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ABTRACT. We prove a space—time estimate for a Lévy process to hit a
small set. As an application, we present escape rates for Lévy processes with
strictly stable components.

§1. Introduction. Let X denote a d—dimensional Lévy process. It is a classical fact that a
Borel set A C R? is polar for X if and only if A has positive Xcapacity; cf. BLUMENTHAL AND
GETOOR BG]. A sharper variant of the aforementioned fact is the consequence of more recent
investigations such as those of BENJAMINI ET AL. [BPP], FITZSIMMONS AND SALISBURY [FS],
PERES [Pe] and SALISBURY [Sa]. Roughly speaking, these results provide in a variety of different
contexts, qualitiative estimates of the type: P°(X; € A, for some t > 0) = e 1(A), where f < g
implies the existence of some universal C' > 1, such that C~1g < f < Cf pointwise, and e(A4) is
the X—energy integral associated with A. One of the many uses of such an estimate is that one
can often approximate the chance that X ever hits a small set. Wishing to study escape rates, we
present a different sort of a qualitative estimate below. Our notation is more or less that of Markov
process theory.

(1.1) Theorem. Suppose X is a d—dimensional Lévy process. For any b > a > 0 and € > 0,

121X, < 2)dr
2 [yPO(X,| <e)

2b—a
PO(|X,| < 2¢)d
<P(1X, | <e, fOl“SOmeaStSb)<fa (| Xy < 2e)dr

T OURO(X,| < e)dr

whenever the integrals exist and are nonzero.

The above extends the estimates of PERKINS AND TAYLOR [PT], TAKEUCHI [T1,T2] and
TAKEUCHI AND WATANABE [TW], to cite a few examples. To illustrate the use of such a general
inequality, let us restrict attention to the class of processes described in HENDRICKS [H1,H2 H3|.
Namely, we consider the case where X is a d—dimensional Lévy process with strictly stable com-
ponents. In other words, there exists v,y € ]Ri and a € (0,2]¢, such that for all t > 0 and all
(e R,

d d
(1.2) PV exp (i¢'X;) = exp (—tz [ Z Ujsgn(Cj)).
j=1 Jj=1
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Throughout, we shall assume that the coordinate processes are not completely asymmetric, i.e,.

(1:3) (me;/2), Ix;] >0, forall j=1,---,d.

Viewed coordinate by coordinate, such processes scale, albeit differently in each. Define,

d 1
1.4 -y L
(4 7 =Y

Our intended application of Theorem (1.1) is the following:

(1.5) Theorem. Suppose X is a Lévy process with stable components with parameters given by
(1.2)—(1.4). When 3 < 1, X hits points. When 3 = 1, singletons are polar, but X is neighborhood
recurrent. When (8 > 1, X is transient. For 0 > 1, let ¢ : R}r — R}r be an decreasing function and

define -
[P )t a, ifg>1

I () de, ifp=1

When 3 > 1, P°-almost surely,

max, ¢ ca|Xi|os [0 3] <o

g te(t) 0, ifJ(g) =00

When « is a constant vector, the above appears to various degrees of generality in DVORETSKY
AND ERDOs [DE], SPITZER [Sp], TAKEUCHI [T1,T2] and TAKEUCHI AND WATANABE [TW]. When
a is not a constant vector, a different but equivalent formulation can be found in HENDRICKS [H1]
with a longer proof. Our formulation has two distinct advantages over the latter: (1) the large-time
results and the small-time results are the same; (2) ours incorporates all the known results as one.
Note that the critical case (i.e., # = 1) only applies to two cases: d =1 and a = 1 (Cauchy process
on R!) or d =2 and a; = ap = 2 (planar Brownian motion).

Above and throughout, we have used the notation: Inz £ log,(z V 1), z > 0.

§2. The Proof of Theorem (1.1). Fix 0 < a < b and define T £ inf (s > 0: [X,| < ). Apply
the strong Markov property at time 7" to see that
2b—a 2b—a
PO/ 1(|1 X | §25)dr2P0(/ 1(1X,| < 2¢e)dr | Tgb) “PY(T < b)
a a

b—a
> inf IP””/ 1(1X,| < 2e)dr-PO(T <)
0

b—a
> PO/ 1(|X,| <e)dr P (T <b).
0

Divide to obtain the upper bound. The lower bound follows along similar lines. Consider,
b 2 b pr
IPU(/ 1(1X,] < z-:)dfr) - 21@0/ / 1(1X,| < &, |X,| < &)dsdr

b r
< 21@0/ / 1(1Xs] < e)1(|1 Xy — X| < 2¢)dsdr
ba ba
= 2/ / PO(| X, < e)PY(|1X,_s| < 2¢)drds

b b
(2.1) 321?0/ 1(]1X, | gg)dr-/ PO(|X,| < 2¢)dr
a 0
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By the Cauchy—Schwartz inequality,

b

b
PO/ 1(|XT|§5)dr:IP’O(/ 11X, < £)drs T <)

< \/P()(/bl(\Xr] < 5)dr>2- PO(T < b).

Use (2.1) and solve to obtain the desired lower bound. &

(2.2) Remark. An inspection of the proof shows that for any z € R?,

[0 pr(|1X,)| < 2¢)dr

a

fob_a IP’O(]XT\ < s)dr '

P*(|X;| <&, for some a <t <b) <

§3. The Proof of Theorem (1.5). Throughout this section, X denotes a Lévy process with
strictly stable components given by (1.2)—(1.4). Let us start with a technical lemma.

