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Abstract

We prove that the number ZðNÞ of level crossings of a two-parameter simple random walk

in its first N � N steps is almost surely N3=2þoð1Þ as N ! 1: The main ingredient is a strong

approximation of ZðNÞ by the crossing local time of a Brownian sheet. Our result provides a

useful algorithm for simulating the level sets of the Brownian sheet.
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1. Introduction

Recall that a two-parameter real-valued Brownian sheet W ¼ fW ðs; tÞgs;tX0 is a
centered Gaussian process with covariance

EfW ðs; tÞW ðs0; t0Þg ¼ minðs; s0Þ �minðt; t0Þ 8s; t; s0; t0X0: (1.1)

It is known that the level sets of W have a rich and complicated structure. For
instance, if W�1fag :¼ fs; tÞ 2 R2

þ : W ðs; tÞ ¼ ag; then it follows that with probability
one,

dimðW�1fagÞ ¼
3

2
8a 2 R; (1.2)

cf. [1,12]. Here, dim refers to Hausdorff dimension. Other, more delicate, features of
the level sets can be found in [5–11,13].

One expects that the level sets of two-parameter random walks are uniform in
local time. Informally speaking, this and (1.2) together imply that for any reasonable
discrete approximation AN of W�1f0g \ ½0; 1�2; one might expect that #AN � N3=2;
as N ! 1; here, # denotes cardinality, and ‘‘�’’ stands for any reasonable notion of
asymptotic equivalence.

This paper is motivated, in part, by our desire to find a good algorithm for
simulating the zero-set of W inside a given box that we take to be ½0; 1�2 to be
concrete. A natural way to try and do this is by first performing a random-walk
approximation to W, and then approximating the zero-set of W by that of the walk.

With this in mind, let fX i;jgi;jX1 denote an array of i.i.d. random variables with
PfX i;j ¼ 1g ¼ PfX i;j ¼ �1g ¼ 1

2
; and consider the two-parameter random walk

fSm;n; m; nX0g defined as

Sm;n ¼
Xm

i¼1

Xn

j¼1

X i;j 8m; nX1; (1.3)

with the added stipulation that Sm;n ¼ 0 whenever mn ¼ 0: It is then possible to show
that as N ! 1;

fN�1SbNsc;bNtcg0ps;tp1¼)fW ðs; tÞg0ps;tp1; (1.4)

where ) denotes weak convergence in a suitable space. Here, convergence in
DDR½0;1�ð½0; 1�Þ will do, but we will not need this fact in the sequel; see [14, Theorem
4.1.1, Chapter 6] for a variant of this statement. Suffice it to say that the factor of
N�1 is the central limit scaling that comes from adding OðN2Þ i.i.d. variates.

A natural approximation of the zero-set W�1f0g \ ½0; 1�2 would then be the
random set

UN ¼ fði; jÞ 2 f0; . . . ;Ng2 : Si;j ¼ 0g; (1.5)

where N is a large integer. While this algorithm is intuitively attractive, it does not

perform well. Indeed, by the local limit theorem ([19, Theorem 2.8]),
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Ef#UNg � ð2pÞ�1=2
XN

i¼1

XN

j¼1

ðijÞ�1=2
� 4ð2pÞ�1=2N; as N ! 1: (1.6)

One can use this, in conjunction with a monotonicity argument, to show that with
probability one,

lim
N!1

N�3=2#UN ¼ 0: (1.7)

In light of (1.2) and its proceeding discussion, (1.7) suggests that UN might be too
thin to properly simulate the zero-set W�1f0g \ ½0; 1�2 of the Brownian sheet.

In this paper, we present an alternative algorithm for simulating the zero-set of W,
and show that our approximation has the correct size of N ð3=2Þþoð1Þ as N ! 1: Our
suggested approximation is a natural one that is based on the ‘‘crossing numbers’’ of
the approximating two-parameter random walk S.

A lattice point ði; jÞ is called a (vertical) crossing for the random walk S if

Si;jSi;jþ1o0: (1.8)

Define

XN :¼ fði; jÞ 2 ½0;N�2 \ Z2 : ði; jÞ is a crossingg

ziðNÞ :¼ #fj 2 ½0;N� \ Z2 : ði; jÞ is a crossingg

ZðNÞ :¼ z1ðNÞ þ � � � þ zN ðNÞ: ð1:9Þ

In words, ZðNÞ ¼ #XN is the total number of crossings of the random walk in the
first N � N steps. We propose to show that XN is a good approximation to the zero-
set of the Brownian sheet in ½0; 1�2; at least in the sense that ZðNÞ ¼ #XN is
sufficiently thick in the following asymptotically sense.

Theorem 1.1. With probability one, ZðNÞ ¼ N ð3=2Þþoð1Þ as N ! 1:

Fig. 1 shows the simulation of the level set of a two-parameter simple walk,
together with the vertical crossings of the same random walk. The figure speaks for
itself, and the Matlab code is added as a brief appendix at the end of the paper.

Throughout this paper, we write log x :¼ lnðx _ eÞ:
O
UNC
2. Brownian sheet and invariance

To prove Theorem 1.1, we need to analyze the crossings of the walk
simultaneously at all levels. With this in mind, for each x 2 R we say that ði; jÞ is a
(vertical) x-crossing for the random walk if

ðSi;j � xÞðSi;jþ1 � xÞo0: (2.1)

Next, we can define
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ziðx; nÞ :¼ #fj : 0pjon : ði; jÞ is an x-crossingg

Zðx;m; nÞ :¼
Xm

i¼0

ziðx; nÞ: ð2:2Þ

Thus, Zðx;m; nÞ denotes the number of x-crossings in the first m � n steps. We
remark that ZðNÞ ¼ Zð0;N;NÞ:

When N is large, the entire process ðx; s; tÞ7!Zðx; bNsc; bNtcÞ is close to the
crossing local times of a Brownian sheet that we describe next.
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For any fixed s40; fLsðx; tÞgtX0 denotes the local time at x of the process
t 7!W ðs; tÞ: This is the density of the occupation measure, as described by the
formula,Z þ1

�1

f ðxÞLsðx; tÞdx ¼

Z t

0

f ðW ðs; uÞÞdu: (2.3)

Ref. [21] introduces the process Ls as the line local time of W.
We define the crossing local time of W at level x as

Cðx; s; tÞ ¼

Z s

0

ffiffiffi
u

p
Luðx; tÞdu: (2.4)

The following strong approximation constitutes a central portion of this paper.

