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Abstract. We consider a broad class of continuous martin-
gales whose local modulus of continuity is in some sense determin-
istic. We show that such martingales have Gaussian probability
tails, provided we appropriately normalize them by their quadratic
variation. As other applications of our methods, we provide en-
ergy inequalities and prove a new sufficient condition for the joint
continuity of continuous additive functionals of Brownian motion
indexed by their Revuz measures.

§1. Introduction. Suppose (Mt; 0 ≤ t ≤ ∞) is a continuous martingale (including the terminal
point at infinity to make the notation simpler) which has a finite moment generating function.
That is, for all ζ ∈ R1 ,

(1.0) P exp(ζM∞) < ∞.

We assume that M0 = 0 and that the underlying filtration,
(
Ft; 0 ≤ t ≤ ∞)

, satisfies the usual
hypotheses. We refer the reader to Revuz and Yor [RY] for the theory of continuous martingales.
The motivation behind this work is the following result, essentially due to McKean [McK] (see
also Freedman [Fr]):

(1.1) Theorem. If (1.0) holds, for any α, β, λ > 0,

P
(
M∞ ≥ (α + β〈M〉∞)λ

)
≤ exp

(− 2αβλ2
)
.

One can effectively drop the assumption (1.0) but we are not concerned with such refinements
here.

The main result of this paper states that if (Mt) has a locally deterministic modulus of conti-
nuity in a sense which will be described shortly (cf. (1.2) below), the above Gaussian bound is the
correct one up to a constant. Other related results appear in Barlow, Jacka and Yor [BJY]
and Dembo [De]. There is a relationship between Theorem (1.4) below and the main result of [De].
Indeed, Dembo is interested in the large–time behavior of t 7→ Mt: when the large–time behavior
of t 7→ 〈M〉t is in some sense deterministic, a moderate deviations principle holds. Here, we are
interested in fixed–time results which are (at least from a technical stand point) related to the local
behavior of t 7→ Mt in a somewhat similar way.

Our key assumption is one about the local modulus of continuity of M : there exists an adapted
continuous local martingale

(
Dt; 0 ≤ t ≤ ∞)

, such that with probability one, D0 = 0 and for all
s, t > 0,

(1.2) µ
(
Dt; [t, t + s]

) ≤ P
(
(Mt+s −Mt)2 | Ft

) ≤ µ
(
[t, t + s]

)
,

* Research partially supported by NSF grant DMS-95-03290

1



STOCHASTIC PROCESSES AND THEIR APPLICATIONS 65, 17–30 (1996)

where for any a ∈ R1 , A 7→ µ(a;A) and A 7→ µ(A) are finite and positive, nonrandom, atomless
measures on R1

+ . Moreover, for any Borel A ⊂ R1 , a 7→ µ(a;A) is convex. It is possible to show
that the fundamental martingales studied in [McK] satisfy (1.2). Let µ and µ denote the total mass
of µ(0; ·) and µ, respectively. More precisely,

(1.3)
µ , µ

(
0; [0,∞)

)
µ , µ

(
[0,∞)

)
.

The main result of this paper is the following:

(1.4) Theorem. Suppose (1.0) and (1.2) hold. Fix some p ∈ (0, 1). Then for any choice of
C < (1− p)µ/(µ− pµ), there exists λ0 > 0 such that for all λ > λ0,

exp
(−A1λ

2
) ≥ P

(
M∞ ≥ (

1 + (pµ)−1〈M〉∞
)
λ
)
≥ C exp

(
−A2λ

2
)
,

where A1 , 2(pµ)−1 and A2 , 2(pµ)−2µ.

The ideas employed in the proofs are reminiscent of the change of measure method of Cramér

[Cr] and the energy inequalities of Meyer [Me].
This paper is organized as follows. In the next section, we describe some preliminary estimates.

In particular, we prove in Proposition (2.5) that (1.2) implies that M ∈ H∞(P) and we provide
an explicit estimate for the H∞ norm of M . In Section 3, we use the estimates of Section 2 in
order to demonstrate Theorem (1.4). The next two sections are devoted to other consequences of
(1.2). In the fourth section, we provide energy inequalities and results on the smoothness of the
sample functions of t 7→ Mt. The inequalities developed in Section 4 are in turn used in Section 5 to
give estimates for the smoothness of continuous additive functionals of multidimensional Brownian
motion viewed as functions of their Revuz measures. This extends and compliments some of
the work of Bass and Khoshnevisan [BK]. In this connection, see also Marcus and Rosen

[MR1,MR2].
Let us mention some examples.

