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1. Introduction

Throughout this paper, we will adopt the following notation: given x = (x1, . . . , xd) ∈ IRd,

‖x‖ will denote the (Euclidean) `2–norm of x, i.e.,

‖x‖ df=(x2
1 + · · ·+ x2

d)
1/2.

Given x ∈ IR1, we will write loge for the natural logarithm, ln(x) = ln1(x)
df= loge(x ∨ e)

and, for k> 1, lnk+1(x)
df= ln(lnk(x)).

Let {Sn, n> 0} denote an IRd–valued simple symmetric random walk. Erdős and

Taylor (1960) present a variety of results on the fine structure of the sample paths of

{Sn, n> 0}. Especially noteworthy is their complete characterization of the number of

returns to origin by time n for the simple planar random walk. When d> 3, the simple

random walk is transient, and, as such, it has only a finite number of returns to the origin.

Instead they study the behavior of the associated future infimum process: for all n> 0, let

Jn
df= inf
k>n

‖Sk‖.

In their Theorems 8 and 9 (p. 154), Erdős and Taylor establish the following laws of the

iterated logarithm for ‖Sn‖ and Jn :

lim sup
n→∞

‖Sn‖√
2n ln2(n)

= d−1/2, a.s. , (1.1a)

lim sup
n→∞

Jn√
2n ln2(n)

= d−1/2, a.s. . (1.1b)

Let 0 < c < 1. Then (1.1b) demonstrates that for almost all ω there is an increasing

sequence {nk, k> 1} of integers such that

Jnk
(ω) = ‖Snk

(ω)‖> c
√

2nk ln2(nk). (1.2)

In words, Jn can be as large as ‖Sn‖ when ‖Sn‖ is near its upper envelope. A complete

characterization (in the sense of the integral test of Erdős (1942)) of the upper functions

of {Jn, n> 0} is left unresolved (see the remarks on top of p. 155). The main purpose of

this paper is to present this characterization for centered IRd–valued random walks which
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satisfy certain integrability conditions (in particular, we make no assumptions about the

support of the distribution of the increments). In this way we can find increasing functions

f, g : [1,∞) →∞ with x 7→ g(x)− f(x) increasing without bound such that for almost all

ω there is an increasing sequence {nk, k> 1} and integer N such that

(a) Jn(ω)6 f(n) for all n>N, while

(b) ‖Snk
(ω)‖ > g(nk).

In contrast with (1.2), this shows that whenever Sn leaves a centered ball of radius g(n),

at the very least it must return to a ball of radius f(n) at some future time.

Our approach consists of the following: first we solve the analogous problem for tran-

sient Bessel processes. Then, by way of a strong approximation argument, we solve the

problem for random walks. Although we will comment on this at greater length in Section

2, our results demonstrate that the upper class of the future infimum of a d–dimensional

Bessel process (d > 2) is identical to the upper class of a (d − 2)–dimensionl Bessel pro-

cess: this relates our work to a class of results sometimes referred to as Ciesielski–Taylor

theorems.

Future infima processes such as the ones in this paper occur naturally in the more

general setting of Markov processes. As a sample see Aldous (1992), Burdzy (1994),

Chen and Shao (1993), Khoshnevisan (1994), Khoshnevisan et al. (1994), Millar

(1997) and Pitman (1975).

In conclusion, we would like to add that in the case of the simple walk in dimension

d ≥ 3 (i.e., the problem of Erdős and Taylor), one can adapt the method of Section 3

to obtain a completely classical proof of the Erdős–Taylor problem mentioned above. We

will not discuss this approach, as it only seems to work for random walks which live on a

sublattice of Zd.

2. Statements of results

Let us first state our results for Bessel processes. Throughout this paper, X df={Xt, t> 0}
will denote a d-dimensional Bessel process with d > 2. This is a diffusion on [0,∞) whose
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generator, G, is given by

Gf(x) df=
1
2
f ′′(x) +

d− 1
2x

f ′(x).

(Since d > 2, there is no need to specify a boundary condition at 0.) The definition and

properties of X can be found in Revuz and Yor (1991).

It should be noted that when d is an integer, the radial part of a standard d–

dimensional Brownian motion is a d–dimensional Bessel process. Of particular importance

to us is that the condition d > 2 implies that X is transient. We will define two processes

associated with X . First, we define the future infimum process: for all t> 0,

It
df= inf
s> t

Xs.

Next let L0 = 0 and for r > 0, define the escape process:

Lr
df=sup{s : Xs6 r}.

I and L inherit scaling laws from X. For c > 0, c−1/2Ict and It are equivalent processes,

and c−2Lcr and Lr are equivalent processes.

The processes I and L are inverses in the following natural sense:

{ω : Lr 6 t} = {ω : It> r}. (2.1a)

We point out in passing that the transience of X trivially implies that limt→∞ Lt =

limt→∞ It = ∞, almost surely. Properties of the processes I and L are explored in Getoor

(1979), Yor (1992a,b) and Khoshnevisan, Lewis and Li (1994).

Given a stochastic process {Zt, t> 0} and a nondecreasing function f : [1,∞) →
(0,∞), we will say that f is in the upper class (respectively lower class) of Z if for almost

all ω there is an integer N = N(ω) such that Zt(ω)6 f(t) (respectively Zt(ω)> f(t)) for

all t>N. We shall write this in the compact form, f ∈ U(Z) (f ∈ L(Z), respectively).

Let ϕ : [1,∞) → (0,∞) be nonincreasing and let ψ : [1,∞) → (0,∞) be nondecreas-

ing. Define,

J1(ϕ) df=
∫ ∞

1

ϕ1−d/2(t)exp
(
− 1

2ϕ(t)

)
dt

t

J2(ψ) df=
∫ ∞

1

ψd−2(t)exp
(
− ψ2(t)

2

)
dt

t
.
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For future reference, we observe the relationship:

J1(ψ−2) = J2(ψ). (2.1b)

Our first theorem characterizes the lower class of the exit process, L.

Theorem 2.1. Let ϕ : [1,∞) → (0,∞) be a nonincreasing function. Then

t 7→ t2ϕ(t) ∈ L(L) if and only if J1(ϕ) <∞.

Essentially due to (2.1a) and (2.1b), we obtain our next theorem, which characterizes

the upper class of I.

Theorem 2.2. Let ψ : [1,∞) → (0,∞) be a nondecreasing function. Then

t 7→ √
tψ(t) ∈ U(I) if and only if J2(ψ) <∞.