Theorem 2.1. Possibly in an enlarged probability space, there exists a coupling for the

two-parameter random walk S and the Brownian sheet W such that for any �40 the

following holds almost surely: As N ! 1;

max
1pmpN

max
1pnpN

jSm;n � W ðm; nÞj ¼ OðN1=2ðlog NÞ
3=2

Þ;

max
1pmpN
1pnpN

sup
x2R

jZðx;m; nÞ � Cðx;m; nÞj ¼ oðN ð4=3Þþ�Þ; ð2:5Þ

where Zðx;m; nÞ is the x-crossing number of the random walk, and Cðx; s; tÞ is the

crossing local time of W.

Remark 2.2. Theorem 2.1 implies weak convergence as a corollary. Indeed, we can
note the following scaling relationship which comes only from the Brownian scaling
of W:

W ðNs;NtÞ

N
;

CðNx;Ns;NtÞ

N3=2

� �� �
s;tX0; x2R

¼
ðdÞ
fðW ðs; tÞ;Cðx; s; tÞÞgs;tX0;x2R; (2.6)

where ¼
ðdÞ

denotes the equality of finite-dimensional distributions. Then the following
is a consequence of Theorem 2.1, (2.6), and a standard estimate of modulus of
continuity: As N ! 1;

SbNsc;bNtc

N
;

ZðNx; bNsc; bNtcÞ

N3=2

� �� �
s;t2½0;1�; x2R

) fðW ðs; tÞ;Cðx; s; tÞÞgs;t2½0;1�;x2R: ð2:7Þ

Here, ) denotes weak convergence in the Skorohod space DR2 ðR� ½0; 1�2Þ:

Remark 2.3. We have not considered other walks than the simple ones described
here. However, we suspect that, after making small adjustments, our methods would
apply to other walks such as Gaussian ones. (The local time of a two-parameter
Gaussian walk needs to be appropriately defined, of course.) We believe that the end-
result is the same: Counting vertical crossings performs better than counting
(approximate) zeros.
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Let us say a few words about the proof of (2.5). Recall that Zðx;m; nÞ ¼Pm
i¼0ziðx; nÞ; where for each i, n 7!ziðx; nÞ is the number of x-level crossings of the

one-parameter, simple random walk fSi;jgj¼0;1;2;... : There is a rich literature for level
crossings of such random walks. For example, we can appeal to [4, Theorem 1.2] to
see that for each fixed i,

ziðx; nÞ �
ffiffi
i

p
Liðx; nÞ: (2.8)

In words, this means that ziðx; nÞ can be well approximated by
ffiffi
i

p
Liðx; nÞ where

Liðx; nÞ is the local time of a Brownian motion with infinitesimal variance i. One
might then conjecture that such local times can be embedded in the line local times Li

of a single Brownian sheet W; cf. (2.3). If this were so, then

Zðx;m; nÞ ¼
Xm

i¼0

ziðx; nÞ �
Xm

i¼0

ffiffi
i

p
Liðx; nÞ

�

Z m

0

ffiffi
s

p
Lsðx; nÞds ¼ Cðx;m; nÞ: ð2:9Þ

Such a route is fraught with technical difficulties. For one, it is not clear why (2.8)
should hold jointly for all i if Li is the line local time of a single Brownian sheet.
Moreover, the rate of approximation in (2.8) depends in a subtle way on i, and it is
not at all clear what information can be gleaned from this about the rate of
approximation in (2.9).

Our method provides an approach that is based on our attempt at solving the
following loosely stated problem: ‘‘How close are the local times LðX 1Þ and LðX 2Þ of

two processes X 1 and X 2 if X 1 � X 2; and if LðX 1Þ and LðX 2Þ are sufficiently

smooth?’’. Interestingly enough, our solution to the mentioned problem uses (2.8),
but only for a fixed value of i.

The remainder of the paper is organized as follows: The two parts of Theorem 2.1,
namely the two claims in (2.5), are proved in distinct sections. The first assertion of
(2.5) is straightforward; it is proved in Section 3. We prove the second assertion of
(2.5) in Section 4. We do this by means of two technical lemmas. The said lemmas
themselves are proved, respectively, in Sections 5 and 6. Finally, we derive Theorem
1.1 in Section 7. Our derivation involves an application of (2.5) and a recent estimate
of the authors on the explosion rate of the local time along lines of W [15].
O
UNC3. Proof of Theorem 2.1 (2.5): first part

Our proof of the first part of (2.5) relies on Bernstein’s inequality that we now
recall; cf. [20, p. 855].

Let fZkgkX1 be a sequence of independent mean-zero variables such that for some
c40; EfjZkj

ngp1
2
vkn! cn�2 for all nX2: Then, for any x40 and nX1;

P
Xn

k¼1

Zk

�����
�����Xx

( )
p2 exp �

1

2

x2Pn
k¼1 vk þ cx

� �
: (3.1)
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Fix jX1; and consider the sequence fX i;jgi;jX1 of i.i.d. random variables. According
to [16], possibly in an enlarged probability space, there exists a standard Brownian
motions W j such that for all x40 and mX1;

P
Xm

i¼1

X i;j � W jðmÞ

�����
�����4c1 log m þ x

( )
pc2e

�c3x; (3.2)

where c1; c2 and c3 are constants that do not depend on x;m: Since fX i;jgi;jX1 are
i.i.d., we can arrange things so that fW jgjX0 are independent processes.