(1.5) Example. Suppose 〈M〉t = α(t) is a deterministic, bounded and increasing process. Then
(1.2) holds with µ(A) = µ(x;A) =

∫
A

α(ds), for any x. In this case, Theorem (1.4) implies that for
all C, p ∈ (0, 1), there exists λ0 > 0 such that for all 0 < λ0 < λ,

exp
(
− 2λ2

pα(∞)

)
≥ P

(
M∞ ≥ (1 + p−1)λ

) ≥ C exp
(
− 2λ2

p2α(∞)

)
.

In particular,

(1.6) lim
λ→∞

λ−2 lnP
(
M∞ ≥ λ

)
= − 1

2α(∞)
.

On the other hand, by Lévy’s representation theorem (cf. Revuz and Yor [RY]), there exists a
Brownian motion B such that Mt = Bα(t). Thus (1.6) agrees with well–known results about B.

(1.7) Example. Suppose Mt =
∫ t

0
f(Bs)dBs, where B is a Brownian motion. We are interested in

obtaining Gaussian estimates for P
(
M1 ≥ (α + β〈M〉1)λ

)
. Suppose that there exist 0 < α0 ≤ α1

such that for all x ∈ R1 , α0 ≤ f2(x) ≤ α1. Then (1.2) holds with µ(a;A) = α0 · Leb(A) and
µ(A) = α1 · Leb(A), where Leb denotes one–dimensional Lebesgue measure. Applying the proof
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of (1.4), we obtain the following: for all p ∈ (0, 1) and all C < (1 − p)α0/(α1 − pα0), there exists
λ0 > 0 such that for all 0 < λ0 < λ,

exp
(− 2(pα0)−1λ2

) ≥ P
(
M1 ≥ (1 + (pα0)−1〈M〉1)λ

) ≥ C exp
(− 2(pα0)−2α1λ

2
)
.

(1.8) Example. Let B be one–dimensional Brownian motion and define τ , inf
(
s > 0 : |Bs| = 1

)
.

Let Mt , Bt∧τ ; in particular, 〈M〉t = t ∧ τ . Note that (1.0) holds while it is not hard to see that
(1.2) does not. On the other hand, (1.1) need not be sharp for M . Indeed,

P
(|M∞| ≥ (α + β〈M〉∞)λ

)
= P

(
τ ≤ β−1(λ−1 − α)

)
,

which is zero unless α < λ−1. Suppose next, that α = 0 and β = 1 (say). By the reflection
principle, the probability in question becomes,

P
(|M∞| ≥ 〈M〉∞λ

)
= P(τ ≤ λ−1) � exp

(− λ/2
)
.

Here, f(λ) � g(λ) means that limλ→∞ ln f(λ)/ ln g(λ) = 1. Thus, the correct decay rate of the
probability is different from the Gaussian bounds of (1.1). (Of course, (1.1) still holds but is
non-informative when α = 0.)

(1.9) Example. In this example, we will show how the decay rate of the deviation probabilities
in question can be altered in some cases by changing the value of β in (1.1). Let B be a one–
dimensional Brownian motion and define σ to be the first s ∈ (0, 1), such that Bs = 1. If such an s
does not exist, let σ = 2. Define Mt = Bt∧σ and observe that 〈M〉t = t∧ σ. (Note that (1.0) holds
in this case.) We will look at two different cases where the behaviors of the deviation probabilities
in question are very different from each other and from (1.1).

Case (i) In this case, we consider the parameters: β = 0, α = 1 and consider λ > 1 large. Then

P
(|M∞| ≥ λ

)
= P

(|Bσ| ≥ λ
)

= P
(
σ = 2, B2 ≤ −λ

)
≤ P

(|B2| ≥ λ
)

� exp(−λ2/4).

Case (ii) In this case, we consider the choices: β = 1, α = 0 and λ > 1 large. Then,

P
(|M∞| ≥ 〈M〉∞λ

)
= P

(
σ < λ−1

)
+ P

(|B2| ≥ 2λ, σ = 2
)

, I + II.

