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1. Introduction

Recall that a two-parameter real-valued Brownian sheet W = {W (s, H)},5 is a
centered Gaussian process with covariance

E{W (s, ))W(s', )} = min(s,s’) x min(z, ) Vs, t,s', 1 =0. (1.1)

It is known that the level sets of W have a rich and complicated structure. For
instance, if W~'{a} :={s,1) € Ri . W(s,t) = a}, then it follows that with probability
one,
. 1 3
dim(W ™ {a}) = 3 Va € R; (1.2)
cf. [1,12]. Here, dim refers to Hausdorff dimension. Other, more delicate, features of
the level sets can be found in [5-11,13].

One expects that the level sets of two-parameter random walks are uniform in
local time. Informally speaking, this and (1.2) together imply that for any reasonable
discrete approximation .oy of W~'{0} N[0, 1], one might expect that #.</y ~ N>/2,
as N — oo; here, # denotes cardinality, and ““~” stands for any reasonable notion of
asymptotic equivalence.

This paper is motivated, in part, by our desire to find a good algorithm for
simulating the zero-set of W inside a given box that we take to be [0, 1]> to be
concrete. A natural way to try and do this is by first performing a random-walk
approximation to W, and then approximating the zero-set of W by that of the walk.

With this in mind, let {X;;};;>, denote an array of i.i.d. random variables with
PlX;j=1}=PX;; =—-1} = %, and consider the two-parameter random walk
{Smn; m,n=0} defined as

m n

Swa=y_ Y Xy  Vmnzl, (1.3)
=1 j=I

with the added stipulation that S,,,, = 0 whenever mn = 0. It is then possible to show
that as N — oo,

(NI S st v Jo<si< 1= AWV (s, D} o<gi< 1 (1.4)

where = denotes weak convergence in a suitable space. Here, convergence in
D a10,11([0, 1]) will do, but we will not need this fact in the sequel; see [14, Theorem
4.1.1, Chapter 6] for a variant of this statement. Suffice it to say that the factor of
N~!is the central limit scaling that comes from adding O(N?) i.i.d. variates.

A natural approximation of the zero-set W~'{0}N[0,1 would then be the
random set

Yy = {(i,j) € {0,...,N}*: S;; = 0}, (1.5)

where N is a large integer. While this algorithm is intuitively attractive, it does not
perform well. Indeed, by the local limit theorem ([19, Theorem 2.8]),
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N N
-1/2
E(# )y} ~@m~'7 )

i=l j=I

@)""* ~ 42m)~' 2N, as N — oo. (1.6)

One can use this, in conjunction with a monotonicity argument, to show that with
probability one,
lim N732#Yy = 0. (1.7)
N—oo
In light of (1.2) and its proceeding discussion, (1.7) suggests that Yy might be too
thin to properly simulate the zero-set W~1{0} N[0, 1]* of the Brownian sheet.

In this paper, we present an alternative algorithm for simulating the zero-set of W,
and show that our approximation has the correct size of N®/2*+°(M) a5 N — 00. Our
suggested approximation is a natural one that is based on the “crossing numbers” of
the approximating two-parameter random walk S.

A lattice point (i,j) is called a (vertical) crossing for the random walk S if

Sl'J'SjJ+1<O. (18)
Define

Zy = {(i,)) € [0, N}* N Z*: (i,)) is a crossing}

C{N) :=#{j € [0,N]NZ?: (i,)) is a crossing}

Z(N) :=L(N) + -+ Cv(N). (1.9)

In words, Z(N) = #Z is the total number of crossings of the random walk in the
first N x N steps. We propose to show that Zy is a good approximation to the zero-
set of the Brownian sheet in [0,1]%, at least in the sense that Z(N)=#Zy is
sufficiently thick in the following asymptotically sense.

Theorem 1.1. With probability one, Z(N) = N®/2+°) 45 N — oo.

Fig. 1 shows the simulation of the level set of a two-parameter simple walk,
together with the vertical crossings of the same random walk. The figure speaks for
itself, and the Matlab code is added as a brief appendix at the end of the paper.

Throughout this paper, we write log x := In(x V e).

2. Brownian sheet and invariance

To prove Theorem 1.1, we need to analyze the crossings of the walk
simultaneously at all levels. With this in mind, for each x € R we say that (i,j) is a
(vertical) x-crossing for the random walk if

(Sij — X)(Siji1 — x) <O, @.1)

Next, we can define
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2000 .
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0 200 400 600 800 1000 1200 1400 1600 1800 2000
(a) The actual zeros

0 200 400 600 800 1000 1200 1400 1600 1800 2000
(b) The vertical crossings

Fig. 1. The zeros vs. the vertical crossings.

(il n) = #{: 0<j<n: (i,j) is an x-crossing}

Z(x;m,n) := zm: Li(x; n). (2.2)
i=0

Thus, Z(x;m,n) denotes the number of x-crossings in the first m x n steps. We
remark that Z(N) = Z(0; N, N).