Now, let us fix mX1; and consider the process Z ¼ fZjgjX1 where Zj ¼
Pm

i¼1 X i;j �

W jðmÞ: Clearly, Z is a sequence of independent (but not necessarily i.i.d.) mean-zero
variables. According to [16] for any nX2 and jX1;

EfjZjj
ng ¼

Z 1

0

nyn�1PfjZjj4ygdy

p
Z c1 log m

0

nyn�1 dy þ

Z 1

0

nðc1 log m þ xÞn�1c2 e
�c3 x dx: ð3:3Þ

The first integral equals ðc1 log mÞ
n; whereas the second isZ c1 log m

0

þ

Z 1

c1 log m

� �
nðc1 log m þ xÞn�1c2e

�c3 x dx

pnð2c1 log mÞ
n�1c2

Z c1 log m

0

e�c3x dx þ nc2

Z 1

c1 log m

ð2xÞn�1e�c3x dx

pnð2c1 log mÞ
n�1c2

Z 1

0

e�c3 x dx þ nc2

Z 1

0

ð2xÞn�1e�c3x dx

p
nð2c1 log mÞ

n�1c2

c3
þ

n!c22
n�1

ðc3Þ
n : ð3:4Þ

Therefore, there exists an absolute constant c4 such that

EðjZjj
nÞp

c4 ðlog mÞ
2

2
ðc4 log mÞ

n�2n! 8nX2: (3.5)

By Bernstein’s inequality (cf. (3.1)), for any x40 and m; nX1;

P
Xn

j¼1

Xm

i¼1

X i;j �
Xn

j¼1

W jðmÞ

�����
�����Xx

( )
p2 exp �

1

2c4

x2

nðlog mÞ
2
þ x log m

� �
:

(3.6)

It is manifest that fW ðj þ 1; kÞ � W ðj; kÞgj;kX0 has the same law as fW jðkÞgj;kX0:
Standard methods can then be used to prove that we can embed f

P‘
j¼1 W jðkÞgj;kX1 in

a two-parameter Brownian sheet W, although we may possibly need to work in an
enlarged probability space. (In the paper, we often use several embedding schemes in
enlarged spaces. This can be justified by a coupling argument as in [3, p. 53].)
Therefore, for any x40 and NX1;
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1pmpN

max
1pnpN

jSm;n � W ðm; nÞj4x

� �

p2N2 exp �
1

2c4

x2

Nðlog NÞ
2
þ x log N

� �
: ð3:7Þ

Take x ¼ ð7c4Þ
1=2 N1=2ðlog NÞ

3=2; so that the expression on the right-hand side is
summable in N. Applying the Borel–Cantelli lemma readily yields the first assertion
of (2.5). &
UNCORRECTED P
ROOF

4. Proof of Theorem 2.1 (2.5): second part

In this section, we prove the second assertion of (2.5) of Theorem 2.1. This is done
by virtue of two technical estimates—Propositions 4.1 and 4.2—as well as two
supporting lemmas.

Our first proposition controls the oscillations of the process C, viz.,

Proposition 4.1. For any a; �40; the following holds almost surely: As N ! 1;

max
1pmpN

max
1pnpN

sup
jx�yjpNa

jCðx;m; nÞ � Cðy;m; nÞj ¼ oðN1þmaxða=2;1=4Þþ�Þ: (4.1)

Theorem 2.1 asserts that the processes Z and C are asymptotically close to one
another. The following analogue of Proposition 4.1 states that their asymptotic
moduli of continuity are also close, viewed on an appropriate scale.

Proposition 4.2. Given a; �40; the following holds almost surely: As N ! 1;

max
0pmpN

max
1pnpN

sup
jx�yjpNa

jZðx;m; nÞ � Zðy;m; nÞj ¼ oðN1þmaxða=2;1=4Þþ�Þ: (4.2)

We postpone proving these Propositions until Sections 5 and 6, respectively. In the
remainder of this section, we use the latter propositions to prove the second assertion
of (2.5) of Theorem 2.1.

Lemma 4.3. For any fixed y4 1
2
; the following is almost surely valid:

max
0pi;jpN

sup
ipupiþ1

sup
jpvpjþ1

jW ðu; vÞ � W ði; jÞjpNy 8N large: (4.3)

Proof. We can appeal to the proof of [18, Lemma 1.2] to deduce that for any
a; b; l40;

P sup
ðs;tÞ2½0;a��½0;b�

jW ðs; tÞj4l

( )
p4PfjW ða; bÞj4lg: (4.4)
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Therefore, for any i; jpN;

P sup
ipupiþ1

sup
jpvpjþ1

jW ðu; vÞ � W ði; jÞj4Ny

( )

p4PfjW ð1; 1Þj4Nyg þ 4PfjW ði; 1Þj4Nyg þ 4PfjW ð1; jÞj4Nyg

p12 exp �
1

2
N2y�1

� �
: ð4:5Þ

Consequently,

X
NX1

P max
0pi;jpN

sup
ipupiþ1

sup
jpvpjþ1

jW ðu; vÞ � W ði; jÞj4Ny

( )

p12
X
NX1

N2 exp �
1

2
N2y�1

� �
; ð4:6Þ

which is finite. The Borel–Cantelli lemma completes our verification. &

Our final lemma is an almost-sure uniform bound for Z.

Lemma 4.4. For any fixed �40; the following holds almost surely: As N ! 1;

sup
x2R

Zðx;N;NÞ ¼ oðN ð3=2Þþ�Þ: (4.7)

Proof. Applying the local limit theorem, it is not hard to see that

EfZð0;N;NÞg ¼
XN

i¼0

XN�1

j¼0

PfSi;jSi;jþ1o0gp
XN

i¼0

XN�1

j¼0

c5ffiffiffiffiffiffiffiffiffiffi
j þ 1

p pc6 N3=2; (4.8)

where c5 and c6 are two unimportant constants; cf. [19, Theorem 2.8] for the local
limit theorem. To this, we apply Markov’s inequality to obtain

PfZð0;N;NÞ4N ð3=2Þþ�gpc6N��: (4.9)

Let Nk ¼ bk2=�
c and use the Borel–Cantelli lemma to see that, with probability one,

for all large k, Zð0;Nk;NkÞpN
ð3=2Þþ�
k : By the monotonicity of N 7!Zð0;N ;NÞ;

Zð0;N;NÞ ¼ OðN ð3=2Þþ�Þ; a.s. (4.10)

Proposition 4.2 then shows that

sup
jxjpN1þ�

jZðx;N;NÞj ¼ oðN ð3=2Þþ2�Þ; a.s. (4.11)

It remains to replace supjxjpN1þ� by supx2R in the above.
By the law of the iterated logarithm law for Brownian sheet,

lim sup
s;t!1

jW ðs; tÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4st log logðstÞ

p ¼ 1; a.s.; (4.12)
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cf. [22]. This, together with (2.5), implies that

max
1pmpN

max
1pnpN

jSm;nj ¼ oðN1þ�Þ; a.s. (4.13)