Note that I � exp
(− λ/2

)
while II ≤ P

(|B2| ≥ 2λ
) � exp

(− 2λ2
)
. Thus,

P
(|M∞| ≥ 〈M〉∞λ

) � exp
(− λ/2

)
,

which is a very different rate than that provided by Case (i) or the Gaussian rates which one may
expect. Note that (1.2) fails here too.

Acknowledgement. I wish to thank Pat Fitzsimmons and Zoran Vondracek for enlightening
discussions. Many thanks are due to an anonymous referee for suggestions which have lead to a
much improved presentation.
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§2. Estimates. For any a ∈ R1 , define Ea
t , exp

(
aMt − a2〈M〉t/2

)
be the exponential local

martingale and define Cramér measures, QaA , P
(Ea

t ;A
)
, for all A ∈ Ft and all t > 0. In other

words, Qa are probability measures whose Radon–Nykodym derivative (with respect to P) is given
by

dQa

dP

∣∣∣∣
Ft

= Ea
t , a.s. .

Let us begin with some preliminary observations which we shall take for granted thoughout
the rest of the paper. By (1.0) and properties of submartingales,

sup
t
P exp(ζ|Mt|) = P exp(ζ|M∞|) ≤ 2P cosh(ζM∞) < ∞,

for all ζ ∈ R1 . This, in turn, implies that supt P|Mt|p < ∞ for all t, p > 0. By Doob’s inequality,
P supt |Mt|p < ∞ and by the Burkholder–Davis–Gundy inequality (cf. Revuz and Yor [RY]),
〈M〉∞ ∈ Lp(P) for all p > 0. Also note that Ea

t ≤ exp(aMt) and as argued above, supt Ea
t and

〈Ea〉∞ are both in Lp(P) for all a ∈ R1 and t, p > 0. In particular, note that
(Ea

t ; 0 ≤ t ≤ ∞)
is

an Lp(P)–bounded martingale for all p > 0. In the language of Kazamaki [Ka], both M and Ea

are in Hp for all p > 0. We shall see later that (1.2) implies that M ∈ H∞; see Proposition (2.5)
below.

Throughout this section, {tj,n; 1 ≤ j ≤ mn} denotes a finite partition of [0, t] whose mesh size
goes to 0 as n →∞. More precisely, 0 = t1,n < t2,n < · · · < tmn−1,n < tmn,n = t with

lim
n→∞ max

1≤j≤mn−1
|tj+1,n − tj,n| = 0.

(2.1) Lemma. If (1.0) and (1.2) are in force, for all 0 ≤ s, t ≤ ∞,

µ
(
Mt; [t, t + s]

) ≤ P
(〈M〉t+s − 〈M〉t | Ft

) ≤ µ
(
[t, t + s]

)
.

Proof. By polarization,

P
(〈M〉t+s − 〈M〉t | Ft

)
= P

(
(Mt+s −Mt)2 | Ft

)
.

The lemma follows from (1.2). ♦
(2.2) Lemma. If (1.0) and (1.2) are in force, for all 0 ≤ t ≤ ∞ and a ∈ R1 , µ

(
0; [0, t]

) ≤ Qa〈M〉t ≤
µ
(
[0, t]

)
.

Proof. We begin with the proof of the lower bound. Integration by parts for stochastic integrals
implies that

Qa〈M〉t = P
(Ea

t 〈M〉t
)

= P

∫ t

0

Ea
s d〈M〉s

= lim
n→∞P

mn−1∑
j=1

Ea
tj,n

(〈M〉tj+1,n
− 〈M〉tj,n

)
= lim

n→∞P

mn−1∑
j=1

Ea
tj,n

P
(〈M〉tj+1,n

− 〈M〉tj,n
| Ftj,n

)

≥ lim
n→∞P

mn−1∑
j=1

Ea
tj,n

µ(Dtj,n
; [tj,n, tj+1,n]

)
,(2.3)
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by (2.1). Now fix 1 ≤ j ≤ mn − 1 and define Ns , µ
(
Ds; [tj,n, tj+1,n]

)
, s ≥ 0. Due to the

convexity assumption on a 7→ µ(a; ·), (
Ns; s ≥ 0

)
is a local semi–martingale. Suppose first that

D, µ′(·; [tj,n, tj+1,n]) and µ′′(·; [tj,n, tj+1,n]) are all bounded, where µ′ and µ′′ are the derivatives in
the first variable. We then obtain the following upon integration by parts:

(2.4) P
(Ea

t Nt

)
= µ

(
0; [tj,n, tj+1,n]

)
+ P

∫ t

0

Ea
s dNs.