Remark 2.2.1. Theorem 2.2 had been independently conjectured by Chen and Shao

(1993) and Khoshnevisan, Lewis and Li (1994). (In fact, Theorem 4.3(3) of the latter

reference constitutes the so–called easy half of Theorem 2.2. There it is shown that if

ψ : [1,∞) →∞ is nondecreasing and J2(ψ) <∞, then t 7→ √
tψ(t) ∈ U(I).)

For purposes of comparison, let us recall the celebrated Kolmogorov–Dvoretsky–Erdős

integral test (see, e.g., Itô and McKean (1965), p. 163):

Theorem A. Let ψ : [1,∞) → (0,∞) be a nondcreasing function. Then

t 7→ √
tψ(t) ∈ U(X) if and only if

∫ ∞

1

ψd(t)exp (−ψ2(t)/2)
dt

t
<∞.

Theorems 2.2 and A together show that the upper class of I in dimension d is the

same as the upper class of X in dimension (d−2). It should be noted that when d = 3, the

comparison is stronger still; see Pitman (1975) and Revuz and Yor (1991) for details.

Let τ0
df=0 and, for all r > 0, let τr

df= inf{s > 0 : Xs = r} : this defines the exit time of X
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from the interval [0, r]. Then the lower class of L in dimension d is the same as the lower

class of τ in dimension (d−2). Results relating d and (d−2)–dimensional Bessel processes

are sometimes known as Ciesielski–Taylor theorems and can be found, for example, in

Ciesielski and Taylor (1962), Jain and Taylor (1973) and Yor (1992b).

Now let us state our theorems concerning random walks. Throughout let ξ, {ξi, i> 1}
be a sequence of independent and identically distributed IRd–valued random variables,

d> 3. Let S0
df=0 and, for all n> 1, let

Sn
df= ξ1 + . . .+ ξn.

We will extend the definition of our random walk to continuous time by simply setting

St
df=S[t] for all t> 0. Here [t] is the greatest integer less than or equal to t. For all t> 0, let

Jt
df= inf
u> t

‖Su‖.

Theorem 2.3. Let ξ have zero mean vector and identity covariance matrix and suppose

there is a δ > 0 such that IE (‖ξ‖2+δ) < ∞. Let ψ : [0,∞) → (0,∞) be an unbounded

function such that t 7→ √
tψ(t) is increasing. Then

t 7→ √
tψ(t) ∈ U(J) if and only if J2(ψ) <∞.

Remark 2.3.1. It is easy to see how the above includes the promised solution to the

Erdős–Taylor problem. Indeed, suppose ξ is as in the statement of Theorem 2.3, except

that its covariance matrix is σ2I, where σ > 0 and I is the d×d identity matrix. Obviously,

Theorem 2.3 holds with Sn and Jn replaced with Sn/σ and Jn/σ, respectively.

It is worth noting that the nature of the problem changes entirely when the random

walk does not have identity covariance matrix; nonetheless, we can prove various laws of

the iterated logarithm. Let d> 3 be an integer and Q denote a d × d symmetric positive

definite matrix with eigenvalues

λ1>λ2> . . .> λd > 0.
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Let W df={Wt, t> 0} denote a d–dimensional centered Brownian motion with covariance

matrix Q and define the associated future infimum and escape processes by

IQ(t) df= inf
s> t

‖Ws‖ and LQ(r) df=sup{t> 0 : ‖Wt‖6 r},

respectively. Likewise, let {St : t> 0} denote a d–dimensional centered random walk with

covariance matrix Q, and define the associated future infimum and exit processes by

JQ(t) df= inf
u> t

‖Su‖ and KQ(r) df= sup{t ≥ 0 : ‖St‖ ≤ r},

respectively. Our theorem follows:

Theorem 2.4. Suppose ξ, {ξi, i> 1} form a sequence of i.i.d. random vectors taking

values in IRd with d ≥ 3. We assume that ξ has mean vector zero, covariance matrix

Q and that there is a δ > 0 such that IE (‖ξ‖2+δ) < ∞. Let {St : t> 0} denote the

associated random walk and let {Wt, t> 0} be a d–dimensional centered Brownian motion

with covariance matrix Q. Then

(a) lim inf
t→∞

2 ln2(t)
t2

KQ(t) = lim inf
t→∞

2 ln2(t)
t2

LQ(t) =
1
λ1

a.s.;

(b) lim sup
t→∞

JQ(t)√
2t ln2(t)

= lim sup
t→∞

IQ(t)√
2t ln2(t)

=
√
λ1 a.s.

An alternative approach is to view our processes as taking values in a certain Rie-

mannian sub-manifold of IRd. To do this, we define a metric which is compatible with the

underlying process. Because Q has orthogonal eigenvectors, there is an invertible matrix

V such that Q = VVT . The standardized random vector V−1ξ has identity covariance

matrix. For x ∈ IRd, let

‖x‖V df= ‖V−1x‖,

which defines a norm on IRd. Clearly, ‖ ·‖V and ‖ ·‖ are equivalent norms and Theorem 2.3

holds if we measure distance by the norm ‖ · ‖V. The inner product on the aforementioned

space is the obvious one, by polarization. Moreover, the intrinsic volume element is given

by dm df=(detQ)1/2dx. This notion of geometry, however, is not natural to the study of the

paths of random walk.
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The remainder of this paper is organized as follows. In Section 3, we develop the

relevant probability estimates. In Section 4, we prove Theorems 2.1 and 2.2. In Section

5, we prove a strong approximation theorem which is then used to prove Theorem 2.3.

Finally, in Section 6, we prove Theorem 2.4.
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3. Preliminary estimates

The main purpose of this section is to present some lemmata which will be useful in the

proof of the theorems. For all β> 0, let

H(β) df=IP (L16 β).

The density of L1 is well known (see, for example, Getoor (1979), Yor (1992b) or

Khoshnevisan, Lewis and Li (1994)):

H ′(x) = γdx
−d/2exp

(
− 1

2x

)
I(x > 0), where

1
γd

df=2(d−2)/2Γ
(
d− 2

2

)
.

Thus, by an application of l’Hôpital’s rule, we obtain the following asymptotic estimate

for the small–ball probability of L1:

H(β) ∼ 2γdβ2− d
2 exp (−1/(2β)) as β → 0. (3.1)

¿From this, it is clear that for any T > 0, there exists a positive constant c, which depends

only on T, such that

1
c
x2− d

2 exp (−1/(2x))6H(x)6 cx2− d
2 exp (−1/(2x)) for all x ∈ [0, T ]. (3.2)
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In the course of proving Theorem 2.1, it will be necessary to estimate the distribution

of the increment L1 − Ls for 0 < s < 1. Our first lemma is a useful step in this direction.

Lemma 3.1. Let β, a > 0 and 0 < s < 1. Then

IP (L1 − Ls6 β)6
H(β + a)
H(as−2)

.