When N is large, the entire process (x,s, ) Z(x; | Ns], [Nt]) is close to the
crossing local times of a Brownian sheet that we describe next.
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For any fixed s>0, {Ls(x;1)},5¢ denotes the local time at x of the process
t— W(s,t). This is the density of the occupation measure, as described by the
formula,

+0o0 t

FOLdxr = [ FOV 6.0 du 23)
—00 0
Ref. [21] introduces the process Ly as the line local time of W.

We define the crossing local time of W at level x as

s
C(x;s,1) :/ JuL,(x; t)du. (2.4)
0
The following strong approximation constitutes a central portion of this paper.

Theorem 2.1. Possibly in an enlarged probability space, there exists a coupling for the
two-parameter random walk S and the Brownian sheet W such that for any ¢>0 the
following holds almost surely: As N — oo,

max  max |S,, — W(m,n)| = ON'*(log N)/?),

I<m<N 1<n<N

max sup |Z(x;m,n) — C(x;m,n)| = o(NW+ey, (2.5)
R

I<m<N
1<n<N X€

where Z(x;m,n) is the x-crossing number of the random walk, and C(x;s,t) is the
crossing local time of W.

Remark 2.2. Theorem 2.1 implies weak convergence as a corollary. Indeed, we can
note the following scaling relationship which comes only from the Brownian scaling
of W:

Nt : Ns, Nt d
KWM)fwﬁfﬁ} D (5, 1), Cs 5, D} rmones (26
N N / 5,t>0, xeR

where 2 denotes the equality of finite-dimensional distributions. Then the following
is a consequence of Theorem 2.1, (2.6), and a standard estimate of modulus of
continuity: As N — oo,

{ (SLNsJ,\_th Z(Nx; | Ns], LNIJ)> }
N ’ N3/2 s5,t€[0,1], xeR

= {(W(s, 1), C(x; 5, 0))}s.1e00,1],xeR- 2.7

Here, = denotes weak convergence in the Skorohod space Zg:(R x [0, 17).

Remark 2.3. We have not considered other walks than the simple ones described
here. However, we suspect that, after making small adjustments, our methods would
apply to other walks such as Gaussian ones. (The local time of a two-parameter
Gaussian walk needs to be appropriately defined, of course.) We believe that the end-
result is the same: Counting vertical crossings performs better than counting
(approximate) zeros.
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Let us say a few words about the proof of (2.5). Recall that Z(x;m,n) =
Yo oCi(x;n), where for each i, n—{;(x;n) is the number of x-level crossings of the
one-parameter, simple random walk {S;;};—o ., .. There is a rich literature for level
crossings of such random walks. For example, we can appeal to [4, Theorem 1.2] to
see that for each fixed i,

(il m) & ViLi(x; n), (2.8)

In words, this means that {;(x;n) can be well approximated by /i Lj(x;n) where
Li(x;n) is the local time of a Brownian motion with infinitesimal variance i. One
might then conjecture that such local times can be embedded in the line local times L;
of a single Brownian sheet W, cf. (2.3). If this were so, then

m m
Z(ximn) =Y Glan) ~ Y ViLixin)
i=0

i=0
A / sLy(x;n)ds = C(x;m, n). (2.9)
0

Such a route is fraught with technical difficulties. For one, it is not clear why (2.8)
should hold jointly for all i if L; is the line local time of a single Brownian sheet.
Moreover, the rate of approximation in (2.8) depends in a subtle way on i, and it is
not at all clear what information can be gleaned from this about the rate of
approximation in (2.9).

Our method provides an approach that is based on our attempt at solving the
following loosely stated problem: “How close are the local times L(X ) and L(X>) of
two processes X1 and X, if X1~ X, and if L(X1) and L(X3) are sufficiently
smooth?”. Interestingly enough, our solution to the mentioned problem uses (2.8),
but only for a fixed value of i.

The remainder of the paper is organized as follows: The two parts of Theorem 2.1,
namely the two claims in (2.5), are proved in distinct sections. The first assertion of
(2.5) is straightforward; it is proved in Section 3. We prove the second assertion of
(2.5) in Section 4. We do this by means of two technical lemmas. The said lemmas
themselves are proved, respectively, in Sections 5 and 6. Finally, we derive Theorem
1.1 in Section 7. Our derivation involves an application of (2.5) and a recent estimate
of the authors on the explosion rate of the local time along lines of W [15].

3. Proof of Theorem 2.1 (2.5): first part

Our proof of the first part of (2.5) relies on Bernstein’s inequality that we now
recall; cf. [20, p. 855].

Let {n;};> be a sequence of independent mean-zero variables such that for some
¢>0, E{|n;|"} <dven! ¢ for all n>2. Then, for any x>0 and n>1,

L 1 x2
=1

k=1
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Fix j>1, and consider the sequence {X;;}; ;> of i.i.d. random variables. According
to [16], possibly in an enlarged probability space, there exists a standard Brownian
motions W; such that for all x>0 and m=>1,

{

where ¢|, ¢; and c; are constants that do not depend on x,m. Since {X;;};;>, are
ii.d., we can arrange things so that {W}};-, are independent processes.