Therefore, with probability one, when N is sufficiently large, Zðx;N ;NÞ ¼ 0 for all
jxjXN1þ�: Accordingly, (4.11) implies our lemma since �40 is arbitrary. &

We are in position for presenting our

Proof of Theorem 2.1 (2.5): second part. By our definition (cf. 2.4) of the crossing
local time Cðx; s; tÞ; for any Borel set A � R;Z

A

Cða; s; tÞda ¼

Z s

0

du

Z t

0

dv
ffiffiffi
u

p
1fW ðu;vÞ2Ag: (4.14)

In particular, for any x 2 R and b41
2
;

Z xþNb

x

Cða;m; nÞda ¼

Z m

0

du

Z n

0

dv
ffiffiffi
u

p
1fxpW ðu;vÞpxþNbg: (4.15)

We apply Proposition 4.1 to this and deduce that with probability one the following
exists for all N large: For all m; npN;

NbCðx;m; nÞ þ oðNbþ1þmaxðb=2;1=4Þþ�Þ

¼

Z m

0

du

Z n

0

dv
ffiffiffi
u

p
1fxpW ðu;vÞpxþNbg: ð4:16Þ

Lemma 4.3 then shows us that almost surely, as N ! 1;

Xm

i¼0

Xn

j¼0

ffiffi
i

p
1fxþNypW ði;jÞpxþNb�Nyg þOðN3=2Þ

p
Z m

0

du

Z n

0

dv
ffiffiffi
u

p
1fxpW ðu;vÞpxþNbg

p
Xm

i¼0

Xn

j¼0

ffiffi
i

p
1fx�NypW ði;jÞpxþNbþNyg þOðN3=2Þ: ð4:17Þ

On the other hand, according to (2.5), for any aob; almost surely as N ! 1;

1faþNypSi;jpb�Nygp1fapW ði;jÞpbgp1fa�NypSi;jpbþNyg; (4.18)

uniformly in i; jpN : Recall Zðx;m; nÞ from (2.2) and note thatZ
A

Zða;m; nÞda ¼
Xm

i¼0

Xn

j¼0

ffiffi
i

p
1fSi;j2Ag: (4.19)

From this it follows that with probability one, as N ! 1;
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Z x�2NyþNb

xþ2Ny
Zða;m; nÞdapNbCðx;m; nÞ þ oðNbþ1þmaxðb=2;1=4Þþ�Þ

p
Z xþ2NyþNb

x�2Ny
Zða;m; nÞda; ð4:20Þ

uniformly in m; npN: Combining Proposition 4.2 with the above, we arrive at

ðNb � 4NyÞZðx;m; nÞpNbCðx;m; nÞ þ oðNbþ1þmaxðb=2;1=4Þþ�Þ

pðNb þ 4NyÞZðx;m; nÞ; ð4:21Þ

uniformly in m; npN and in x 2 R: Consequently, by Lemma 4.4, for any �40;

max
0pmpN

max
1pnpN

sup
x2R

jZðx;m; nÞ � Cðx;m; nÞj

p4N�ðb�yÞ sup
x2R

Zðx;N;NÞ þ oðN1þmaxðb=2;1=4Þþ�Þ

¼ oðN�ðb�y�ð3=2Þ��ÞÞ þ oðN1þmaxðb=2;1=4Þþ�Þ: ð4:22Þ

We could take b ¼ 2
3
þ � and y ¼ 1

2
þ �: Since �40 can be chosen arbitrarily small,

this yields (2.5). &
 R
UNCORRECTED P5. Proof of Proposition 4.1

Let us start by fixing the basic notation in this section. For any real-valued
random variable Z; we write

kZkp ¼ fE½jZjp�g1=p; and hZi
Orl

¼ inffa40 : E½expða�1jZjÞ�p2g: (5.1)

They stand for the LpðPÞ-norm and the Orlicz (pseudo-)norm (associated with the
convex function f ðxÞ ¼ ex � 1) of Z; respectively. (To be precise, h�i

Orl
is not a norm,

but it is equivalent to one.) The two norms are related to each other as follows: There
exists an absolute constant c7 such that

hZi
Orl
pc7 sup

mX1

kZkm

m
: (5.2)

Our proof of Proposition 4.1 is based on the following convenient formulation of
Dudley’s metric entropy theorem.

Lemma 5.1 (Lacey [17, Theorem 3.1]). Let fX ðtÞ; t 2 Tg be a real-valued stochastic

process, and let dX ðs; tÞ ¼ hX s � X tiOrl
be the natural pseudo-metric on T induced by X.

Let NðrÞ ¼ Nðr;T ; dX Þ be the minimum number of dX -balls of radius r needed to cover

T, and let

D :¼ sup
ðs;tÞ2T2

dX ðs; tÞ and mD :¼

Z D

0

log NðrÞdr: (5.3)

If mDo1; then there exists a universal constant c8; such that for all l40;
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P sup
ðs;tÞ2T2

jX s � X tj4c8 ðlþ D þ mDÞ

( )
pc8e

�l=D: (5.4)

Fix 1pi; npN; and choose k 2 f0;	1;	2; � � � 	 kmaxg where kmax :¼ bN2=n1=2c:
We intend to apply Fact 5.1 to the process fLsðx; nÞ; ðs;xÞ 2 T ¼ ½i; i þ 1� �
½k

ffiffiffi
n

p
; ðk þ 1Þ

ffiffiffi
n

p
�g; where Lsðx; nÞ is the line local time of the Brownian sheet W.