Proof. For any s ∈ (0, 1), and all β, a > 0,

{ω : L1 − Ls ≤ β} ∩ {ω : Ls ≤ a} ⊆ {ω : L1 ≤ β + a}.

By a theorem of Getoor (1979), {Lt, t> 0} has independent increments. The rest of the

proof follows from the scaling law for L, since Ls has the same distribution as s2L1; hence,

IP (Ls6 a) = H(as−2). tu
Our next lemma is a direct application of Lemma 3.1; it provides a useful estimate

for the distribution of L1 − Ls when s is relatively small.

Lemma 3.2. Fix λ > 0. Then there exists a positive constant c, depending only on λ

and d, such that

IP (L1 − Ls6 β)6 cH(β),

for all 06β6λ−1 and 06 s6λβ.

Proof. Since s 7→ IP (L1 − Ls6 β) is increasing for all 06 s6λβ, it suffices to prove the

lemma for s = λβ. To this end let µ to be the median of L1, i.e., H(µ) = 1/2. Applying

Lemma 3.1 with a df=µλ2β2, we obtain:

IP (L1 − Lλβ 6 β)6
H(β + µλ2β2)

H(µ)
= 2H(β + µλ2β2).

Now fix c so that (3.2) holds for all 06x6λ−1 + µ. Since β + µλ2β26 λ−1 + µ, it follows

that

IP (L16 β + µλ2β2)6 c(β + µλ2β2)2−
d
2 exp

(
− 1

2β + 2µλ2β2

)
.
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However,

(β + µλ2β2)2−
d
2 6

β2− d
2 if d> 4

β2− d
2 (1 + µλ)2−

d
2 if d < 4

.

Moreover,

exp
(
− 1

2β + 2µλ2β2

)
6 e−1/(2β)exp (µλ2/2).

Finally by (3.2),
1
c
β2− d

2 e−1/(2β)
6H(β),

which gives us the desired result. tu
Our next lemma is an estimate for the distribution of the increment L1−Ls when s is

not necessarily small. In order to state this lemma, we will need the following definition.

If d6 4, let β∗ df=1. If d > 4, let

β∗ df=sup{0 < x6 e−1 : 4(d− 4)x ln(x−1)6 1/2}.

Since x 7→ x ln(x−1) is increasing on (0, e−1), it follows that β∗ > 0, which is all we will

need.

Lemma 3.3. Let ε > 0. Then there exists a positive constant c, depending only on ε

and d, such that

IP (L1 − Ls6 β)6 c exp
(
− (1− s)2

4β

)
,

for all β6(2ε)−1 ∧ β∗ and 06 s6 1− βε.

Proof. First fix c1 > 0 such that (3.2) holds for all 06x6 2/ε. We will consider two cases:

βε6 s6 1− βε and 06 s6 βε.

In the first case, apply Lemma 3.1 with a df=βs/(1− s) and observe that

β + a =
β

1− s
6

1
ε

as−2 =
β

s
+

β

1− s
6

2
ε

− 1
2(β + a)

+
1

2as−2
= −(1− s)2

2β
β + a

as−2
= s
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Thus, by (3.2) and our choice of c1, we obtain

IP (L1 − Ls6 β)6 c21s
2−d

2 exp
(
− (1− s)2

2β

)
. (3.3)

In the second case, 06 s6βε. Then, by (3.3) and the monotonicity of r 7→ Lr, we

obtain

IP (L1 − Ls6 β)6 IP (L1 − Lβε6 β)6 c21(βε)
2− d

2 exp
(
− (1− βε)2

2β

)
.

However, since 0 < s6βε, it is easy to see that

exp
(
− (1− βε)2

2β

)
6 eεexp

(
− (1− s)2

2β

)
.

Setting c2 = c21ε
2− d

2 eε, we obtain:

IP (L1 − Ls6 β)6 c2β2− d
2 exp

(
− (1− s)2

2β

)
. (3.4)

If d6 4, then we are done, since s and β are bounded by 1. If, however, d > 4, then

we need to consider two additional subcases. If 1/26 s6 1− βε, then, by bounding s2−
d
2

by 2−
d
2 +2 in (3.3), we obtain the desired result. If, however, 06 s6 1/2, then by (3.3) and

(3.4) we obtain

IP (L1 − Ls6 β)6 c2exp
(
− (1− s)2

2β
+
d− 4

2
ln(β−1)

)
.

This last exponent may be expressed as:

−(1− s)2

2β

[
1− (d− 4)β ln(β−1)

(1− s)2

]
.

However, since 0 < s6 1/2 and β6 β∗, it follows that

1− (d− 4)β ln(β−1)
(1− s)2

>
1
2
,

which is what we wished to show. tu
Remark 3.3.1. Equations (3.2) and (3.4) already yield good estimates for the distribution

of the increment L1 − Ls; however, for our applications, it is better to place all of the
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dependency on ε and d into a constant. Although it complicates the proof of the lemma

and weakens the result, it will make the application cleaner.

Lemma 3.4. Suppose α> 0, ε1, ε2 ∈ (0, 1), and 0 < β < (2ε2)−1 ∧ β∗ ∧ α. Then for all

ε16 s6 1− βε2 there is a constant c, depending only on ε1, ε2 and d, such that

IP (Ls6 s2α, L16 β)6 cH(α)exp
(
− (1− s)

12β

)
.

Proof. Choose c1 so that (3.2) holds for all 06x6 1. By the independence of increments

and scaling we obtain:

IP (Ls6 s2α, L16 β)6 IP (Ls6 s3β) + IP (s3β < Ls6 s
2α, L1 − Ls6 β(1− s3))

6 IP (L16 βs) +H(α) · IP (L1 − Ls6 β(1− s3))

We will estimate each of the terms on the right hand side. First, by (3.2),

IP (L16 βs)6 c1(βs)2−
d
2 e−1/(2βs).

Since 06 s < 1, it easily follows that s2−
d
2 6 1 ∨ ε2− d

2
1 and

e−1/(2βs)
6 e−1/(2β)exp

(
− 1

2β
(1− s)

)
.