Now, let us fix m>1, and consider the process n = {1;};> where n; = S Xij—
W ;(m). Clearly, 5 is a sequence of independent (but not necessarily i.i.d.) mean-zero
variables. According to [16] for any n>2 and j>1,

> Xy — Wim)

i=1

>cy log m+ x} < e Y, (3.2)

Bl 1"} = /0 ny"=P{jn| > y) dy

¢ log m 00
< / ny"tdy + / n(cy log m+ x)" 'e;e™ ¥ dx. (3.3)
0 0

The first integral equals (c; log m)”", whereas the second is

cilog m o0
(/ + / )n(cl log m + x)" 'ee™ ¥ dx
0 clog m

o0

¢y log m
<n(2cilog my"! / e " dx + ne / (2x)"le™* dx
0 c

1 log m
<n(2¢log my"™! / e ?rdx + ne; / (2x)" e  dx
0 0

- n2eilog my e, mlep2" !

34
& (c3)" G4
Therefore, there exists an absolute constant ¢4 such that
1 2
E(In; ") < M (cslog my'"2n!  Vn>2. (3.5)

By Bernstein’s inequality (cf. (3.1)), for any x>0 and m,n>1,

, 1 X
{ Z Z Xij— Z W ;(m) >x}<2exp< 2¢4 n(log m)* + xlog m)

(3.6)

It is manifest that {W( + 1,k) — W(j,k)}; x>0 has the same law as {W(k)},k>0
Standard methods can then be used to prove that we can embed {Z Wi(k)}; =1 in
a two-parameter Brownian sheet W, although we may possibly need to work in an
enlarged probability space. (In the paper, we often use several embedding schemes in
enlarged spaces. This can be justified by a coupling argument as in [3, p. 53].)
Therefore, for any x>0 and N>1,
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P{ max max |Su, — W(m,n)|>x}

I<m<N 1<n<N

1 2
<2N?exp (—— a ) (3.7)
2¢4 N(log N)* + xlog N
Take x = (764)1/2 N'2(log N)2, so that the expression on the right-hand side is
summable in N. Applying the Borel-Cantelli lemma readily yields the first assertion
of (2.5). O

4. Proof of Theorem 2.1 (2.5): second part

In this section, we prove the second assertion of (2.5) of Theorem 2.1. This is done
by virtue of two technical estimates—Propositions 4.1 and 4.2—as well as two
supporting lemmas.

Our first proposition controls the oscillations of the process C, viz.,

Proposition 4.1. For any o,&>0, the following holds almost surely: As N — oo,

max max sup |C(x;m,n) — C(y;m,n)| = o(N ' FmX@/21/H+e) 4.1

I<m<N 1<n<N |x—y| < N*

Theorem 2.1 asserts that the processes Z and C are asymptotically close to one
another. The following analogue of Proposition 4.1 states that their asymptotic
moduli of continuity are also close, viewed on an appropriate scale.

Proposition 4.2. Given o,&>0, the following holds almost surely: As N — oo,
max max  sup |Z(x;m,n) — Z(y;m,n)| = o(N' /21Dty 4.2)

0<m<N 1<n<N \X7y|<N°(

We postpone proving these Propositions until Sections 5 and 6, respectively. In the
remainder of this section, we use the latter propositions to prove the second assertion
of (2.5) of Theorem 2.1.

Lemma 4.3. For any fixed 0> 1, the following is almost surely valid:

max  sup sup | W(u,v) — W(,j)| <N’ VN large. 4.3)

0<ijSN i<u<itl j<o<j+l

Proof. We can appeal to the proof of [18, Lemma 1.2] to deduce that for any
a,b,1.>0,

P{ sup | W(s, t)|>i}<4P{|W(a,b)|>/1}. (4.4)
(s,1)€[0,a] x[0,b]



11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

SPA : 1352

D. Khoshnevisan et al. | Stochastic Processes and their Applications 1 (1) 11111 9

Therefore, for any i,j <N,

P{ sup  sup |W(u,v)—W(i,j)|>N0}

i<u<itl j<v<j+l

<AP{|W(1,1)| >N} + 4P{|W (i, 1)| > N’} + 4P{| W (1,))| > N}
<12exp (—% Nz()_1>. (4.5)

Consequently,

ZP{ max — sup  sup IW(u,v)—W(i,j)|>N"}

N1 0<iJ<N iu<itl j<o<j+l

<12 Z Nzexp(—;Nwl), (4.6)