By the Itô–Wang formula and the assumed convexity,

P

∫ t

0

Ea
s dNs = 12P

∫ t

0

µ′′
(
Ds; [tj,n, tj+1,n]

)
d〈D〉s ≥ 0.

By (2.4), P
(Ea

t Nt

) ≥ µ
(
0, [tj,n, tj+1,n]

)
. Plugging this inequality in (2.3), we obtain

Qa〈M〉t ≥ lim
n→∞

mn−1∑
j=1

µ
(
0; [tj,n, tj+1,n]

)
= µ

(
0; [0, t]

)
.

In general, D or the derivatives of µ may not be bounded. The above can then be proved by
localization. This proves the lower bound. To prove the upper bound, we again integrate by parts
to see that

Qa〈M〉t = P

∫ t

0

Ea
s d〈M〉s

= lim
n→∞P

mn−1∑
j=1

Ea
tj,n

(〈M〉tj+1,n
− 〈M〉tj,n

)
= lim

n→∞P

mn−1∑
j=1

Ea
tj,n

P
(〈M〉tj+1,n

− 〈M〉tj,n
| Ftj,n

)
≤ lim

n→∞P

mn−1∑
j=1

Ea
tj,n

µ
(
[tj,n, tj+1,n]

)
= µ

(
[0, t]

)
.

This proves the upper bound and hence the lemma. ♦
Somewhat surprisingly, (1.2) implies the boundedness of the quadratic variation process

(〈M〉t
)

as the following result shows.

(2.5) Proposition. If (1.0) and (1.2) hold, for all a ∈ R1 , M ∈ H∞(Qa). More precisely, for all
a ∈ R1 ,

Qa
(
〈M〉t ≤ µ([0, t]), for all 0 ≤ t ≤ ∞

)
= 1.

Proof. Recall that t 7→ 〈M〉t is increasing and continuous. Moreover, t 7→ µ([0, t]) is increasing
and right continuous. Therefore, it suffices to show that for each t > 0 and a ∈ R1 , Qa

(〈M〉t ≤
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µ([0, t])
)

= 1. Integrating by parts,

Qa〈M〉kt = P
(Ea

t 〈M〉kt
)

= kP

∫ t

0

Ea
s 〈M〉k−1

s d〈M〉s

= k lim
n→∞P

mn−1∑
j=1

Ea
tj,n

〈M〉k−1
tj,n

(〈M〉tj+1,n
− 〈M〉tj,n

)
= k lim

n→∞P

mn−1∑
j=1

Ea
tj,n

〈M〉k−1
tj,n

P
(〈M〉tj+1,n

− 〈M〉tj,n
| Ftj,n

)
≤ k lim

n→∞P

mn−1∑
j=1

Ea
tj,n

〈M〉k−1
tj,n

µ
(
[tj,n, tj+1,n]

)
= k lim

n→∞

mn−1∑
j=1

Qa〈M〉k−1
tj,n

µ
(
[tj,n, tj+1,n]

)
= k

∫ t

0

Qa〈M〉k−1
s µ(ds).

By Lemma (2.2) and induction, we see that for all k ≥ 1,

Qa〈M〉kt ≤ k

∫ t

0

(
µ([0, s])

)k−1
µ(ds) =

(
µ([0, t])

)k
.

Therefore, for all ε > 0,
Qa

(〈M〉t ≥ (1 + ε)µ([0, t])
) ≤ (1 + ε)−k.

Letting k →∞, the result follows. ♦
Next, we prove an elementary probability bound for random variables.

(2.6) Lemma. Let X be a positive random variable on a probability space
(
Υ,G,Q

)
. Suppose

there exist 0 < L ≤ R < ∞ such that QX ≥ L while Q(X ≤ R) = 1. Then for any p ∈ (0, 1),

Q
(
Lp ≤ X ≤ R

) ≥ L(1− p)
R− Lp

.