Thus, by another application of (3.2) we see

IP (L16 βs)6 c21(1 ∨ ε2−
d
2

1 )H(β)exp
(
− 1

2β
(1− s)

)
. (3.5)

Next we will apply Lemma 3.3 to estimate IP (L1−Ls6 β(1− s3)). The conditions of

this lemma are satisfied; hence,

IP (L1 − Ls6 β(1− s3))6 c2 exp
(
− (1− s)2

4β(1− s3)

)
,

where c2 depends only on ε2 and d. However,

(1− s)2

4β(1− s3)
=

1− s

4β(1 + s+ s2)
>

1− s

12β
.
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Consequently,

IP (L1 − Ls6 β(1− s3))6 c2 exp
(
− (1− s)

12β

)
. (3.6)

To achieve the final form of the lemma, combine (3.5) and (3.6), noting that

exp
(
− (1− s)

2β

)
6 exp

(
− (1− s)

12β

)
and H(β)6H(α). tu

4. Proofs of Bessel process results

Before proceeding to the proof of Theorem 2.1, let us make a few prefunctory remarks.

Essential to the proofs will be the function x 7→ tx, which is defined for all real x by

tx
df=exp

(
x

ln(x)

)
. (4.1)

We note that this function is increasing in x. Primarily we will be interested in the values

of tx at the positive integers, but occasionally we will write, e.g., tn+ln(n), whose meaning

is given by (4.1). By an application of the mean value theorem, it follows that

lim
n→∞

tn+1 − tn
tn+1

ln(n) = 1.

Since tn+1/tn approaches one as n tends to infinity, evidently the same limit is obtained

upon replacing tn+1 by tn in the denominator. These considerations lead us to the follow-

ing: there exist universal positive constants c1 and c2 such that for all n> 1,

1
c1 ln(n)

6
tn+1 − tn
tn+1

6
c1

ln(n)
,

(4.2)
1

c2 ln(n)
6
tn+1 − tn

tn
6

c2
ln(n)

.

Recall from Khoshnevisan, Lewis and Li (1994), the following law of the iterated

logarithm for {It, t> 0}:
lim sup
t→∞

It√
2t ln2(t)

= 1 a.s.
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The above together with (2.1a) easily yield,

lim inf
t→∞

2 ln2(t)
t2

Lt = 1 a.s. (4.3)

Let ϕ : [1,∞) → (0,∞) be nonincreasing and, for each positive integer n, let

ϕn
df=ϕ(tn). In light of (4.3) (with respect to the proof of Theorem 2.1) we may assume

without any loss of generality that there exists a universal positive constant c such that

1
c ln2(t)

6ϕ(t)6
c

2 ln2(t)

Thus, without loss of generality, we may assume that there exists a universal positive

constant c such that
1

c ln(n)
6ϕn6

c

ln(n)
(4.4)

First we will prove

J1(ϕ) <∞ =⇒ IP (Lt> t2ϕ(t), eventually) = 1. (4.5)

For each positive integer n, define the event

Fn
df={ω : Ltn 6 t

2
n+1ϕn}.

First we will demonstrate that
∑∞
n=1 IP (Fn) <∞. To this end, observe that∫ tn+1

tn

ϕ1−d/2(t)e−1/(2ϕ(t)) dt

t
>ϕ1−d/2

n e−1/(2ϕn+1)
(tn+1 − tn)

tn+1
.

Thus, by (4.2) and (4.4), there exists a universal positive constant c1 such that for all

n> 1, we obtain ∫ tn+1

tn

ϕ1−d/2(t)e−1/(2ϕ(t)) dt

t
> c1ϕ

2−d/2
n+1 e−1/(2ϕn+1). (4.6)

By scaling, (3.1) and some algebra, it follows that there exists a universal positive constant

c such that

IP (Fn)6 c((tn+1/tn)2ϕn+1)2−
d
2 e−1/(2ϕn+1)exp

(
1

2ϕn+1
(1− (tn/tn+1)2)

)
.
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This last exponent is easily estimated: observe that

1
2ϕn+1

(
1− t2n

t2n+1

)
6

1
ϕn+1

(
tn+1 − tn
tn+1

)
.

Now (4.2) and (4.4) show that this exponent is uniformly bounded in n. Thus, there exists

a universal positive constant c2 such that

IP (Fn)6 c2ϕ
2−d/2
n+1 e−1/(2ϕn+1). (4.7)

Combining (4.6) and (4.7) with J1(ϕ) < ∞ we see that
∑
n=1 IP (Fn) < ∞. Thus, by the

first Borel-Cantelli lemma, it follows that IP (Fn, i.o.) = 0. Consequently, for almost all ω,

there exists a (random) index N beyond which

Ltn > t2n+1ϕ(tn).

Finally, given n>N and s ∈ [tn, tn+1] it follows that, with probability one,

Ls>Ltn > t2n+1ϕ(tn)> s2ϕ(s),

where we have used the fact that s 7→ ϕ(s) is nonincreasing. This demonstrates (4.5).

Next we will show that

J1(ϕ) = ∞ =⇒ IP (Lt> t2ϕ(t), eventually) = 0. (4.8)

To this end, for each positive integer n, define the event

En
df={ω : Ltn 6 t

2
nϕn}.

To demonstrate (4.8), it suffices to show that IP (En, i.o.) = 1. Since {En, i.o.} is a 0-1

event, by Kochen-Stone (1964), it is enough to show that there is a universal positive

constant c such that

∞∑
n=1

IP (En) = ∞ (4.9)

∑
16 k<n6N

IP (Ek ∩ En)6 c
( N∑
k=1

IP (Ek)
)2

. (4.10)
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The verification of (4.9) is straightforward. For all n sufficiently large, there exists a

constant c1 such that∫ tn+1

tn

ϕ1−d/2(t)e−1/(2ϕ(t)) dt

t
6ϕ

1−d/2
n+1 e−1/(2ϕn) tn+1 − tn

tn

6 c1ϕ
2−d/2
n e−1/(2ϕn), (4.11)

where we have used (4.2). By scaling and (3.2), it follows that there exists a universal

positive constant c2 such that

IP (En)> c2ϕ2−d/2
n e−1/(2ϕn). (4.12)

Combining (4.11) and (4.12) with J1(ϕ) = ∞ demonstrates (4.9).

We are left to demonstrate (4.10). To this end, we introduce the following sets of

indices:
GNn = {1 ≤ k ≤ N : k ≥ ln(n) · ln2(n)}
BNn = {1 ≤ k ≤ N : ln(n) ≤ k < ln(n) · ln2(n)}
UNn = {1 ≤ k ≤ N : 1 ≤ k < ln(n)}

ANn (j) =
{

1 ≤ k ≤ N :
j√

ln(n)
≤ 1− tn

tn+k
≤ j + 1√

ln(n)

}
ÃNn (j) =

{
1 ≤ k ≤ N :

j

ln(n)
≤ 1− tn

tn+k
≤ j + 1

ln(n)

}
.