This was defined in (2.3).
We begin by estimating the entropy number NðrÞ induced by dX : This will be

done in successive steps.
Choose some ðs; xÞ 2 T and ðt; yÞ 2 T : In order to bound dX ððs;xÞ; ðt; yÞÞ; we start

by estimating kLsðx; nÞ � Ltðy; nÞkp for pX1: This can be reduced to estimating

I1ðpÞ ¼ kLsðx; nÞ � Lsðy; nÞkp; and

I2ðpÞ ¼ kLsðy; nÞ � Ltðy; nÞkp: ð5:5Þ

Lemma 5.2. For every n 2 ð0; 12Þ; there exists a constant c9 ¼ c9ðnÞ 2 ð0;1Þ such that

for all x; y 2 R; for all integers i; nX1; s 2 ½i; i þ 1�; and pX1;

I1ðpÞpc9 p
n1=2ð1�nÞ

i1=2ð1þnÞ
jx � yjn: (5.6)

Proof. Writing ¼
ðdÞ

for equality of distributions, and use scaling to deduce that

Lsðx; nÞ � Lsðy; nÞ ¼
ðdÞ

ffiffiffi
n

s

r
L1

xffiffiffiffiffi
sn

p ; 1

� �
� L1

yffiffiffiffiffi
sn

p ; 1

� �� �
: (5.7)

Since L1ðx; tÞ is a standard Brownian local time, we can use the following inequality
of [2]: For any n 2 ½0; 1

2
Þ and pX1;

c9ðnÞ ¼ sup
pX1

1

p
sup

0ptp1
sup
xay

jL1ðx; tÞ � L1ðy; tÞj

jx � yjn

				
				

p

o1: (5.8)

Consequently, and writing c9 ¼ c9ðnÞ for brevity, we have

I1ðpÞpc9 p
n1=2ð1�nÞ

s1=2ð1þnÞ
jx � yjn: (5.9)

Since s 2 ½i; i þ 1�; this has the desired result. &

Our estimate for I2ðpÞ of (5.5) is derived by similar methods.

Lemma 5.3. For every l 2 0; 1
4


 �
; there exists a constant c10 ¼ c10ðlÞ 2 ð0;1Þ such that

for all pX1; integers n; iX1; and s; t 2 ½i; i þ 1�;

I2ðpÞpc10 p n1=2i�l�ð1=2Þðt � sÞl: (5.10)
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Proof. We recall the following result of [17, Proposition 4.2]: For any pX1; 0oho1
and 0olo1

4
;

sup
x2R

kL1þhðx; 1Þ � L1ðx; 1Þkppc10 hlp: (5.11)

Assuming spt without loss of generality, and using the scaling property, we have:
For all ipsptpi þ 1 and y 2 R;

I2ðpÞ ¼

ffiffiffi
n

s

r
L1

yffiffiffiffiffi
sn

p ; 1

� �
� Lt=s

yffiffiffiffiffi
sn

p ; 1

� �				
				

p

pc10 p n1=2s�l�ð1=2Þðt � sÞl:

(5.12)

Apply this to s; t 2 ½i; i þ 1� to finish. &

Lemma 5.4. For every n 2 0; 1
2


 �
; there exists a constant c12 ¼ c12ðnÞ 2 ð0;1Þ such that

for all integers i; nX1; x; y 2 R; and ðs; tÞ 2 ½i; i þ 1�2;

hLsðx; nÞ � Ltðy; nÞi
Orl
pc12

n1=2ð1�nÞ jx � yjn þ n1=2jt � sj1=2n

i1=2ð1þnÞ
: (5.13)

Proof. We choose l ¼ n
2
; and appeal to Lemmas 5.2 and 5.3, as well as Minkowski’s

inequality to deduce that

kLsðx; nÞ � Ltðy; nÞkppI1ðpÞ þ I2ðpÞ

pc11p
n1=2ð1�nÞ jx � yjn þ n1=2ðt � sÞ1=2n

i1=2ð1þnÞ
; ð5:14Þ

where c11 :¼ c9 þ c10: This immediately yields our lemma. &

We now use this to estimate the asymptotic modulus of continuity of the line local
times.

Lemma 5.5. Given a fixed n 2 0; 1
2


 �
; there exists a constant c16 ¼ c16ðnÞ 2 ð0;1Þ such

that almost surely for all large N, and 1pi; npN;

sup
ðs;tÞ2½i;iþ1�2

sup
x2R

jLsðx; nÞ � Ltðx; nÞjpc16
N1=2 log N

i1=2ð1þnÞ
: (5.15)

Proof. We prove this by applying Lemma 5.1 to the process ðx; sÞ7!X x;s ¼ Lsðx; nÞ;
where nX1 is an arbitrary integer.

Recall D and mD from (5.3), and note that thanks to Lemma 5.4,

Dpc12
n1=2ð1�nÞð

ffiffiffi
n

p
Þ
n
þ n1=2

i1=2ð1þnÞ
p2c12

N1=2

i1=2ð1þnÞ
: (5.16)

Next, we estimate mD: Owing to Lemma 5.4, the minimum number NðrÞ of dX -balls
of radius r needed to cover T satisfies
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NðrÞpc13 n1=2 1=2nð3�nÞ

r3i3=2ð1þnÞ

� �1=n

pc13 N1=2 N1=2ð3�nÞ

r3

� �1=n

: (5.17)

Thus, mDp
RD

0
logðNðrÞÞdrpc14 D log N; where c14 depends only on n: Applying

Lemma 5.1 with l :¼ 6D log N yields the following:

PfAikngpc8N�6; where

Aikn :¼ sup
ðs;tÞ2½i;iþ1�2

sup
ðx;yÞ2½k

ffiffi
n

p
;ðkþ1Þ

ffiffi
n

p
�2
jLsðx; nÞ � Ltðy; nÞj4c15 D log N

( )
; ð5:18Þ

and c15 :¼ c8 ð7þ c14Þ: Therefore,

P
[N
i¼1

[N
n¼1

[
jkjpkmax

Aikn

( )
pN2ð2N2 þ 1Þ

c8

N6
p

3c8

N2
: (5.19)

By the Borel–Cantelli lemma, almost surely for all large N, 1pi; npN ; ðs; tÞ 2
½i; i þ 1�2; and jxjpN2; we have

jLsðx; nÞ � Ltðx; nÞjpc15 D log Npc16
N1=2 log N

i1=2ð1þnÞ
; (5.20)

with c16 ¼ 2c12c15: On the other hand, it follows from (4.12) that with probability
one, when N is sufficiently large, sup0pspN sup0ptpN jW ðs; tÞjoN2; so that Lsðx; nÞ ¼

0 for s; npN and jxj4N2: Our lemma follows as a consequence. &

We present one final supporting lemma.

