

1
(|Xr| ≤ ε, |Xs| ≤ ε

)
dsdr

≤ 2P0

∫ b

a

∫ r

a

1
(|Xs| ≤ ε

)
1
(|Xr −Xs| ≤ 2ε

)
dsdr

= 2
∫ b

a

∫ b

s

P
0(|Xs| ≤ ε)P0(|Xr−s| ≤ 2ε)drds

≤ 2P0

∫ b

a

1
(|Xr| ≤ ε

)
dr ·

∫ b

0

P
0(|Xr| ≤ 2ε)dr.(2.1)
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By the Cauchy–Schwartz inequality,

P
0

∫ b

a

1
(|Xr| ≤ ε

)
dr = P

0
(∫ b

a

1
(|Xr| ≤ ε

)
dr;T ≤ b

)

≤
√
P0

(∫ b

a

1
(|Xr| ≤ ε

)
dr

)2

·
√
P0(T ≤ b).

Use (2.1) and solve to obtain the desired lower bound. ♦
(2.2) Remark. An inspection of the proof shows that for any x ∈ R

d ,

P
x
(|Xt| ≤ ε, for some a ≤ t ≤ b

) ≤
∫ 2b−a

a
P

x
(|Xr| ≤ 2ε

)
dr∫ b−a

0
P0

(|Xr| ≤ ε
)
dr

.

§3. The Proof of Theorem (1.5). Throughout this section, X denotes a Lévy process with
strictly stable components given by (1.2)–(1.4). Let us start with a technical lemma.

(3.1) Lemma. The random variable |X1| has a bounded P
a–density, uniformly over all a ∈ R

d .
When a = 0, this density g is positive on some neighborhood of 0. Moreover, supx g(x)/g(0) <∞.

Proof. By properties of convolutions, it suffices to show that each component of X has the given
properties. The lemma follows from the inversion theorem for Fourier transforms. ♦

For the rest of this section, define,

S(x) , max
16 j6 d

|xj |αj , x ∈ R
d .

(3.2) Lemma. For all r, a > 0,

P
0
(
S(Xr) ≤ a

) � (
r−1a ∧ 1

)β
.

Proof. Since the components Xj are independent αj–stable processes, by Lemma (3.1),

P
0
(
S(Xr)6 ε

)
=

d∏
j=1

P
(|Xj

1 |6 ε1/αjr−1/αj
)

�
(ε
r

)β

∧ 1.

This proves the lemma. ♦
Since αj 6 2 for all j, it is not hard to show that for all x, y ∈ R

d , S(x+ y)6 4
(
S(x) + S(y)

)
.

As such, S(x) behaves much like |x|. Going through the proof of Theorem (1.1) and using Lemma
(3.2), the following estimate emerges:

(3.3) Corollary. For all 0 < a < b and all ε > 0 small,

P
0
(
S(Xt) ≤ ε, for some a ≤ t ≤ b

) � h(ε),
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where

h(ε) =




1, if β < 1

(
ln(1/ε)

)−1
, if β = 1

εβ−1, if β > 1

.

We are now ready to prove Theorem (1.5). We shall do so for t → ∞. The case t → 0+ is
done similarly. The case β < 1 follows immediately from Corollary (3.3). Let us restrict attention
to the case β ≥ 1. We shall assume without loss of generality that ϕ(x) ↓ 0 as x → ∞. (When
infx ϕ(x) > 0, the result is simpler and also follows from the proof given below.)

Define tn , 2n, ϕn , ϕ(tn) and

(3.4) En ,
{

inf
tn≤t≤tn+1

S(Xt) ≤ 2nϕn

}
.

Note that from Corollary (3.3),

(3.5) P
0(En) � h(ϕn).

From the definition of J(ϕ) given in (1.5), it follows that
∑

n P
0(En) <∞ if and only if J(ψ) <∞,

when ψ(x) , Aϕ(Bx), for any A,B > 0.
Suppose J(ϕ) <∞. The previous paragraph shows that for any c > 0,

∑
n

P
0
(

inf
tn≤t≤tn+1

|Xt| ≤ c2nϕ(2n−1)
)
<∞.

Since c is arbitrary and ϕ is decreasing, by the Borel–Cantelli lemma,

lim inf
t→∞

|Xt|
tϕ(t)

= ∞,

P
0–a.s. . Now suppose J(ϕ) = ∞. Note that Remark 2.2 holds with |X·| replaced by S(X·)

everywhere. Using the Markov property and Lemma (3.1), for all n large enough,

P
0(En ∩En+k) ≤ P

0(En) sup
x
P

x(En+k) � P
0(En)P0(En+k).

Theorem (1.5) follows from (3.4), (3.5), Kolmogorov’s 0–1 law and the Kochen–Stone lemma
([KS]). ♦
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