In fact, we will prove that there exist universal positive constants c1, c2 and c3 such that

for all N > 1 we have

N∑
n=1

∑
k∈GN

n

IP (En ∩ En+k) ≤ c1

( N∑
n=1

IP (En)
)2

(4.13)

N∑
n=1

∑
k∈BN

n

IP (En ∩ En+k) ≤ c2

N∑
n=1

IP (En) (4.14)

N∑
n=1

∑
k∈UN

n

IP (En ∩ En+k) ≤ c3

N∑
n=1

IP (En), (4.15)

which would suffice to verify (4.10). The verifications of (4.13) through (4.15) involve

various counting arguments, which are contained in the following lemmas.
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Lemma 4.1. There exists universal constant c such that

1
c
tn+ln(n) ln2(n)6 tn ln(n)6 ctn+ln(n) ln2(n).

Proof. Let

qn
df=

tn ln(n)
tn+ln(n) ln2(n)

.

It suffices to show that limn→∞ qn = 1. However, by some algebra,

ln(qn) =
ln

(
1 + ln(n) ln2(n)

n

)
ln(n) ln2(n)

n

× n ln2(n) + ln(n)(ln2(n))2

n ln(n+ ln(n) ln2(n))

Since x−1 ln(1 + x) → 1 as x→ 0, it follows that ln(qn) → 0 as n→∞. tu

Lemma 4.2. There exists a universal positive constant c such that for all k, n> 1

k ≤ c ln(n)
(
tn+k − tn

tn

)
.

Proof. Observe that j 7→ tj · (ln(j))−1 is increasing. From this and (4.2), it follows that

tn+k − tn =
k−1∑
j=0

(tn+j+1 − tn+j) ≥
k−1∑
j=0

tn+j

c ln(n+ j)

≥ k

c
· tn
ln(n)

.

Solving for k, we obtain the lemma. tu

Lemma 4.3. There exists some c > 0 such that for all N ≥ n ≥ 1 and all j ≥ 0,

#(BNn ∩ANn (j)) ≤ c(j + 1)4.

Proof. Let k ∈ BNn ∩ANn (j). We will show that

k ≤ c(j + 1)4. (4.16)
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By Lemma 4.2,

k ≤ c ln(n)
(
tn+k − tn

tn

)
= c

tn+k

tn
ln(n)

(
1− tn

tn+k

)
≤ c

tn+k

tn
(j + 1)

√
ln(n).

But for k in question,

tn+k ≤ tn+ln(n)·ln2(n) ≤ ctn · ln(n),

by Lemma 4.1. Therefore,

k ≤ c(j + 1)(ln(n))3/2. (4.17)

On the other hand, by the definition of the annulus, ANn (j),

j + 1√
ln(n)

≥ 1− tn
tn+k

≥ 1− tn
tn+ln(n)

∼ 1− 1
e
.

Hence, for some c > 0, (j + 1) ≥ c
√

ln(n). Equivalently, ln(n) ≤ c(j + 1)2. By (4.17), we

obtain (4.16) and hence the result. tu

Lemma 4.4. There exists some c > 0 such that for all N ≥ n ≥ 1 and all j ≥ 0,

#(UNn ∩ ÃNn (j)) ≤ c(j + 1).

Proof. Let k ∈ UNn ∩ ÃNn (j). By Lemma 4.2,

k ≤ c ln(n)
(
tn+k − tn

tn

)
= c ln(n)

tn+k

tn

(
1− tn

tn+k

)
≤ c

tn+ln(n)

tn
(j + 1)

≤ c(j + 1).
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Therefore #(UNn ∩ ÃNn (j)) ≤ c(j + 1), thus proving the result. tu
In the verification of (4.13) and (4.14), we will use the following inequality: for 06x <

y and a, b > 0 we have

IP (Lx6 a, Ly 6 b)6 IP (Lx6 a)IP (Ly − Lx6 b), (4.19)

where we have used the fact that t 7→ Lt is nondecreasing and that the process {Lt, t> 0}
has independent increments; see Getoor (1979), for example.

Verification of (4.13). By (4.19) and scaling we have

IP (En ∩En+k)6 IP (Ltn 6 t
2
nϕn)IP (Ltn+1 − Ltn 6 t

2
n+kϕn+k)

= IP (En)IP (L1 − Ltn/tn+k
6ϕn+k).

We wish to demonstrate the conditions of Lemma 3.2 prevail with s = tn/tn+k and β =

ϕn+k. To this end we need to show that there is a universal λ for which

tn
tn+k

6λϕn+k

for all N > 1, n> 1 and k ∈ GNn . Since j 7→ tjϕj is increasing, it is enough to show that

lim sup
n→∞

tn
tn+ln(n) ln2(n)ϕn+ln(n) ln2(n)

<∞. (4.19)

This, however, follows immediately from (4.4) and Lemma 4.1. By Lemma 3.2 and the

definition of x 7→ H(x), we obtain,

IP (L1 − Ltn/tn+k
6ϕn+k)6 cH(ϕn+k)

= cIP (En+k).

In this way we have shown that there is a universal positive constant c such that

IP (En ∩ En+k)6 cIP (En)IP (En+k),

for all n> 1 and k ∈ GNn . This verifies (4.13).

Verification of (4.14). It suffices to prove the result for N sufficiently large. By (4.19)

and Lemma 3.3, there exists n0 ≥ 1 such that for all N ≥ n ≥ n0 and all k ∈ BNn ,

IP (En ∩En+k) ≤ IP (En) · IP (L1 − Ltn/tn+k
≤ ϕn+k)

≤ c1 IP (En) · exp (−1
4 ln(n) · (1− (tn/tn+k))2), (4.20)
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since by (4.4), if n0 is large enough, for all N ≥ n ≥ n0 and all k ∈ BNn ,

tn
tn+k

≤ tn
tn+ln(n)

≤ 1
2e
≤ 1− c1

ln(2n)
≤ 1− c2ϕn+k.

By (4.20) and Lemma 4.3, for all N ≥ n ≥ n0,

N∑
n=1

∑
k∈BN

n

IP (En ∩En+k) ≤
N∑

n=n0

∞∑
j=0

∑
k∈BN

n ∩AN
n (j)

IP (En)exp (−c ln(n) (1− (tn/tn+k))2)

+ ln(n0) · ln2(n0) ·
n0∑
n=1

IP (En)

≤
N∑
n=1

∞∑
j=0

#(BNn ∩ANn (j)) · IP (En) · exp (−c1j2) + c2

N∑
n=1

IP (En)

≤ c
N∑
n=1

IP (En),

verifying (4.14).

Verification of (4.15). It suffices to prove the result when N is sufficiently large. Take

k ∈ UNn . We want to use Lemma 3.4 with s = tn/tn+k, α = ϕn and β = ϕn+k. By (4.2)

and (4.4), as n→∞,

s ≥ tn
tn+ln(n)

∼ 1
e

s ≤ tn
tn+1

∼
(

1− 1
ln(n)

)
≤ 1− cϕn.