N>1

which is finite. The Borel-Cantelli lemma completes our verification. [
Our final lemma is an almost-sure uniform bound for Z.
Lemma 4.4. For any fixed ¢>0, the following holds almost surely: As N — oo,
sup Z(x; N, N) = o(NC/D+4), (4.7)

xeR

Proof. Applying the local limit theorem, it is not hard to see that

N N-1 N N—1
. ¢s 3/2
E{Z(0;N,N)} = P{S;;Sij+1<0}< . <cg N7, (4.8)

where ¢s5 and ¢ are two unimportant constants; cf. [19, Theorem 2.8] for the local
limit theorem. To this, we apply Markov’s inequality to obtain
P{Z(0; N, N)>N®/2+y < g N7, (4.9)

Let Nj = Lkz/ ¢] and use the Borel-Cantelli lemma to see that, with probability one,
for all large k, Z(O;Nk,Nk)gNES/ZHS. By the monotonicity of N+—Z(0; N, N),

Z(0; N, N) = O(NG/D+e), a.s. (4.10)
Proposition 4.2 then shows that
sup  |Z(x; N, N)| = o(N@/D+2), a.s. (4.11)
|x|§N1H

It remains to replace sup, < yi+ by sup,cg in the above.
By the law of the iterated logarithm law for Brownian sheet,

lim sup V&L (4.12)

st—oo  1/4st log log(st)
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cf. [22]. This, together with (2.5), implies that

max  max_ |S,.,| = o(N'T?), a.s. (4.13)
I<m<N I<n<N

Therefore, with probability one, when N is sufficiently large, Z(x; N, N) = 0 for all
|x|=N'**. Accordingly, (4.11) implies our lemma since ¢>0 is arbitrary. [J

We are in position for presenting our

Proof of Theorem 2.1 (2.5): second part. By our definition (cf. 2.4) of the crossing
local time C(x;s, ), for any Borel set 4 C R,

N t
/C(a;s,l)da:/du/dv Nuliwwpea- (4.14)
y 0 0

In particular, for any x € R and f>1,

x+N# m n
/ C(a;m,n)da = / du/ do VUl < pom<cinty- (4.15)
X 0 0

We apply Proposition 4.1 to this and deduce that with probability one the following
exists for all N large: For all m,n<N,

NﬁC(x; m,n)+ O(N/f+l+1nax(/f/2,1/4)+g)
m n
= \/0 du/o dvﬁl{x< W(u’v)<x+N/f}- (416)

Lemma 4.3 then shows us that almost surely, as N — oo,

m n

> D Vil nicwip<sintany T ON?)

i=0 j=0
m n
< /0 du/o do ‘/al{xé W (u,0) < x+N*)
m n
<D Vil vocwipesiniinn + O, (4.17)
i=0 j=0

On the other hand, according to (2.5), for any a<b, almost surely as N — oo,
1{a+N” <S8y <b-NY) S<luswip<n < l{a—N“ <S8y <b+N)> (4.18)

uniformly in i,j < N. Recall Z(x; m,n) from (2.2) and note that

m n

/ Z(a;mnyda=> " Vilis, ca. (4.19)
A =0

=0

From this it follows that with probability one, as N — oo,
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x—2NO4+NF
/ Z(a;m,n)da< NP C(x;m, n) + o(NPH1+max(B/21/4)+2)
x+2N°

x+2NO+NP
< / Z(a;m,n)da, (4.20)
x—2N?

uniformly in m,n<N. Combining Proposition 4.2 with the above, we arrive at
(NP — 4NN Z(x;m, n) < NP C(x; m, n) + o(NFFHIFTmaxB/2.1/4)+)
<(NP + 4N Z(x;m, n), (4.21)
uniformly in m,n<N and in x € R. Consequently, by Lemma 4.4, for any ¢>0,

max max _sup |Z(x;m,n) — C(x;m,n)|
0<m<N 1<n<N xeR

<4N—([3—9) sup Z(x; N, N) + O(Nl+1nax(ﬁ/2,l/4)+s)
xeR
— 0(N-(ﬁ—9—(3/2)—1:)) + O(Nl+1nax(ﬁ/2,l/4)+s)' (4.22)

We could take f = %—i— eand 0 = %—f- &. Since ¢>0 can be chosen arbitrarily small,
this yields (2.5). O

5. Proof of Proposition 4.1

Let us start by fixing the basic notation in this section. For any real-valued
random variable #, we write

Inll, = (E[ln”}'”, and (n),, = inf{a>0: E[exp(a~'|n))]<2}. (5.1)

They stand for the I7(P)-norm and the Orlicz (pseudo-)norm (associated with the
convex function f(x) = e* — 1) of 5, respectively. (To be precise, (e)_, is not a norm,
but it is equivalent to one.) The two norms are related to each other as follows: There
exists an absolute constant ¢;7 such that

(1) oy <7 SUP ey (5.2)
m=1 M
Our proof of Proposition 4.1 is based on the following convenient formulation of
Dudley’s metric entropy theorem.