Lemma 5.6. If a; �40 and n 2 0; 1
2


 �
are held fixed, then with probability one for all

large N and all i; npN;

sup
jx�yjpNa

jLiðx; nÞ � Liðy; nÞjpi�1=2ð1þnÞNanþ1=2ð1�nÞþ�: (5.21)

Proof. Let a40 and use scaling to see that for each i and n, supjx�yjpNa jLiðx; nÞ �

Liðy; nÞj is distributed as ðn=iÞ1=2 supjx�yjpNa=
ffiffiffi
in

p jL1ðx; 1Þ � L1ðy; 1Þj: Hence, for any
b40 and pX1;

P sup
jx�yjpNa

jLiðx; nÞ � Liðy; nÞj4b

( )

pb�p n

i

� p=2
sup

jx�yjpNa=
ffiffiffi
in

p
jL1ðx; 1Þ � L1ðy; 1Þj

					
					

p

p

pb�p n

i

� p=2 Naffiffiffiffi
in

p

� �np

sup
xay

jL1ðx; 1Þ � L1ðy; 1Þj

jx � yjn

				
				

p

p

pðpc9ðnÞÞ
p b�p n

i

� p=2 Naffiffiffiffi
in

p

� �np

: ð5:22Þ

The last inequality follows from (5.8).
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Let � 2 ð0; 1Þ; p :¼ 4��1; and b :¼ ðn=iÞ1=2ðNa=
ffiffiffiffi
in

p
Þ
nN� to obtain,

P
[N
i¼1

[N
n¼1

sup
jx�yjpNa

jLiðx; nÞ � Liðy; nÞj4
n

i

� 1=2 Naffiffiffiffi
in

p

� �n

N�

( ) !

pN2 4c9ðnÞ
�

� �4=�

N�4: ð5:23Þ

Since this is summable in N, we can use the Borel–Cantelli lemma to see that with
probability one, for all large N and all i; npN;

sup
jx�yjpNa

jLiðx; nÞ � Liðy; nÞjpn1=2ð1�nÞi�1=2ð1þnÞNanþ�; (5.24)

thus leading to our lemma. &

We are ready to present our

Proof of Proposition 4.1. According to [17, Theorem 2.2], the following holds with
probability one:Z 1

0

ffiffiffi
u

p
sup
x2R

Luðx;NÞdu ¼ Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NloglogN

p
Þ

sup
1pupN

sup
x2R

ffiffiffi
u

p
Luðx;NÞ ¼ Oð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NloglogN

p
Þ: ð5:25Þ

Let Cðx; s; tÞ be the crossing local time of W, as in (2.4). For 1pm; npN;

Cðx;m; nÞ ¼

Z m

0

ffiffiffi
u

p
Luðx; nÞdu

¼ Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N log log N

p
Þ þ

Z m

1

ffiffiffi
u

p
Luðx; nÞdu

¼
Xm

i¼1

ffiffi
i

p
Liðx; nÞ þOðN1=2ð3�nÞ log NÞ: ð5:26Þ

The last inequality following from Lemma 5.5 and (5.25), and Oð� � �Þ is uniform in
1pm; npN and x 2 R: From this and Lemma 5.6, we can see that for any n 2 0; 12

� �
;

almost surely,

sup
jx�yjpNa

jCðx;m; nÞ � Cðy;m; nÞj ¼ OðN1=2ð3�nÞ log N þ Nanþð3=2Þ�nþ�Þ; (5.27)

uniformly in 1pm; npN: Since max 1
2
ð3� nÞ; anþ 3

2
� nþ �


 �
can be as close to 1þ

max a
2
; 1
4


 �
as possible, Proposition 4.1 follows. &
U
6. Proof of Proposition 4.2

This section is devoted to estimating the increments of x7!Zðx;m; nÞ ¼Pm
i¼0 ziðx; nÞ: By the definition of ziðx; nÞ in (2.2),
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ziðx; nÞ ¼
Xn�1

j¼0

1fSi;j4x; Si;jþ1oxg þ
Xn�1

j¼0

1fSi;jox; Si;jþ14xg: (6.1)

The two sums on the right-hand side represent the numbers of down- and up-
crossings, respectively. Thus,

ziðx; nÞ � 2
Xn�1

j¼0

1fSi;j4x; Si;jþ1oxg

�����
�����p1: (6.2)

It remains to study the increments of x7!
Pn�1

j¼0 1fSi;j4x; Si;jþ1oxg: Our first step is to
estimate Si;j by a Wiener process. An obvious candidate would be the Brownian
sheet in (3.6) that was used in Section 3 to prove a strong approximation of Si;j :
Unfortunately, the error term in this approximation scheme is too large for our
needs. So, we proceed very carefully in replacing Si;j by another Brownian motion.

Fix ipN: Since Si;j is the sum of ðijÞ i.i.d. symmetric Bernoulli random variables,
by the KMT theorem (3.2) there exists a standard Wiener process fW ðtÞ; tX0g such
that for any z40 and some absolute constants c1; c2 and c3;

PfjSi;j � W ðijÞj4c1 logðijÞ þ zgpc2 e
�c3 z: (6.3)

Strictly speaking, we really should write W i instead of W (our Wiener process W

depends on i). The same remark applies to the forthcoming event A and Wiener
process B.

Fix � 2 0; 1
2


 �
and d 2 0; �

2


 �
; and consider the event

E :¼
\N
j¼1

fjSi;j � W ðijÞjpNdg 8ipN: (6.4)

By (6.3), for large N, say NXN0;

PðEcÞp
XN

j¼1

c17N�5 ¼ c17N�4: (6.5)

On the event E, we have for ipN; npN and x 2 R;

Xn�1

j¼0

1fSi;j4x; Si;jþ1oxgp
Xn�1

j¼0

1fW ðijÞ4x�Nd; W ðiðjþ1ÞÞoxþNdg

p
Xn�1

j¼0

1fW ðijÞ4x; W ðiðjþ1ÞÞoxg þ 2 sup
a2R

Xn

j¼0

1fapW ðijÞpaþNdg: ð6:6Þ

Similarly, on E,

Xn�1

j¼0

1fSi;j4x; Si;jþ1oxgX

Xn�1

j¼0

1fW ðijÞ4x; W ðiðjþ1ÞÞoxg � 2 sup
a2R

Xn

j¼0

1fapW ðijÞpaþNdg:

(6.7)

If we write
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Di;n ¼ sup
jx�yjpNa

Xn�1

j¼0

1fSi;j4x; Si;jþ1oxg �
Xn�1

j¼0

1fSi;j4y; Si;jþ1oyg

�����
�����; (6.8)

then

Di;n1Ep sup
jx�yjpNa

Xn�1

j¼0

1fW ðijÞ4x; W ðiðjþ1ÞÞoxg �
Xn�1

j¼0

1fW ðijÞ4y; W ðiðjþ1ÞÞoyg

�����
�����

þ 4 sup
a2R

Xn

j¼0

1fapW ðijÞpaþNdg: ð6:9Þ

Let us consider the process x7!
Pn�1

j¼0 1fW ðijÞ4x; W ðiðjþ1ÞÞoxg: For each i, it is

distributed as x7!
Pn�1

j¼0 1fW ðjÞ4x=
ffi
i

p
; W ðjþ1Þox=

ffi
i

p
g: Therefore, by [4, Eq. (1.13)], there

exists a coupling of W and a standard Wiener process B such that for any l41; there
exist constants c18 and c19 such that for all nX1;

P sup
x2R

Xn�1

j¼0

1fW ðjÞ4x; W ðjþ1Þoxg � c20
ffiffiffi
n

p
L

xffiffiffi
n

p ; 1

� ������
�����Xc18 n1=4 log n

( )

pc19n�l; ð6:10Þ

where L is the local time of B, and c20 :¼ EðbBþð1ÞcÞ: We also mention that in [4, Eq.
(1.13)], the preceding inequality was stated only for some l41; which sufficed for the
intended applications there. However, it is clear from its proof [4, pp. 272–273] that
by altering c19 ¼ c19ðlÞ suitably, l can be made to be arbitrarily large.

A straightforward consequence of (6.9) and (6.10), with l ¼ 4
d in (6.10), is as

follows: For any b40 and k40;

PfDi;n1E4b þ k þ 2c18 n1=4 log ng

pP sup
jx�yjpNa

c20
ffiffiffi
n

p
L

xffiffiffiffi
in

p ; 1

� �
� c20

ffiffiffi
n

p
L

yffiffiffiffi
in

p ; 1

� �����
����4b

( )

þ P 4 sup
a2R

Xn

j¼0

1fapW ðijÞpaþNdg4k

( )
þ c19n�4=d

¼ P1 þ P2 þ c19n�4=d: ð6:11Þ

Plugging this into (6.5) yields

PfDi;n4b þ k þ 2c18 n1=4 log ngpP1 þ P2 þ c19n�4=d þ c17N�4: (6.12)

To bound P1; we use (5.8) to see that for any n 2 0; 1
2

� �
and pX1;
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P1 ¼ P sup
jx�yjpNa=

ffiffiffi
in

p
jLðx; 1Þ � Lðy; 1Þj4

b

2c20
ffiffiffi
n

p

( )

pP sup
xay

jLðx; 1Þ � Lðy; 1Þj

jx � yjn
4

b

2c20
ffiffiffi
n

p
ðNa=

ffiffiffiffi
in

p
Þ
n

� �

pðpc9ðnÞÞ
p 2c20

ffiffiffi
n

p
ðNa=

ffiffiffiffi
in

p
Þ
n

b

� �p

: ð6:13Þ

Choosing b ¼
ffiffiffi
n

p
ðNa=

ffiffiffiffi
in

p
Þ
nNd and p ¼ 4

d gives

P1pc21N�4; (6.14)

where c21 ¼ ð8c20 c9ðnÞ=dÞ
4=d depends only on ðn; dÞ:

We now estimate P2: The standard Gaussian density is bounded above by

ð2pÞ�1=2p1
2: Therefore, for any a 2 R; we have PfapW ðijÞpa þ 2NdgpNdðijÞ�1=2:

We can apply this together with the Markov property to deduce that for any integer
pX1;

Xn

j¼1

1fapW ðijÞpaþ2Ndg

					
					

p

p

pp!
Xn

j¼1

Ndffiffiffi
ij

p

 !p

pc22
Nd ffiffiffi

n
pffiffi
i

p

� �p

; (6.15)

for some constant c22 ¼ c22ðpÞ that depends only on p. By Markov’s inequality, for
any k40;

sup
a2R

P
Xn

j¼1

1fapW ðijÞpaþ2Ndg4k

( )
p

c22

kp

Nd ffiffiffi
n

pffiffi
i

p

� �p

: (6.16)

Now let a‘ ¼ 2Nd‘; for ‘ ¼ 0;	1;	2; . . . ;	‘max; where ‘max ¼ bNd
ffiffiffiffi
in

p
c: By the

usual estimate for Gaussian tails,

P max
1pjpn

jW ðijÞj4a‘max

� �
p2 exp �

ð2NdbNd
ffiffiffiffi
in

p
cÞ

2

2in

� �
p2 expð�N4dÞ: (6.17)

On the other hand, if max1pjpn jW ðijÞj4a‘max
; and if

Pn
j¼1 1fapW ðijÞpaþNdg4k for

some a 2 R; then there exists ‘; with j‘jp‘max such that
Pn

j¼1 1fa‘pW ðijÞpa‘þ2Ndg4k:

By (6.16), this yields,

P sup
a2R

Xn

j¼1

1fapW ðijÞpaþNdg4k

( )

pð2‘max þ 1Þ
c22

kp

Nd ffiffiffi
n

pffiffi
i

p

� �p

þ 2 expð�N4dÞ: ð6:18Þ

We replace k by 1
4

k to deduce that for all i; npN;
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P2pc23
Nd

ffiffiffiffi
in

p

kp

Nd ffiffiffi
n

pffiffi
i

p

� �p

þ 2 expð�N4dÞ

pc23
Nd

ffiffiffiffi
in

p

kp

Nd ffiffiffi
n

pffiffi
i

p

� �p

þ 2 expð�N4dÞ: ð6:19Þ

Taking k ¼ N2dðn=iÞ1=2 and p ¼ 1
d ð5þ dÞ yields

P2pc23N�4 þ 2 expð�N4dÞ: (6.20)

