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LÉVY PROCESSES: CAPACITY AND HAUSDORFF DIMENSION

BY DAVAR KHOSHNEVISAN AND YIMIN XIAO

University of Utah and Michigan State University

We use the recently-developed multiparameter theory of additive Lévy
processes to establish novel connections between an arbitrary Lévy process
X in Rd , and a new class of energy forms and their corresponding capacities.
We then apply these connections to solve two long-standing problems in the
folklore of the theory of Lévy processes.

First, we compute the Hausdorff dimension of the image X(G) of a
nonrandom linear Borel set G ⊂ R+, where X is an arbitrary Lévy process
in Rd . Our work completes the various earlier efforts of Taylor [Proc.
Cambridge Phil. Soc. 49 (1953) 31–39], McKean [Duke Math. J. 22 (1955)
229–234], Blumenthal and Getoor [Illinois J. Math. 4 (1960) 370–375,
J. Math. Mech. 10 (1961) 493–516], Millar [Z. Wahrsch. verw. Gebiete 17
(1971) 53–73], Pruitt [J. Math. Mech. 19 (1969) 371–378], Pruitt and Taylor
[Z. Wahrsch. Verw. Gebiete 12 (1969) 267–289], Hawkes [Z. Wahrsch. verw.
Gebiete 19 (1971) 90–102, J. London Math. Soc. (2) 17 (1978) 567–576,
Probab. Theory Related Fields 112 (1998) 1–11], Hendricks [Ann. Math. Stat.
43 (1972) 690–694, Ann. Probab. 1 (1973) 849–853], Kahane [Publ. Math.
Orsay (83-02) (1983) 74–105, Recent Progress in Fourier Analysis (1985b)
65–121], Becker-Kern, Meerschaert and Scheffler [Monatsh. Math. 14 (2003)
91–101] and Khoshnevisan, Xiao and Zhong [Ann. Probab. 31 (2003a) 1097–
1141], where dimX(G) is computed under various conditions on G, X or
both.

We next solve the following problem [Kahane (1983) Publ. Math. Orsay
(83-02) 74–105]: When X is an isotropic stable process, what is a necessary
and sufficient analytic condition on any two disjoint Borel sets F,G ⊂ R+
such that with positive probability, X(F) ∩X(G) is nonempty? Prior to this
article, this was understood only in the case that X is a Brownian motion
[Khoshnevisan (1999) Trans. Amer. Math. Soc. 351 2607–2622]. Here, we
present a solution to Kahane’s problem for an arbitrary Lévy process X,
provided the distribution of X(t) is mutually absolutely continuous with
respect to the Lebesgue measure on Rd for all t > 0.

As a third application of these methods, we compute the Hausdorff
dimension and capacity of the preimage X−1(F ) of a nonrandom Borel set
F ⊂ Rd under very mild conditions on the process X. This completes the
work of Hawkes [Probab. Theory Related Fields 112 (1998) 1–11] that covers
the special case where X is a subordinator.
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1. Introduction. It has been long known that a typical Lévy process X :=
{X(t)}t≥0 in Rd maps a Borel set G⊂R+ to a random fractal X(G). For example,
Blumenthal and Getoor (1960) have demonstrated that when X is an α-stable Lévy
process in Rd , then for all Borel sets G⊂R+,

dimX(G)= d ∧ α dimG a.s.,(1.1)

where dim denotes Hausdorff dimension. In plain words, an α-stable process maps
a set of Hausdorff dimension β to a set of Hausdorff dimension d ∧αβ . For earlier
works in this area, see Taylor (1953) and McKean (1955), and for background on
Hausdorff dimension and its properties, see Falconer (1990) and Mattila (1995).

Blumenthal and Getoor (1961) extended (1.1) to a broad class of Lévy
processes. For this purpose, they introduced the upper index β and lower indices
β ′, β ′′ of a general Lévy process X and, in addition, the lower index σ of a
subordinator. Blumenthal and Getoor [(1961), Theorems 8.1 and 8.5] established
the following upper and lower bounds for dimX(G) in terms of the upper index β

and lower indices β ′ and β ′′ of X: For every G⊂R+, almost surely,

dimX(G)≤ β dimG if β < 1,

(1.2)
dimX(G)≥

{
β ′ dimG, if β ′ ≤ d,

1∧ β ′′ dimG, if β ′ > d = 1.