Lemma 5.1 (Lacey [17, Theorem 3.1]). Let {X(t); t € T} be a real-valued stochastic
process, and let dx (s, 1) = (Xy — X,),, be the natural pseudo-metric on T induced by X.
Let /' (r) = N(r, T,dy) be the minimum number of dx-balls of radius r needed to cover
T, and let

D
D:= sup dx(s,t) and mp ::/ log A (r)dr. (5.3)
Jo

(s,1)eT?

If mp <oo, then there exists a universal constant cg, such that for all 2> 0,
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P{ sup | X — X/|>cs ()L+D+mD)}<Cgei/D. (5.4)
(s,t)eT?

Fix 1<i,n<N, and choose k € {0,41,42, - & kpax} Where kpay := [N?/n'/?].
We intend to apply Fact 5.1 to the process {L(x;n); (s,x)e T =[i,i+ 1] x
[k/n, (k + 1)/n]}, where Ly(x;n) is the line local time of the Brownian sheet W.
This was defined in (2.3).

We begin by estimating the entropy number A47(r) induced by dy. This will be
done in successive steps.

Choose some (s,x) € T and (¢,y) € T. In order to bound dx((s, x), (¢,y)), we start
by estimating ||Ly(x;n) — L(y; n)||, for p=1. This can be reduced to estimating

Ii(p) = |ILs(x;n) — Ly(y; n)ll,, and
Ir(p) = ILs(ysn) — Li(y; )l . (5.5

Lemma 5.2. For every v € (0,%), there exists a constant cy = c9(v) € (0, 00) such that
for all x,y € R, for all integers i,n=1, s €[i,i+ 1], and p>1,

1/20-0) .
]1(P)<C9PW|X—)/| : (5.6)

Proof. Writing 9D for equality of distributions, and use scaling to deduce that

Ls(x;n)—Lx(y;n)@\/g [Ll (Jis_n1> s (\/Ls—nlﬂ (5.7)

Since Li(x, ) is a standard Brownian local time, we can use the following inequality
of [2]: For any v € [0,3) and p>1,

|L1(X, [) - Ll(y’ [)|

co(v) = sup 1

sup su . 5.8)
p1 D 0<II<)1 x#I; |x — I ) (
Consequently, and writing ¢y = ¢9(v) for brevity, we have
1/20-v)

Since s € [i,i 4+ 1], this has the desired result. [
Our estimate for I,(p) of (5.5) is derived by similar methods.

Lemma 5.3. For every 4 € (0, }—‘), there exists a constant cyg = c¢1o(4) € (0, 00) such that
for all p=1, integers n,i=1, and s,t € [i,i + 1],

L(p)<ciopn'?i* =121 — 5y, (5.10)
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Proof. We recall the following result of [17, Proposition 4.2]: For any p>1, 0<h<1
and 0<A<i,

wgnLHuml)—melnbscmh%. (5.11)
X€E

Assuming s<t without loss of generality, and using the scaling property, we have:
For all i<s<t<i+ 1 and y € R,

o= o))

Apply this to s, € [i,i + 1] to finish. [

< Clopnl/2sf).7(l/2)(l _ S);'.
p

(5.12)

Lemma 5.4. For everyv € ( ) there exists a constant c;, = c12(v) € (0, 00) such that
for all integers i,n>1, x,y € R, and (s, t) € [i,i + 1]%,

n1/2(17v) |X— |v+nl/2|t_s|1/2v
(Ly(x; 1) = Ly(y; m)), <cio jmw . (5.13)

Proof. We choose /4 =3, and appeal to Lemmas 5.2 and 5.3, as well as Minkowski’s
inequality to deduce that

ILs(x; 1) — Ly m)ll, <11 (p) + I2(p)

nl/2(1—v) |x _y|L + nl/Z(l _ S)l/2v
<C11p i1/2(1+v) s (514)

where ¢j; := ¢9 + ¢j9. This immediately yields our lemma. [J

We now use this to estimate the asymptotic modulus of continuity of the line local
times.

Lemma 5.5. Given a fixed v € ( , 2) there exists a constant ¢y = c16(v) € (0, 00) such
that almost surely for all large N, and 1 <i,n< N,

N'2log N

j120+) (5.15)

sup  sup |Ly(x;n) — Li(x;n)| <ci6
(s,0)elii+1]* xeR

Proof. We prove this by applying Lemma 5.1 to the process (x, s)— X . = Ly(x; n),
where n>1 is an arbitrary integer.
Recall D and mp from (5.3), and note that thanks to Lemma 5.4,

n! 209 /m)* + /2 N1/2
[1/2(04) <21 /201

D<cn (5.16)

Next, we estimate mp: Owing to Lemma 5.4, the minimum number .4"(r) of dy-balls
of radius r needed to cover T satisfies



11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

SPA : 1352

14 D. Khoshnevisan et al. | Stochastic Processes and their Applications 1 (1) 11111

1 /203N /Y N12G=N Y
N)<ennl? (W) <y NV (r—3) | (5.17)

Thus, mp< fOD log(A"(r)) dr<ci4 Dlog N, where ¢4 depends only on v. Applying
Lemma 5.1 with A := 6Dlog N yields the following:

P{Ayn) <csN~°®, where

Ajgn = { sup sup |Ls(x;n) — Li(y;n)| >c15 Dlog N}, (5.18)
(s.0elii+11 (xy)elky/n(k+1)/n)

and c¢i5 := cg (7 + c14). Therefore,

N N
368
P A » <N*QN?* + 1) —. (5.19)
By the Borel-Cantelli lemma, almost surely for all large N, 1<i,n<N, (s,t) €
[i,i+ 1]2, and |x| <N?, we have

N'2log N

[Ly(x;n) — Li(x;n)| <c15 Dlog N<C‘6i1/2(—1+v)’

(5.20)

with ¢j¢ = 2¢12¢15. On the other hand, it follows from (4.12) that with probability
one, when N is sufficiently large, supy <<y Supg<;<n | W (s, ?)| < N2, so that Ly(x;n) =
0 for s,n<N and |x|>N?. Our lemma follows as a consequence. [

We present one final supporting lemma.

Lemma 5.6. If o,e>0 and v € (0, 2) are held fixed, then with probability one for all
large N and all i,n<N,

sup  |Li(x;n) — Li(y; m)| i AT ol 20m0 (5.21)
[x—yl<N*

Proof. Let >0 and use scahng to see that for each i and n, sup|,_, <y« [Li(x; 1) —
Li(y;n)| is distributed as (n/z) SUP |,y < N7/ i lLi(x; 1) = Li(y; 1)]. Hence, for any
b>0and p>1,

P{ sup |Li(x;n)—Li(V§n)|>b}

lx—y|<N*

P
/2
<bP (E)p sup [Li(x; 1) — Li(y; D]
! Ix—y| <N*//in »
/2 P |Li(x; 1) — Li(v; DI
<bh? su : ’
() (m) o ol
_,m\P/2((N*\"
<(pes(MY' b 1(7) (J—E) ' e

The last inequality follows from (5.8).
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Let ¢ € (0,1), p:=4¢™", and b := (n/i)"/>(N*//in)’ N* to obtain,

N N n 1/2 Nc{ v .
P(ULJ{W?QVMMHO—LOWN>Q) <¢E>N}>

i=1 n=1

5 4/
<N? (4‘97@)) N4, (5.23)

Since this is summable in N, we can use the Borel-Cantelli lemma to see that with
probability one, for all large N and all i,n<N,

sup | Li(x;n) — Li(ys m| <n! /20701200 v, (524)
[x—y|<N*

thus leading to our lemma. [

We are ready to present our

Proof of Proposition 4.1. According to [17, Theorem 2.2], the following holds with
probability one:

1
Vu sup L,(x; N)du = O(y/Nloglog N)
0

xeR

sup sup «/uL,(x; N) = O(y/Nloglog N). (5.25)

I<u<N xeR

Let C(x;s, 1) be the crossing local time of W, as in (2.4). For 1<m,n<N,
m
C(x;m,n) = / Vu L, (x;n)du
0 m
= O(y/N log log N) + / JuL,(x;n)du
1

m
= ViLi(x;n) + O(N'?3="1og N). (5.26)
i=1

The last inequality following from Lemma 5.5 and (5.25), and O(: - -) is uniform in

1<m,n<N and x € R. From this and Lemma 5.6, we can see that for any v € [0,1),
almost surely,

sup  |Cx;m,n) — C(y;m,n)| = O(N'2C"og N + NW+C/2=v+8y - (527)
[x—y|<N*

uniformly in 1<m,n<N. Since max (33 — v),av +3 — v+ ¢) can be as close to 1+

max (% 1) as possible, Proposition 4.1 follows. [

6. Proof of Proposition 4.2

This section is devoted to estimating the increments of x—Z(x;m,n) =
Zio {i(x;n). By the definition of {;(x;n) in (2.2),
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n—1

Ci(X;n) Z 1 {Sij>x, Sijr1<x} +Z 1 {Sij<x, Sijy1>x}- (61)

The two sums on the right-hand side represent the numbers of down- and up-
crossings, respectively. Thus,

n—1

Li(xim) =2 Z (s, Syn<v)| <1. (6.2)

It remains to study the increments of xn—>z 0 I(s,;>x, S, <x)- Our first step is to
estimate S;; by a Wiener process. An 0bv10us candidate would be the Brownian
sheet in (3.6) that was used in Section 3 to prove a strong approximation of S;;.
Unfortunately, the error term in this approximation scheme is too large for our
needs. So, we proceed very carefully in replacing S;; by another Brownian motion.

Fix i< N. Since §;; is the sum of (i) i.i.d. symmetric Bernoulli random variables,
by the KMT theorem (3.2) there exists a standard Wiener process { W (¢); t =0} such
that for any z>0 and some absolute constants ¢;, ¢; and c3,

P{|Si; — W(i)I>crlog(ij) + z}<cre™ @7 (6.3)

Strictly speaking, we really should write W; instead of W (our Wiener process W
depends on i). The same remark applies to the forthcoming event 4 and Wiener
process B.