Plugging this and (6.14) into (6.12) implies that for i; npN;

P Di;n4
ffiffiffi
n

p Naffiffiffiffi
in

p

� �n

Nd þ N2d

ffiffiffi
n

i

r
þ 2c18n1=4 log n

� �
pc24N�4 þ 2 expð�N4dÞ þ c19n�4=d; ð6:21Þ

where c24 :¼ c21 þ c23 þ c17: As a consequence,

P
[N
i¼1

[N
n¼bNdc

Di;n4
ffiffiffi
n

p Naffiffiffiffi
in

p

� �n

Nd þ N2d

ffiffiffi
n

i

r
þ 2c18n1=4 log n

� �0
@

1
A

pc24N�2 þ 2N2 expð�N4dÞ þ c19N�2; ð6:22Þ

which is summable for N. By the Borel–Cantelli lemma, almost surely for all large N,

ipN; and every NdpnpN;

Di;np
ffiffiffi
n

p Naffiffiffiffi
in

p

� �n

Nd þ N2d

ffiffiffi
n

i

r
þ 2c18n1=4 log n: (6.23)

Thus, whenever mpN and NdpnpN;

Xm

i¼1

Di;np
ffiffiffi
n

p
N1�ðn=2Þ Naffiffiffi

n
p

� �n

Nd þ N2dþð1=2Þ ffiffiffi
n

p
þ N ð5=4Þþd

pN ð3=2Þ�nþanþd þ 2N ð5=4Þþd; eventually (in N): ð6:24Þ

This last inequality uses the facts that npN and that do1
4
:

If noNd; we can use the trivial inequality Di;np2n to see that
Pm

i¼1 Di;np2N1þd:
Therefore, whenever n 2 0; 1

2

� �
; � 2 0; 1

4


 �
and d 2 0; �

2


 �
; with probability one, for all

large N and m; npN;

Xm

i¼1

Di;npN ð3=2Þ�nþanþd þ 3N ð5=4Þþd: (6.25)

Since n 2 0; 1
2

� �
is arbitrary, it can be chosen such that 3

2
� nþ anþ do1þ a

2
þ 2d: In

view of the definition of Di;n in (6.8), and relation (6.2), we have proved that, almost
surely, for any � 2 ð0; 1

2
Þ; when N ! 1;
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max
0pmpN

max
1pnpN

sup
jx�yjpNa

Xm

i¼0

ziðx; nÞ �
Xm

i¼0

ziðy; nÞ

�����
�����

¼ oðN1þða=2Þþ� þ N ð5=4Þþ�Þ: ð6:26Þ

This completes our proof of Proposition 4.2. &
UNCORRECTED P
ROOF

7. Proof of Theorem 1.1

In view of (4.10), we need to check only the lower bound; namely that for any
�40; ZðNÞXN ð3=2Þ�� almost surely for all large N. By means of (2.5), we have to
prove that for large N,

Cð0;N;NÞXN ð3=2Þ��; a.s. (7.1)

We start by choosing a 2 1
2
; 1


 �
and b41 such that 2a4b: We also recall that

Cð0;N;NÞ ¼
RN

0

ffiffiffi
u

p
Luð0;NÞdu: Thus,

Cð0;N;NÞX

Z N

aN

ffiffiffiffiffiffiffi
aN

p
Luð0;NÞduX

ffiffiffi
a

p
ð1� aÞN3=2 inf

aNpupN
Luð0;NÞ: (7.2)

We now use the following recent estimate of the authors [15, Theorem 3.3]: For any
n 2 0; 1

2


 �
; there exists a small constant h0 ¼ h0ðn; aÞ such that for all N40 and

h 2 ð0; h0Þ;

P inf
1
2 NpupN

Lu 0;
N

2a

� �
ph

( )
p exp �

nj log hj

log j log hj

� �
: (7.3)

In [15] we obtained the above for N ¼ 1: This formulation is a consequence of the
case N ¼ 1 and scaling. Taking Nk ¼ bbk

c and h ¼ N
��=2
k yields

X1
k¼1

P inf
1
2 NkpupNk

Lu 0;
Nk

2a

� �
pN�

k

( )
oþ1: (7.4)

By the Borel–Cantelli lemma, almost surely for all large k,

inf
1
2 NkpupNk

Lu 0;
Nk

2a

� �
4N

��=2
k : (7.5)

Consequently, whenever Nk�1pNpNk;

inf
aNpupN

Luð0;NÞX inf
aNk�1pupNk

Luð0;Nk�1ÞX inf
1
2NkpupNk

Lu 0;
Nk

2a

� �

4N
��=2
k Xð2aNÞ

��=2: ð7:6Þ

We have used the fact that Nk�1Xð2aÞ�1Nk for all sufficiently large k; this, in turn,
follows from the inequality 2a4b: In summary, for all large N,
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Cð0;N;NÞX
ffiffiffi
a

p
ð1� aÞN3=2ð2aNÞ

��=2
XN3=2��; (7.7)

yielding (7.1), whence Theorem 1.1. &
Appendix: The Matlab code

The Matlab code for Fig. 1(a) follows. It presupposes the existence of a seed for
the random number generator, and that the seed is stored in a Matlab file called
‘‘seed.dat.’’
N
C
1.
 % run a 1-dimensional simple walk for n time-steps

2.
 Fload seed % The same random walk is always used

3.
 rand(‘state’,seed)

4.
 Ofigure;

5.
 x = rand(n);

6.
 OX ¼ 2 
 roundðxÞ � 1; % Generate Rademacher variables

7.
 S=cumsum(X); % Sum the columns separately

8.
R
W=S;
9.
 PW(:,1) = S(:,1);

10.
  for i=2:n
Wð:;
 DÞ ¼ Wð:; i� 1Þ þ Sð:; iÞ; % W is the walk
i

end

11.
 Efor k=1:n
 Tfor j=1:n
if W(k,j) == 0
Cplot(k,j)

end
 Eend
 Rend
12.
 print -deps file.ps
OR
In order to simulate the vertical crossings (for the same walk), the third line of 11

above (i.e., ‘‘if Wðk; jÞ ¼¼ 0’’) needs to be replaced by ‘‘if Wðk; jÞ 
 Wðk; jþ 1Þo0:’’
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