Proof. Note that

QX = Q
(
X;Lp ≤ X ≤ R

)
+ Q

(
X;X ≤ Lp

)
≤ RQ

(
Lp ≤ X ≤ R

)
+ Lp

(
1− Q(Lp ≤ X ≤ R)

)
= (R− Lp)Q(Lp ≤ X ≤ R) + Lp.

Since QX ≥ L, solve for Q
(
Lp ≤ X ≤ R

)
to finish. ♦

Recalling (1.3), define X , 〈M〉∞, L , µ and R , µ. The following is then a direct consequence
of Lemmas (2.2) and (2.6) and Proposition (2.5):
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(2.7) Lemma. If (1.0) and (1.2) are in force, for all a ∈ R1 and all p ∈ (0, 1),

Qa
(
pµ ≤ 〈M〉∞ ≤ µ

)
≥ (1 − p)µ

µ− pµ
.

§3. The Proof of Theorem (1.4). The upper bound is a consequence of Theorem (1.1) upon
letting α , 1 and β , (pµ)−1. We proceed with the proof of the lower bound. Note that for any
β, λ > 0 and ρ > 1,

P
(
M∞ ≥ (1 + β〈M〉∞)λ

) ≥ P
(
M∞ − βλ〈M〉∞ ∈ [λ, ρλ]

)
≥ exp

(− 2βρλ2
)
P
(
E2βλ
∞ ; M̃∞ − 12〈M̃〉∞ ∈ [2βλ2,2βρλ2]

)
,

where M̃t , 2βλMt is also a martingale. Let Nt , M̃t−〈M̃〉t. By Girsonov, N is a Q2βλ–martingale
with 〈N〉t = 〈M̃〉t = 4β2λ2〈M〉t. Hence,

P
(
M∞ ≥ (1 + β〈M〉∞)λ

)
≥ exp

(− 2βρλ2
)
Q2βλ

(
N∞ + 12〈N〉∞ ∈ [2βλ2,2βρλ2]

)
.

Suppose we could prove the following: for all ε > 0,

(3.1) lim
λ→∞

Q2βλ
(|N∞| ≥ λ2ε

)
= 0.

Then by Slutsky’s theorem,

lim inf
λ→∞

exp(2βρλ2
)
P
(
M∞ ≥ (1 + β〈M〉∞)λ

)
≥ lim inf

λ→∞
Q2βλ

(
12λ−2〈N〉∞ ∈ [2β,2βρ]

)
= lim inf

λ→∞
Q2βλ

(
2β2〈M〉∞ ∈ [2β, 2βρ]

)
≥ inf

a
Qa

(
〈M〉∞ ∈ [β−1, ρβ−1]

)
.

The above holds for any ρ > 1 and β > 0. Consider β , (pµ)−1 and ρ , µ(pµ)−1. Together with
Lemma (2.7), this choice of β and ρ proves the theorem provided we establish (3.1). It is this which
we shall do next. As remarked earlier, Nt is a centered Q2βλ–martingale. Hence,

Q2βλN2
∞ = Q2βλ 〈N〉∞

= 4β2λ2Q2βλ 〈M〉∞
≤ 4β2λ2µ,

by Proposition (2.5). By Chebychev’s inequality,

Q2βλ
(|N∞| ≥ λ2ε

) ≤ 4β2µ

ε2λ2
,

which goes to 0 as λ →∞. This proves (3.1) and hence the theorem. ♦

§4. Energy inequalities and the modulus of continuity. In this section we discuss some of
the implications of condition (1.2). Let us begin with the following energy inequality which is more
or less contained in Bass [Ba1], Meyer [Me] and Kazamaki [Ka].
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(4.1) Proposition. Suppose (1.0) and (1.2) hold (say with µ ≡ 0). Then for all even k ≥ 2, and
all t, s > 0,

P
(
Mt+s −Mt

)k ≤ 2−k/2k!
(
µ([t, t + s])

)k/2
.

The other inequality in which we are interested is a considerably sharper version of the above
energy type inequality:

(4.2) Proposition. Suppose (1.0) and (1.2) hold. Suppose there exist an ε > 0 and an increasing
function θ : R1

+ 7→ R1
+ such that θ(0+) = 0 and for all intervals I ⊆ R1

+ with length |I| < ε,
µ(I) ≤ θ(|I|). Then for all t, s > 0 and all even integers k ≥ 2,

P
(
Mt+s −Mt

)k ≤ k!
(k/2)!