Fix ¢ € (0,1) and d € (0,£), and consider the event

N
E=(\(Sy— WI<N}  Vi<N. €4

J=1
By (6.3), for large N, say N =Ny,

N
PE)< Y N> =csN ™4 (6.5)
J=1
On the event E, we have for i< N, n<N and x € R,
n—1

n—1
Z Lisy>x, Syn<n) S Z Lowiip>x—n, wiig1) <x+N9)
j=0 j=0

n—1

Z Liwp>x, wigr)<xy + 2 sup Z 1< wap<arniy (6.6)
=0 acR j=0

Similarly, on E,

n—1 n

—1
D lisyo syn< = Y L=, wigey<x) — 2 Sup Z La<cwin<atn'y:
- —

acR =0

.

(6.7)

If we write
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n—1 n—1
Ai,n = Ssup I{Sf,/>X, Sije1 <X} T I{Si,/>y, Sijr1 <y} (68)
x=yI<N*| =0 j=0
then
n—1 n—1
Ainflg<  sup Z Lwp>x, wig+1)<x) — Z Lwp >y, wig+1)<y)
[x—y|<N* j=0 j=0
n
+ 4 sup 1{u<W(ij)<a+N“}‘ (6.9)
aeR =0

Let us consider the process x> 272—01 Lyw@j)>x, wag+1)<x: For each i, it is
.. -1
distributed as x>, Lwy>x/vi, wi+1y<x/vi- Therefore, by [4, Eq. (1.13)], there
exists a coupling of W and a standard Wiener process B such that for any 4> 1, there
exist constants ¢;g and c¢j9 such that for all n>1,

n—1
X
P sup Z Liwgy>x, wi+1)<x} — CzoﬁL(—, 1) =018 nl/4 log n
xeR =0 «/ﬁ
<con™, (6.10)

where L is the local time of B, and ¢y := E(|B(1)]). We also mention that in [4, Eq.
(1.13)], the preceding inequality was stated only for some 4> 1, which sufficed for the
intended applications there. However, it is clear from its proof [4, pp. 272-273] that
by altering ¢j9 = c19(/1) suitably, 4 can be made to be arbitrarily large.

A straightforward consequence of (6.9) and (6.10), with A =§ in (6.10), is as
follows: For any b>0 and k>0,

P{d;)1g>b+ k + 2¢3 n'/*log n}

<P{ sup CzoﬁL(i 1) —CzoﬁL(L,l)‘>b}
[x—y|<N*

+ P{4 sup Z 1{a<W(gj)<a+N°'}>k} + cron~ 0

aeR =0

:P1 +P2+019n_4/5. (611)
Plugging this into (6.5) yields
P{d;,>b +k 4 2ci3n'*log n} <Py + Py + cron™*/° 4 ¢;N~4, (6.12)

To bound Py, we use (5.8) to see that for any v € [0,1) and p>1,
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b
P] ZP{ sup |L(x, 1)—L()/, 1)|>W}

Ix—yl<N*//in
<rlan SRS v
<(pes()Y (2620“/%(?/ @)VY. (6.13)
Choosing b = /n(N*/+/in)'N° and p = % gives
Pi<cyN™4, (6.14)

where ¢ = (8¢29 ¢o(v)/6)*° depends only on (v, ).

We now estimate P,: The standard Gaussian density is bounded above by
2r)~ 1/2<1 Therefore, for any a € R, we have P{a< W(ij)<a + 2N’} < N°(ij)~ 12,
We can apply this together with the Markov property to deduce that for any integer
r=l,

P n s\? 5
<! (Z \NF) <C2Z<N\/{> , (6.15)

for some constant ¢y, = ¢(p) that depends only on p. By Markov’s inequality, for
any k>0,

¢ [(N?
supP{Zla<W<u><a+zNo >k} ,jﬁ( ﬁf) (6.16)

aeR

n

> Lcwi<arany
=

Now let a; = 2N°¢, for € =0,41,42, ..., £lmax, Where max = |[N°V/in]. By the
usual estimate for Gaussian tails,

(2N°|N°/in])?