Thus there exist ε1 > 0, ε2 > 0 and n0 ≥ 1, such that for all N ≥ n ≥ n0 and all k ∈ GNn ,

ε1 < s < 1− ε2β. By scaling H(ϕn) = IP (En). Hence, by Lemma 3.4, for all N ≥ n ≥ n0

and all k ∈ UNn ,

IP (En ∩En+k) ≤ cIP (En) · exp
(
− 1

12ϕn

(
1− tn

tn+k

))
.
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Therefore by (4.2) and Lemma 4.4, for all N ≥ n ≥ n0,

N∑
n=1

∑
k∈UN

n

IP (En ∩En+k) ≤
N∑

n=n0

∞∑
j=0

∑
k∈UN

n ∩ÃN
n (j)

IP (En)exp (−(c/ϕn)(1− (tn/tn+k)))+

+ ln(n0) ·
n0∑
n=1

IP (En)

≤
N∑
n=1

∞∑
j=0

∑
k∈UN

n ∩ÃN
n (j)

IP (En)exp (−c1 ln(n)(1− (tn/tn+k))) + c2

N∑
n=1

IP (En)

≤
N∑
n=1

∞∑
j=0

#(UNn ∩ ÃNn (j))e−c1jIP (En) + c2

N∑
n=1

IP (En)

≤ c
N∑
n=1

IP (En).

This verifies (4.15) and finishes the proof of Theorem 2.1. tu
Finally, we offer the following:

Proof of Theorem 2.2. Recall (2.1b); since the case J2(ψ) < ∞ is contained in the result

of Khoshnevisan, Lewis and Li (1994), we need only consider the case J2(ψ) = ∞. Let

ϕ(t) = ψ−2(t). Then ϕ satisfies the conditions of Theorem 2.1. Moreover, by exactly the

same proof as in Theorem 2.1:

Lψn+1tn+1/ψn
≤ t2n
ψ2
n+1

, i.o. (4.21)

where tn = exp (n/ ln(n)) and ψn = ψ(tn). Since t 7→ ψ(t) is nondecreasing, the interval

[t2n/ψ
2
n+1, t

2
n+1/ψ

2
n] is not empty. On the other hand, (4.21) is equivalent to the existence

of a random and infinite set, N , such that

It2n/ψ2
n+1

≥ tn+1
ψn+1

ψn
, for all n ∈ N .

Notice that for all n ∈ N and all s ∈ [t2n/ψ
2
n+1, t

2
n+1/ψ

2
n],

Is ≥ It2n/ψ2
n+1

≥ tn+1
ψn+1

ψn
≥ s1/2ψn+1 ≥ s1/2ψ(s),

which is what we wished to show. tu
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5. Proofs of random walk results

Throughout this section, let d> 3 be an integer and let W df={Wt, t> 0} denote a standard

d–dimensional Brownian motion. Given a collection {ξi, > 1} of i.i.d. IRd–valued random

vectors, let S0
df= 0 and, for all n> 1, let

Sn
df= ξ1 + · · ·+ ξn.

We will extend the random walk to continuous time by setting St
df=S[t] for all t> 0, where

[t] denotes the greatest integer which is less than or equal to t. For real numbers 06 t6T,

let
Jt

df= inf
u≥t

‖Su‖, Jt,T
df= inf
t6u≤T

‖Su‖;

It
df= inf
u≥t

‖Wu‖, It,T
df= inf
t≤u≤T

‖Wu‖.

The main result of this section is the following strong approximation theorem:

Theorem 5.1. Let ξ be an IRd–valued random variable with zero mean vector, identity

covariance matrix and IE (‖ξ‖2+δ) < ∞, for some δ > 0. Then on a suitable probability

space we can reconstruct a sequence of i.i.d. random vectors {ξi, i> 1} with L(ξ1) = L(ξ)

and a Brownian motion W such that for some q = q(δ) ∈ (0, 1/2), almost surely,

|It − Jt| = o(t1/2−q).

Remark 5.1.1. With more work, the condition IE (‖ξ‖2+δ) < ∞ can be relaxed to the

following: there exists some p > 1 such that IE (K(ξ)) <∞, where

K(x) df=x2(ln(x))
2

d−2 (ln2(x))2p(
d−1
d−2 ).

The proof of Theorem 5.1 relies on a strong approximation result of Einmahl (1987),

which is implicit in the following lemma. Given δ > 0, let

η
df=

1
2
− 1

2 + δ
. (5.1)
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Lemma 5.2. Under the hypothesis of Theorem 5.1 almost surely

sup
06u6 t

‖Su −Wu‖ = o(t1/2−η),

where η is given by (5.1).

Proof. Since t 7→ sup06u6 t ‖Su − Wu‖ and t 7→ t1/2−η are nondecreasing, it suffices

to prove the result for integral values of t. Let n be a positive integer. By the triangle

inequality,

sup
06u6n

‖Su −Wu‖6 sup
06u6n

‖Su −W[u]‖+ sup
06u6n

‖Wu −W[u]‖

= max
06 k6n

‖Sk −Wk‖+ max
06 k6n−1

max
k6 s6 k+1

‖Ws −Wk‖.
= In + IIn,

with obvious notation. We will estimate each of these terms in order.

A direct consequence of Theorem 2 of Einmahl (1987) is the following: on a suitable

probability space, one can reconstruct the sequence {ξi, i> 1} and a sequence of indepen-

dent standard normal random variables, {gi, i> 1}, such that

max
k≤n

‖Sk −Gk‖ = o(n
1
2−η), a.s., (5.2)

where Gk
df=

∑k
j=1 gj . To construct the Brownian motion W, enlarge the probability space

(by introducing product spaces) so that it contains independent processes, {Bi(t); 0 ≤ t ≤
1}i≥1, where Bi is a standard Brownian motion starting at Gi conditioned to be Gi+1 at

time 1 (an interesting construction of such processes appears in Pitman (1974)). On this

extended probability space, define

Wt
df=

∞∑
k=0

1[k,k+1)(t)Bk(t− k).

It is easy to see that W is a standard Brownian motion and that Wk = Gk; consequently,

(5.2) can be written as follows: as n→∞,

In = max
06 k≤n

‖Sk −Wk‖ = o (n
1
2−η), a.s. (5.3)
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Finally, by Theorem 1.7.1 of Csörgő and Révész (1981), as n→∞,

IIn = max
06 k6n−1

sup
k6 s6 k+1

‖Ws −Wk‖ = O

(√
ln(n)

)
, a.s.

which, in light of (5.3), proves the lemma in question. tu
A small but important step in proving Theorem 5.1 is the following:

Lemma 5.3. Let θ ∈ (0, η), where η is given by (5.1). Then, with probability one,

It ≥ t
1
2−θ and Jt ≥ t

1
2−θ for all t sufficiently large.