2−k/2
(
θ(s)

)k/2
.

It is not hard to see that the constant in (4.2) is the best possible.
As consequences of the above results, we mention (without proofs) two results about the

modulus of continuity of Mt. Proofs can be put together using Lévy’s method for Brownian
motion. See Revuz and Yor [RY].

(4.3) Corollary. Fix some T > 0 and define for all t > 0,

ht(δ) , sup
(
s : µ([t, t + s]) ≤ δ

)
,

HT (δ) , sup
(
s : sup

r≤T
µ([r, r + s]) ≤ δ

)
.

Assume (1.0) and (1.2) hold and that limδ→0+ HT (δ) = 0. Then with probability one,

lim sup
δ→0+

sup
0≤s≤δ

|Mt+s −Mt|√
ht(δ) ln ln

(
1/ht(δ)

) ≤ 1/
√

2,

and

lim sup
δ→0+

sup
0≤s≤δ
0≤t≤T

|Mt+s −Mt|√
HT (δ) ln

(
1/HT (δ)

) ≤ √
2.

(4.4) Corollary. Fix some T > 0 and assume the domination condition of Proposition (4.2). With
probability one,

lim sup
δ→0+

sup
0≤s≤δ

|Mt+s −Mt|√
g(δ) ln ln

(
1/g(δ)

) ≤ √
2,

and

lim sup
δ→0+

sup
0≤s≤δ
0≤t≤T

|Mt+s −Mt|√
g(δ) ln

(
1/g(δ)

) ≤ 2
√

2,

where g(δ) , sup
(
s : θ(s) ≤ δ

)
.

The Proof of Proposition (4.1). Apply Itô’s formula to Ns , Mt+s − Mt to see that for all
even integers k ≥ 0, Nk

t − k(k−1)
2

∫ s

0
Nk−2

r d〈N〉r is a mean zero martingale. Taking expectations,

P
(
Mt+s −Mt

)k =
k(k − 1)

2
lim

n→∞P

Sn∑
j=1

(
Mt+sj,n

−Mt

)k−2
(
〈M〉t+sj+1,n

− 〈M〉t+sj,n

)
,

8
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where (sj,n; 1 ≤ j ≤ Sn) is a partition of [0, s] whose mesh size goes to 0 as n →∞. By (1.2) and
conditioning,

P
(
Mt+s −Mt

)k ≤ k(k − 1)
2

∫ s

0

P
(
Mt+r −Mt

)k−2
µt(dr),

where µt(A) , µ(t + A). Let Fk(r) , P
(
Mt+r −Mt

)k. We have proven the following:

Fk(s) ≤ k(k − 1)
2

∫ s

0

Fk−2(r)µt(dr)

≤ k(k − 1)
2

sup
0≤r≤s

Fk−2(r)µ([t, t + s]).

Properties of submartingales dictate that supr≤s Fk−2(r) = Fk−2(s). Therefore,

Fk(s) ≤ k(k − 1)
2

Fk−2(s)µ([t, t + s]).

The result follows from induction. ♦
The Proof of Proposition (4.2). As in the proof of Proposition (4.1), let Fk(t) , P

(
Mt+s−Mt

)k.
From the latter proof, it follows that

Fk(s) ≤ k(k − 1)
2

∫ s

0

Fk−2(r)θ(dr)

≤ k(k − 1)
2

· (k − 2)(k − 3)
2

∫ s

0

∫ r

0

Fk−4(u)θ(du)θ(dr)

=
k!

(k − 4)!
2−2

∫ s

0

(
θ(s)− θ(u)

)
Fk−4(u)θ(du)

≤ k!
(k − 6)!

2−3

∫ s

0

∫ u

0

(
θ(s)− θ(u)

)
Fk−6(r)θ(dr)θ(du)

=
k!

(k − 6)!
2−3

∫ s

0

∫ s

r

(
θ(s)− θ(u)

)
θ(du)Fk−6(r)θ(dr)

=
k!

(k − 6)!
2−3 1

2!

∫ s

0

(
θ(s)− θ(r)

)2
Fk−6(r)θ(dr).

(The second and the fourth lines follow from induction on k.) By induction, we see that for any
integer p ≤ k/2,

(4.5) Fk(s) ≤ k!
(k − 2p)!

2−p 1
(p − 1)!