(3.1) Lemma. The random variable |X;| has a bounded P%-density, uniformly over all a € R%.
When a = 0, this density g is positive on some neighborhood of 0. Moreover, sup,, g(x)/g(0) < co.

Proof. By properties of convolutions, it suffices to show that each component of X has the given
properties. The lemma follows from the inversion theorem for Fourier transforms. &

For the rest of this section, define,

S(z) = | R,
(v) = max |o[™,  z¢€

(3.2) Lemma. For all r,a > 0,
P(S(X,) <a) = (rtant)”.

Proof. Since the components X7 are independent «;-stable processes, by Lemma (3.1),

P(|X{| < 51/C¥jr—1/aa‘)

—.

<
Il
—

P°(S(X,)<e) =

¢

S M

5
) AL

(

This proves the lemma. &

Since av; <2 for all j, it is not hard to show that for all z,y € R, S(z +y) <4(S(z) + S(y)).
As such, S(x) behaves much like |z|. Going through the proof of Theorem (1.1) and using Lemma
(3.2), the following estimate emerges:

(3.3) Corollary. For all 0 < a < b and all € > 0 small,
P (S(Xt) <e¢g, for somea <t < b) = h(e),
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where
1, ifg <1

he) =< (In(1/e)) ™", iff=1.
gb-1, ifg>1

We are now ready to prove Theorem (1.5). We shall do so for ¢ — oo. The case t — 0T is
done similarly. The case § < 1 follows immediately from Corollary (3.3). Let us restrict attention
to the case 3 > 1. We shall assume without loss of generality that ¢(z) | 0 as z — oco. (When
inf, p(x) > 0, the result is simpler and also follows from the proof given below.)

Define t,, = 27, ¢, = ¢(t,) and

(3.4) B, 2 { inf  S(X;) < 27%}.

tn<T<tni
Note that from Corollary (3.3),
(3.5) PY(E,) =< h(p,).
From the definition of J(¢) given in (1.5), it follows that Y P°(E,) < oo if and only if J(¢) < oo,

when 9 (z) £ Ap(Bz), for any A, B > 0.
Suppose J(¢) < co. The previous paragraph shows that for any ¢ > 0,

Po inf | X,| < 2727t )

Since c is arbitrary and ¢ is decreasing, by the Borel-Cantelli lemma,

lim inf R = o0,
i=oe tp(t)

P-a.s. . Now suppose J(¢) = oo. Note that Remark 2.2 holds with |X.| replaced by S(X.)
everywhere. Using the Markov property and Lemma (3.1), for all n large enough,

PY(E, N E,i) <PUE,)supP*(E, 1) < PY(E)PY (B, ).
x

Theorem (1.5) follows from (3.4), (3.5), Kolmogorov’s 0-1 law and the KOCHEN-STONE lemma

([KS)). &

References.
[BPP] I. BENJAMINI, Y. PERES AND R. PEMANTLE (1995). Martin capacity for Markov chains.

Ann. Prob., 23, 1332-1346

[BG] R. BLUMENTHAL AND R.K. GETOOR (1968). Markov Processes and Potential Theory. Aca-
demic Press, N.Y.

[DE] A. DVORETSKY AND P. ERDOS (1950). Some problems on random walk in space, Proc.
Second Berkeley Symp., 353-367

[FS] P.J. FirzsiMMONS AND T.S. SALISBURY (1989). Capacity and energy for multiparameter
Markov processes, Ann. Inst. Henri Poicaré: prob. et stat., 25, 325-350

4



STUDIA SCI. MATH. HUNGARICA 33, 177-183.

[H1]
[H2]
[H3]
[KS]
[Pe]
[PT]
[Sa
[Sp]
[T1]
[T2]

[TW]

W.J. HENDRICKS (1970). Lower envelopes near zero and infinity for processes with stable
components, Z. Wahr. verw. Geb., 16, 261-278

W.J. HENDRICKS (1972). Hausdorff dimension in a process with stable components — an
interesting counter—example, Ann. Math. Stat., 43, 690-694

W.J. HENDRICKS (1974). Multiple points for a process in R? with stable components, Z.
Wahr. verw. Geb., 28, 113-128

S.B. KOCHEN AND C.J. STONE (1964). A note on the Borel-Cantelli lemma, III. J. Math.,
8, 248-251

Y. PERES (1995). Intersection—equivalence of Brownian paths and certain branching processes.
Comm. Math. Phys. (To appear)

E.A. PERKINS AND S.J. TAYLOR (1987). Uniform measure results for the image of subsets
under Brownian motion, Prob. Th. Rel. Fields, 76, 257-289

T.S. SALISBURY (1995). Energy, and intersection of Markov chains. Proceedings of the IMS
Workshop on Random Discrete Structures (To appear)

F. SPTIZER (1958). Some theorems concerning 2-dimensional Brownian motion, Trans. Amer.
Math. Soc., 87, 187-197

J. TAKEUCHI (1964). On the sample paths of the symmetric stable processes in spaces, J.
Math. Soc. Japan, 16, 109-127

J. TAKEUCHI (1964). A local asymptotic law for transient stable processes, Proc. Japan Acad.,
40, 141-144

J. TAKEUCHI AND S. WATANABE (1964). Spitzer’s test for the Cauchy process on the line, Z.
Wahr. Verw. Geb., 3, 204-210