Proof. Let f : IR1
+ → IR1

+ be nondecreasing. Then a real-variable argument shows that

the following are equivalent:

(i) Jt ≥ f(t), eventually (It ≥ f(t), eventually)

(ii) ‖St‖ ≥ f(t), eventually (‖Wt‖ ≥ f(t), eventually).

Let θ0 > 0. Then, either by direct calculation (using the Borel-Cantelli lemma and

the explicit density of I1, given in Khoshnevisan, et al. (1994)) or by the theorem of

Dvoretsky and Erdős (see Motoo (1959)) on the rate of escape of ‖Wt‖, it can be shown

that eventually,

‖Wt‖ ≥ t
1
2−θ0 , a.s. (5.4)

Now the lemma follows by Lemma 5.2, (i), (ii), (5.4) and the choice of θ. tu
Proof of Theorem 5.1. Construct a probability space in accordance with Lemma 5.2. Given

δ > 0, η is given by (5.1). Now, choose θ, ε ∈ IR+ such that 0 < θ < η and

0 < ε <
η − θ

1− 2η
,

and set

ρ
df=

1 + 2ε
1− 2θ

.

Significantly,

ρ

(
1
2
− θ

)
=

1
2

+ ε, (5.5)

ρ

(
1
2
− η

)
<

1
2
. (5.6)
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Our first task is to show that the infimum of ‖Ws‖ for s> t is actually attained for

s ∈ [t, tρ] (for all t sufficiently large). Indeed, by Lemma 5.3 and (5.5), it follows that

Itρ >(tρ)1/2−θ> t1/2+ε, a.s.,

for all t sufficiently large. However, by the ordinary law of the iterated logarithm,

It6 ‖Wt‖ < t1/2+ε, a.s.,

for all t sufficiently large. Since It = It,tρ ∧ Itρ , these considerations yield: with probablity

one,

It = It,tρ , (5.7)

for all t sufficiently large. Likewise, with probability one,

Jt = Jt,tρ , (5.8)

for all t sufficiently large.

Finally, it is easy to see that

|Jt,tρ − It,tρ |6 sup
06u6 tρ

‖Su −Wu‖.

Thus, by (5.7), (5.8) and Lemma 5.2 we obtain: as t→∞,

|Jt − It|6 sup
06u6 tρ

‖Su −Wu‖ = o (tρ(1/2−η)), a.s.

By (5.6), this proves the theorem. tu

Lemma 5.4. Let ψ : [1,∞) → (0,∞) be nondecreasing and unbounded. For all t> 1,

let

ψU (t) df=
{
ψ(t) + (ψ(t))−1 if ψ(t)> 1
2 if 0 < ψ(t) < 1.

ψL(t) df=
{
ψ(t)− (ψ(t))−1 if ψ(t)> 2
1 if 0 < ψ(t) < 2.

Then ψU and ψL are nonegative and nondecreasing and J2(ψ), J2(ψU ) and J2(ψL) converge

or diverge together.
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Proof. That ψU and ψL are nonegative and nondecreasing follows trivially from the fact

that the mappings x 7→ x+ x−1 and x 7→ x− x−1 are nonnegative and increasing on x> 1

and x> 2, respectively.

Since ψ is unbounded, it is easy to see that, as t→∞,

ψd−2(t) ∼ ψd−2
U (t) ∼ ψd−2

L (t)

Moreover, there exist positive constants c1, c2, c3 and c4 such that

c1exp (−ψ2(t)/2)6 exp (−ψ2
U (t)/2)6 c2exp (−ψ2(t)/2)

c3exp (−ψ2(t)/2)6 exp (−ψ2
L(t)/2)6 c4exp (−ψ2(t)/2),

which proves the lemma. tu
Proof of Theorem 2.3. Let ψ : [1,∞) → (0,∞) be nondecreasing. As is customary, we will

assume, without loss of generality, there there exists a positive constant c such that

1
c

√
ln2(t)6ψ(t)6 c

√
ln2(t).

If J2(ψ) <∞, by Lemma 5.4, J2(ψL) <∞. Consequently, for t sufficiently large,

It <
√
tψL(t)6

√
tψ(t)− c

√
t

ln2(t)
, a.s.

By Theorem 5.1, Jt6 It + t1/2−q, where 0 < q < 1/2. From this it follows that, for t

sufficiently large,

Jt <
√
tψ(t), a.s.

Likewise, if J2(ψ) = ∞, by Lemma 5.4, J2(ψU ) = ∞, as well. Consequently, there

exists a (random) increasing and unbounded sequence {tn, n> 1} for which

Itn >
√
tnψU (tn)>

√
tnψ(tn) + c

√
tn

ln2(tn)
, a.s.

However, by Theorem 5.1, Jt> It − t1/2−q, where 0 < q < 1/2, from which it follows that

Jtn >
√
tnψ(tn), a.s.
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This proves the theorem in question. tu

6. The general covariance case

Throughout this section, d> 3 will be an integer and Q will denote a d × d symmetric

positive definite matrix with eigenvalues

λ1>λ2> . . . λd > 0

and corresponding orthonormal eigenvectors ζ1, . . . , ζd. Let B1, . . . , Bd denote d indepen-

dent standard 1–dimensional Brownian motions. Then for all t> 0,

WQ(t) df=
d∑
i=1

√
λiBi(t)ζi

defines a centered Brownian motion with covariance matrix Q. ¿From this, it is clear that

‖WQ(t)‖2 =
d∑
i=1

λiB
2
i (t)

= ‖ΛW (t)‖2,
where

W (t) df=(B1(t), . . . , Bd(t))

is a standard d–dimensional Brownian motion, and Λ is the d× d diagonal matrix

Λ df=


√
λ1 0 . . . 0
0

√
λ2 . . . 0

...
...

. . .
...

0 0 . . .
√
λd


This demonstrates that it is sufficient to verify Theorem 2.4 for

LQ(r) df=sup{t> 0 : ‖ΛW (t)‖6 r} and IQ(t) df= inf
s> t

‖ΛW (s)‖.

Our first task is to derive a large deviation estimate for IQ(1), which, in turn, will

yield the small–ball probability of LQ(1). The following geometric argument will be useful

in this regard. For every t> 0, let us define the ellipsoid

Et df={x ∈ IRd : ‖Λx‖6 t}.
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Lemma 6.1. Let

r
df=

√
λ1

(
1
λd

− 1
λ1

)
.