∫ s

0

(
θ(s)− θ(u)

)p−1
Fk−2p(u)θ(du),

since for all s > r > 0 and all positive integers q,

(4.6)
∫ s

r

(
θ(s)− θ(u)

)q
θ(du) = (1 + q)−1

(
θ(s)− θ(r)

)1+q
.

Letting p , k/2 in (4.5) and applying (4.6) with q , k
2 − 1, we obtain the result. ♦

§5. Continuous Additive Functionals of Brownian Motion. Let (Zt) denote a d dimensional
Brownian motion with d > 2. To expedite the presentation, we only consider d ≥ 3. To consider
planar Brownian motion, our methods should be applied to the process Z appropriately killed.
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Let g be the Green’s function for Z given by g(x, y) , c(d)|x − y|2−d, for all x, y ∈ Rd . The
value of c(d) is (2π)−d/2Γ(−1 + d/2) but is of no consequence to us. Let µ be a positive Radon
measure on Rd and suppose

(5.1) sup
x∈Rd

∫
|x− y|2−dµ(dy) < ∞.

We define the µ–potential,

gµ(x) ,
∫
Rd

g(x, y)µ(dy).

This is an excessive function and has a Riesz representation (cf. Bass [Ba1] or Sharpe [Sh]). We
shall use the probababilistic form of it which is nowadays known as Brosamler’s formula, first
discovered in [Br]; see Bass [Ba2] for a different proof. Brosamler’s formula states that almost
surely for all t > 0,

(5.2) gµ(Zt) = gµ(Z0) +
∫ t

0

∇gµ(Zs) · dZs + Lµ
t ,

where (Lµ
t ) is a continuous additive functional with Revuz measure µ. The latter means that (Lµ

t )
is a continuous additive functional which is determined by its potential PxLµ

∞ = gµ(x), for all
x ∈ Rd ; cf. Sharpe [Sh]. In this section, we use another consequence of (1.2) (namely Proposition
(2.5)), to give a condition which will insure that

(
Lµ

t ; t ∈ [0, 1], µ ∈M)
is jointly continuous, where

M is an appropriate collection of Revuz measures. Our contribution complements those of Bass

and Khoshnevisan [BK] and Marcus and Rosen [MR1,MR2].
In order to state and prove the main result of this section, we need some further notation. Let

µi, i = 1, 2 be positive Radon measures both satisfying the following with µ replaced by µi:

(5.3) sup
x∈Rd

∫
Rd

|x− y|1−dµ(dy) < ∞.

It is not difficult to see that the following is then well–defined:

(5.4) ∂(µ1, µ2) , ‖∇gµ1 −∇gµ2‖∞.

We offer the following result:

(5.5) Theorem. Suppose M is a collection of positive Radon measures such that for all µ ∈ M,
‖gµ‖∞ < ∞ and (5.3) holds. Let HM,∂(ε) denote the minimal number of ∂–balls of radius ε
required to cover M. If ∫

0+

√
lnHM,∂(ε)dε < ∞,

there exists an almost surely jointly continuous modification of
(
Lµ

t ; t > 0, µ ∈M)
with respect to

the pseudo–distance given by ∂1(µ, ν) , ‖gµ − gν‖∞ + ∂(µ, ν).

Our proof also implies the following estimate:

(5.6) Corollary. In the set–up of Theorem (5.5), for any t > 0, we have some δ0 = δ0(t) > 0 such
that for all δ ∈ (0, δ0),

P sup
0≤s≤t

sup
µ,ν∈M

∂(µ,ν)≤δ

|Lµ
s − Lν

s | ≤ ‖gµ − gν‖∞ + δ−1
0

∫ δ

0

√
ln HM,∂(ε)dε.

10
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Some remarks are in order.

(5.7) Remark. By the celebrated lemma of Frostman (cf. Kahane [K], for example), (5.3)
implies that µ is very smooth. Indeed, the carrying dimension of µ can be no less than d−1. When
the carrying dimension of µ is smaller than d− 1, the situation seems to be different. See [BK] and
[MR2] for some results.