P{ max |W(ij)|>ay,, } <2exp (— : ) <2exp(—N¥). (6.17)
1<j<n ’ 2in

On the other hand, if maxi<j<, |W(i)|>ar,,, and if D77, 1, pii<arnsy >k for
some a € R, then there exists £, With [£| <{max such that 377, 1, < ii<asans >k
By (6.16), this yields,

{sup Z 1, W (i) <a+N°) >k}

acR =1
N°/n
Vi

We replace k by %k to deduce that for all i,n< N,

<+ D77 €2 ( ) 1 2exp(—N%). (6.18)
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N Vin (N”f> v
Py<c + 2exp(—N
2863 /i p( )
N°in (N°ym\" 25
<c3 7 ( NG ) 4+ 2exp(=N™). (6.19)

Taking k = N*(n/i)'/* and p = 1(5 + 9) yields
Py<cnN™* 4 2exp(—N*¥). (6.20)
Plugging this and (6.14) into (6.12) implies that for i,n< N,

N*\"
P Aip> i =) N+ N2/ 2040 log n
> \/E i
<euN"* 4 2exp(—N*®) + cjon~/?, (6.21)

where ¢4 := 21 + ¢23 + ¢17. As a consequence,

U U {Ai,n>ﬁ(%> N‘5+N2‘5\/§+2018n1/410g n}

i=1 p=|N°|
<euN"2 4 2N? exp(—N¥) + cjoN 72, (6.22)

which is summable for N. By the Borel-Cantelli lemma, almost surely for all large N,
i<N, and every N°<n<N,

ln\f(f

) N° + N”\/g + 2¢13n'* log n. (6.23)
mn

Thus, whenever m<N and N°<n<N,

Em: Ain</nN' =02 <\NF) NO 4 N2+ Jy o NGIA+o

i=1

SNCD-vHntd 4 HNG/HH - eventually (in N). (6.24)

This last inequality uses the facts that n<</N and that 5<1

If n< N°, we can use the trivial inequality 4,,<2n to see that >/, 4,, <2N'*.
Therefore, whenever v € [0,1), ¢ € (0,) and 6 € (0,%), with probablllty one, for all
large N and m,n<N,

zm: Aln N(3/2) t+Ut+5+3N(5/4)+5 (625)

i=1

Since v € [0,}) is arbitrary, it can be chosen such that 3 — v+ oav 4+ 6<1+%+ 24. In
view of the definition of 4, in (6.8), and relation (6. 2) we have proved that, almost
surely, for any ¢ € (0,%), when N — oo,
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m m
max max  sup Z {ilx;m) — Z {iyin)
0<m<N 1<n<N |x—y|<N* pany Py

— 0(N1+(a/2)+1: + N(5/4)+1;). (626)

This completes our proof of Proposition 4.2. [

7. Proof of Theorem 1.1

In view of (4.10), we need to check only the lower bound; namely that for any
e>0, Z(N)=N®/2~¢ almost surely for all large N. By means of (2.5), we have to
prove that for large N,

C(O; N,N)=NGP=¢ a5, (7.1)
We start by choosing a € (},1) and b>1 such that 2a>b. We also recall that
C(0; N,N) = [V \/uL,(0; N)du. Thus,
N
C(0;N,N)> / VaNL,(0;N)du=a(l — a)N*> inf L,(0;N). (7.2)
aN aN<u<N

We now use the following recent estimate of the authors [15, Theorem 3.3]: For any
v e (0,1), there exists a small constant hy = ho(v,a) such that for all N>0 and
h € (0, hy),

, N v|log Al
P f L0—)<hy< - 7.3
{%lenusN "( ’2a) } exp( log | log Al (73)
In [15] we obtained the above for N = 1. This formulation is a consequence of the
case N = 1 and scaling. Taking Ny = [»*] and h = N;W yields

> P{ inf L, (o;Nk) <N;} < 4 0. (7.4)
— 2a

1 N <u<Ng
By the Borel-Cantelli lemma, almost surely for all large k,

N _
inf L, (o~—"> >N (7.5)

b
I N <u<Ng 2a

Consequently, whenever Ny_; <N < Ny,

inf  L,0;N)= inf L,0;Ny_1)= inf L, (O;Nl‘)

aN<u<N aNj—1 <u<Ni N, <u<Ng 2a
—¢/2 —&/2
>N, ?=2aN)"/. (7.6)

We have used the fact that Ny_; =(2a)"' Ny for all sufficiently large k; this, in turn,
follows from the inequality 2a>b. In summary, for all large N,
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C(0; N, N)=a(l — a)N**QaN)"*/* = N*/>~, (1.7)

yielding (7.1), whence Theorem 1.1. O

Appendix: The Matlab code

The Matlab code for Fig. 1(a) follows. It presupposes the existence of a seed for
the random number generator, and that the seed is stored in a Matlab file called
“seed.dat.”

1. % run a 1-dimensional simple walk for n time-steps
2. load seed % The same random walk is always used
3. rand(‘state’, seed)
4. figure;
5. x = rand (n) ;
6. X = 2% round(x) — 1; % Generate Rademacher variables
7. S=cumsum (X) ; % Sum the columns separately
8. W=S;
9. W(:,1) =S(:,1);
10. for i=2:n
We,1i) =W, i — 1)+ 8, 1); % W is the walk
end
11. for k=1:n
for j=1:n
ifw(k,j) ==0
plot(k,J)
end
end
end

12. print -deps file.ps

In order to simulate the vertical crossings (for the same walk), the third line of 11
above (i.e., “if W(k, j) == 0”) needs to be replaced by “if W(k, j) * W(k,j + 1)<0.”
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