Then

E1 ⊂ {x ∈ IRd : ‖x+ re1‖6 r + 1/
√
λ1 },

where e1 is the unit vector (1, 0, . . . , 0).

Proof. In the case d = 2, parameterize the boundary of E1 by

x1
df=

cos(θ)√
λ1

and x2
df=

sin(θ)√
λ2

where θ ∈ [0, 2π]. Now the proof follows by some elementary algebra and trigonometry.

If d> 3 and x ∈ E1, then

λ1x
2
1 + λdy

2
6 1,

where y> 0 and

y2 =
λ2

λd
x2

2 + · · ·+ λd−1

λd
x2
d−1 + x2

d.

Then, by the two–dimensional case and the ordering of the eigenvalues,

‖x+ re1‖2 = (x1 + r)2 + x2
2 + . . .+ x2

d

6(x1 + r)2 + y2

6(r + 1/
√
λ1)2,

as was to be shown. tu
Our next result is the aforementioned large deviation estimate for IQ(1).

Lemma 6.2.

(a) lim
t→∞ t−2 ln IP (IQ(1)> t) = − 1

2λ1
.

(b) lim
ε→0+

ε ln IP (LQ(1)6 ε) = − 1
2λ1

.

Proof. Since IP (LQ(1)6 ε) = IP (IQ(1)> 1/
√
ε), it is enough to prove (a). Given t > 0,

let

D
df={x : ‖x+ tre1‖6 t(r + λ1)}.

––
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Observe that if x ∈ Et, then x/t ∈ E1. Thus, by Lemma 6.1, Et ⊂ D. Consequently,

IP (IQ(1)> t) = IP (Ws /∈ Et for all s> 1)

> IP (Ws /∈ D for all s> 1).

Now pick α > 1/
√
λ1 and let H be the following half-space

H
df={x ∈ IRd : x1>αt}.

Then we have

IP (Ws /∈ D for all s> 1)>
∫
H

IP (Ws /∈ D for all s> 1 |W1 = x)IP (W1 ∈ dx). (6.1)

Notice that each of the conditional probabilities is the probability that W, started from

a point in the exterior of the ball D, never hits D. Consequently, by a gambler’s ruin

calculation,

IP (Ws /∈ D for all s> 1 |W1 = x) = 1−
(
t(r + 1/

√
λ1)

‖x+ rte1‖
)d−2

Since x ∈ H, we know that ‖x+ rte1‖> t(r+α). Consequently, we have the uniform lower

bound:

IP (Ws /∈ D for all s> 1 |W1 = x)> 1−
(
r + 1/

√
λ1

r + α

)d−2
df=κ. (6.2)

Combining (6.1) and (6.2), we obtain:

IP (Ws /∈ D for all s> 1)>κIP (W1 ∈ H)

= κIP (B1(1)>αt),

where, in our notation, B1 is the first coordinate of W ; hence, a standard one–dimensional

Brownian motion. Simple considerations yield:

lim inf
t→∞

1
t2

ln IP (IQ(1)> t)>−α
2

2
.

The lower bound is achieved by sending α to 1/
√
λ1.

The upper bound is easy: IQ(1)6 ‖ΛW (1)‖ and, by a result of Zolotarev (1961),

lim
t→∞

1
t2

ln IP (‖ΛW (1)‖> t) = − 1
2λ1

.
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This proves the lemma in question. tu
Proof of Theorem 2.4. It is sufficient to prove (a), since the results of part (b) follow by

inversion and strong approximation respectively. The proof of (a) is standard.

Let B > 1 and let tn
df=Bn for all n> 1. Let 0 < ε < 1 and define the events: for all

n> 1,

An
df={ω : LQ(tn)6(1− ε)t2n/(2λ1 ln2(tn))}.

By scaling and Lemma 6.2, it follows that as n→∞,

ln IP (An) ∼ − 1
1− ε

ln(n)

Thus
∑
n IP (An) <∞ and, by the easy half of the Borel–Cantelli lemma, IP (An i.o.) = 0.

It follows that for almost all ω there is an integer N such that for all n>N we have

2λ1 ln2(tn)
t2n

LQ(tn)>(1− ε). (6.3)

Hence for n>N and tn6 s < tn+1 we obtain:

2λ1 ln2(s)
s2

LQ(s)>
(1− ε)
B2

,

where we have used (6.3) and the fact that t 7→ LQ(t) is nondecreasing. This demonstrates

that

lim inf
s→∞

2λ1 ln2(s)
s2

LQ(s)> 1, a.s. .

Let ε > α > 0 be chosen. Let t1
df= e and, for all n> 1, let

tn+1
df= tnexp (nα).

It follows that

ln(tn) ∼ n1+α

1 + α
,

ln2(tn) ∼ (1 + α) ln(n).
(6.4a)

Before proceeding with Borel–Cantelli argument, let us observe that ‖WQ(t)‖>λd‖W (t)‖
for all t> 0. Moreover, by a theorem of Dvoretsky and Erdős (see Motoo (1959)), almost

surely

‖W (t)‖>
√
t

(ln(t))3
,
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for all t sufficiently large. Thus by a real–variable argument and inversion, it follows that

with probability one there is a positive constant c such that

LQ(t)6 c t2(ln(t))6, (6.4b)

for all t sufficiently large.

For every n> 1, let

An
df={ω : LQ(tn+1)− LQ(tn)6((1 + ε)t2n+1/(2λ1 ln2(tn+1))}
⊃ {ω : LQ(tn+1)6((1 + ε)t2n+1/(2λ1 ln2(tn+1))}.

Hence by Lemma 6.2 and (6.4a) we obtain: as n→∞,

lim inf
n→∞

ln IP (An)
ln(n)

>−1 + α

1 + ε
> −1,

from which it follows that
∑
n IP (An) = ∞. Since increments of the escape process are

independent, the events {An, n> 1} are independent. Thus, by the independence half

of the Borel–Cantelli lemma, P (An i.o.) = 1. Consequently, for almost all ω there is an

infinite N ⊂ Z
+ such that n ∈ N implies

2λ1 ln2(tn+1)
t2n+1

LQ(tn+1)6(1 + ε) +
2λ1 ln2(tn+1)

t2n+1

LQ(tn). (6.5)

¿From (6.4a) and (6.4b), it follows that

lim
n→∞

ln2(tn+1)
t2n+1

LQ(tn) = 0, a.s. .

¿From this, we obtain

lim inf
t→∞

2λ1 ln2(t)
t2

LQ(t)6(1 + ε), a.s. .

The proof is completed upon sending ε to 0. tu
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