(5.8) Remark. The estimates used in the proof of Theorem (5.5) involve metric entropy; see
Dudley [Du]. In doing so, one assumes that the space is more or less homogeneous in the pseudo–
metric ∂(·, ·). A refinement can be obtained by assuming the existence of a majorizing measure.
Indeed, the metric entropy integral condition of Theorem (5.5) can be reduced to assuming the
existence of a probability measure m on M, such that

sup
µ∈M

∫
0+

√
ln

1
m

(
B∂(µ, ε)

) dε < ∞,

where B∂(µ, ε) is the ∂–ball of radius ε about µ andM is topologized by the weak-* topology. See
Fernique [Fe] for details.

(5.9) Remark. Suppose there exists some K > 0, such that for any µ ∈M, supp µ ⊂ [−K,K]d.
Then (5.3) always implies ‖gµ‖∞ < ∞. Alternatively, one can consider Brownian motion killed
when it leaves [−K,K]d.

(5.10) Remark. If (Zt) is a symmetric transient Markov process with Green’s function g, we suspect
that under a suitable re-interpretation of (5.3), the analogue of (5.4) still holds with |∇gµ1−∇gµ2 |2
replaced by Γ(gµ1 − gµ2 , gµ1 − gµ2), where Γ is the trace of the opérateur carré du champ defined
by Γ(f, g) = A(fg)− fA(g)− gA(f), where A is the generator of Z and f, g ∈ D(A). However, the
correct statement and hence the proof eludes us.

(5.11) Remark. SupposeM is a collection of measures all of whom are absolutely continuous with
respect to Lebesgue measure on Rd and satisfy (5.3). Abusing notation somewhat, we write for
µ ∈M, µ(dx) = µ(x)dx. Then for µ, ν ∈M,

∂(µ, ν) = sup
a∈Rd

∣∣∇(
gµ − gν

)∣∣(a)

= c(d) sup
a∈Rd

∣∣∣∇ ∫
|a− y|2−d

(
µ(y)− ν(y)

)
dy

∣∣∣
≤ (d− 2)c(d) sup

a∈Rd

∫
|a− y|1−d |µ(y)− ν(y)|dy

, ∂̃(µ, ν).

Hence, the statement of Theorem (5.5) remains true if we replace ∂1 by ∂2(µ, ν) , ‖gµ − gν‖∞ +
∂̃(µ, ν), everywhere. The point is that while it is somewhat weaker, ∂2 is a more manageable norm
than ∂1.

Proof of Theorem (5.5). For any µ ∈M define the martingale,

Nµ
t ,

∫ t

0

∇gµ(Zs) · dZs.

Note that 〈Nµ〉t ≤ t‖∇gµ‖∞, which is bounded on compact t–sets. By Freedman [Fr], (1.0) holds
for Nµ

t . Next, let µ, ν ∈M, fix T > 0 and define Mt , Nµ
t∧T −Nν

t∧T . Then, (1.0) holds for M and

P
(
(Mt+s −Mt)2

∣∣∣ Ft

)
= P

( ∫ (t+s)∧T

t∧T

|∇gµ(Zr)−∇gν(Zr)|2dr
∣∣ Ft

)
11
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≤ PZt

∫ s∧T

0

|∇gµ(Zr)−∇gν(Zr)|2dr

≤ s · sup
a∈Rd

∣∣∇gµ(a)−∇gν(a)
∣∣2

, µ
(
[t, t + s]

)
,

where µ(A) is the Lebesgue measure of A times supa |∇gµ −∇gν |2(a). In other words, (1.2) holds
with µ ≡ 0 and µ as given above. By Proposition (2.5), almost surely, 〈M〉t ≤ µ([0, t]) = t∂2(µ, ν)
for all t > 0. Applying Proposition (4.2) with θ(s) = s∂2(µ, ν∂2(µ, ν), Theorem (1.1) can be used
to show that for all α, β > 0 and all 0 < t < T ,

P
(
|Nµ

t −Nν
t | ≥

(
α + tβ∂2(µ, ν)

)
λ
)
≤ 2 exp(−2αβλ2).

Picking α , t1/2∂(µ, ν)/2 and β ,
(
2t1/2∂(µ, ν)

)−1, it follows from the above and the usual
maximal extension of Theorem (1.1) that,

P
(

sup
0≤s≤T

|Nµ
s −Nν

s | ≥ t1/2∂(µ, ν)λ
) ≤ 2e−λ2/2.

To finish, use (5.2) together with the metric entropy method of Dudley [Du]. ♦
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