They showed, in addition, that when X is a subordinator, then

σ dimG≤ dimX(G)≤ β dimG a.s.(1.3)

The restriction β < 1 of (1.2) was removed subsequently by Millar [(1971),
Theorem 5.1]. Blumenthal and Getoor [(1961), page 512] conjectured that, given
a Borel set G⊂ [0,1], there exists a constant λ(X,G) such that

dimX(G)= λ(X,G) a.s.(1.4)

Moreover, they asked a question that we rephrase as follows: Given a Lévy
process X, is it always the case that dimX(G) = dimX([0,1]) · dimG for
all nonrandom Borel sets G ⊆ R+? Surprisingly, the answer to this question
is “no” [Hendricks (1972) and Hawkes and Pruitt (1974)]. To paraphrase from
Hawkes and Pruitt [(1974), page 285], in general, dimX(G) depends on other
characteristics of the set G than its Hausdorff dimension. Except in the case where
X is a subordinator [Hawkes (1978), Theorem 3], this question had remained
unanswered.

One of our original aims was to identify precisely what these characteristics
are. As it turns out, the complete answer is quite unusual; see Theorem 2.2. For an
instructive example, also Theorem 7.1.

In the slightly more restrictive case that X is a symmetric α-stable Lévy process,
Kahane [(1985b), see Theorem 8] proved that for any Borel set G⊂R+,

Hγ (G)= 0 �⇒ Hαγ (X(G))= 0 a.s.(1.5)
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Here, Hβ denotes the β-dimensional Hausdorff measure. If, in addition, we
assume that αγ < d , then Kahane’s theorem states further that

Cγ (G) > 0 �⇒ Cαγ (X(G)) > 0 a.s.,(1.6)

where Cβ denotes the β-dimensional Bessel–Riesz capacity which we recall at the
end of this introduction.

As regards a converse to (1.6), Hawkes (1998) has recently proven that if X is a
stable subordinator of index α ∈ (0,1), then for any Borel set G⊂R+ and for all
γ ∈ (0,1),

Cγ (G) > 0 ⇐⇒ Cαγ (X(G)) > 0 a.s.(1.7)

The arguments devised by Hawkes (1998) use specific properties of stable
subordinators, and do not apply to other stable processes. On the other hand,
Kahane’s proof of (1.5) depends crucially on the self-similarity of strictly stable
processes. Thus, these methods do not apply to more general Lévy processes.

Our initial interest in such problems came from the surprising fact that the
existing literature does not seem to have a definitive answer for the following
question:

QUESTION 1.1. Can one find a nontrivial characterization of when Cγ (X(G))

is positive for a d-dimensional Brownian motion X?

The main purpose of this paper is to close the gaps in (1.5) and (1.6) and their
counterparts for the preimages of X. While doing so, we also answer Question 1.1
in the affirmative. [The answer is the most natural one: “Cγ (X(G)) > 0 if and only
if Cγ /2(G) > 0”; cf. Theorem 7.1.]

Our methods rely on a great deal of the recently-developed potential theory
for additive Lévy processes; see Khoshnevisan and Xiao (2002, 2003) and
Khoshnevisan, Xiao and Zhong (2003a). While the present methods are quite
technical, they have the advantage of being adaptable to very general settings.
Therefore, instead of working with special processes such as stable processes,
we state our results for broad classes of Lévy processes. Moreover, the present
methods allow us to solve the following long-standing problem: “Given a Lévy
process X in Rd , and two disjoint sets F,G ⊂ R+, when is X(F) ∩ X(G)

nonempty?” Kahane (1983) studied this problem for a symmetric stable Lévy
process X in Rd and proved that

Cd/α(F ×G) > 0 �⇒ P{X(F)∩X(G) �=∅}> 0
(1.8)

�⇒ Hd/α(F ×G) > 0.

Kahane [(1983), page 90] conjectured that Cd/α(F × G) > 0 is necessary and
sufficient for P{X(F)∩X(G) �=∅}> 0. Until now, this problem had been solved
only when X is a Brownian motion [Khoshnevisan (1999), Theorem 8.2].
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For a Lévy process X in Rd , we investigate the Hausdorff dimension and
capacity of the preimage X−1(R), where R ⊂ Rd is a Borel set. When X is
isotropic α-stable, Hawkes (1971) has proven that if α ≥ d , then for every Borel
set R ⊂Rd ,

dimX−1(R)= α + dimR− d

α
a.s.,(1.9)

and if α < d , then

sup
{
θ > 0 : P{dimX−1(R)≥ θ}> 0

}= α + dimR− d

α
.(1.10)

More recently, Hawkes (1998) has studied the capacity of X−1(R) further in the
case that X is a symmetric α-stable Lévy process in R. We are able to extend his
result to a large class of Lévy processes; see Theorem 3.1 and Corollary 3.2 below.

We conclude this introduction by introducing some notation that will be used
throughout.

We write P (F ) for the collection of all Borel-regular probability measures on
a given Borel space F .

Given a Borel measurable function f : Rd →[0,∞], we define the “f -energy”
[of some µ ∈P (Rd)] and “f -capacity” (of some measurable G⊂Rd ) as follows:

Ef (µ) :=
∫ ∫

f (x − y)µ(dx)µ(dy),

(1.11)

Cf (G) :=
[

inf
µ∈P (G)

Ef (µ)

]−1

.

We refer to such a function f as a gauge function. Occasionally, we write Ef (µ)

for a bounded measurable f : Rd →C, as well.
Given a number β > 0, we reserve Cβ and Eβ for Cf and Ef , respectively,

where the gauge function f is f (t) := ‖t‖−β . Cβ and Eβ are, respectively, the
(β-dimensional) Bessel–Riesz capacity and energy to which some references were
made earlier. More information about the Bessel–Riesz capacity and its connection
to fractals can be found in Mattila (1995), Kahane (1985a) and Khoshnevisan
(2002). For a lively discussion of the various connections between random fractals,
capacity and fractal dimensions, see Taylor (1986).

An important aspect of our proofs involves artificially expanding the parameter
space from R+ to R1+p

+ for an arbitrary positive integer p. For this, we introduce
some notation that will be used throughout: Any t ∈R1+p is written as t := (t0, �t ),
where �t := (t1, . . . , tp) ∈ Rp . This allows us to extend any µ ∈ P (R+) to a

probability measure µ on R1+p
+ as follows:

µ(dt) := µ(dt0)e
−∑p

j=1 tj d�t .(1.12)

Finally, the Lebesgue measure on Rd is denoted by λd , and for any integer k and
all x, y ∈ Rk , we write x ≺ y in place of the statement that x is less than or equal
to y, coordinatewise; that is, xi ≤ yi for all i ≤ k.
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2. The image of a Borel set. The first main result of this paper is the most
general theorem on the Bessel–Riesz capacity of the image X(G) of a Lévy
process X in Rd . This, in turn, provides us with a method for computing dimX(G)

for a nonrandom Borel set G⊂R+. Our computation involves terms that are solely
in terms of the Lévy exponent � of X and the set G. Hence, Corollary 2.6 verifies
the conjecture (1.4) of Blumenthal and Getoor (1961).

Before stating our formula for dimX(G), we introduce some notation.
Given any ξ ∈Rd , we define the function χξ : R→C as follows:

χ�
ξ (x) := χξ (x) := e−|x|�(sgn(x)ξ) ∀x ∈R.(2.1)

We will write the more tedious χ�
ξ in favor of χξ only when there are more than

one Lévy exponent in the problem at hand and there may be ambiguity as to which
Lévy exponent is in question.

Below are some of the elementary properties of this function χξ .

LEMMA 2.1. For any ξ ∈ Rd , supx∈R |χξ (x)| ≤ 1. Moreover, given any
µ ∈P (R+), Eχξ (µ) ≥ 0 for all ξ ∈ Rd . In particular, Eχξ (µ) ∈ [0,1] is real-
valued.

PROOF. We note that for any s, t ≥ 0, and for all ξ ∈Rd ,

E
[
eiξ ·(X(t)−X(s))]= χξ (t − s).(2.2)

This shows that χξ is pointwise bounded in modulus by one. Moreover, by the
Fubini–Tonelli theorem, given any µ ∈ P (R+), we can integrate the preceding
display [µ(dt)µ(ds)] to deduce that

Eχξ (µ)= E
[∣∣∣∣∫ eiξ ·X(t) µ(dt)

∣∣∣∣2]
,(2.3)

which completes our proof. �

We are finally ready to present the first main contribution of this paper. The
following theorem closes the gaps in (1.6) and (1.7) for a general Lévy process.

THEOREM 2.2. Suppose X := {X(t)}t≥0 is a Lévy process in Rd , and denote
its Lévy exponent by � . Then for any Borel set G⊂R+, and for all β ∈ (0, d),

Cβ(X(G))= 0 a.s.
(2.4)

⇐⇒ ∀µ ∈P (G) :
∫

Rd
Eχξ (µ)‖ξ‖β−d dξ =+∞.

REMARK 2.3. For a closely-related, though different, result, see
Khoshnevisan, Xiao and Zhong [(2003a), Theorem 2.1].
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The proof of Theorem 2.2 is long, as it requires a good deal of the
multiparameter potential theory of additive Lévy process; thus, this proof is
deferred to Section 5. In the meantime, the remainder of this section is concerned
with describing some of the consequences of Theorem 2.2.

First of all, note that when X is symmetric, χξ is a positive real function. Thus,
we can apply the theorem of Fubini and Tonelli to deduce the following in the
symmetric case:∫

Rd
Eχξ (µ)‖ξ‖β−d dξ =

∫ ∫ [∫
Rd

e−|x−y|�(ξ)‖ξ‖β−d dξ

]
µ(dx)µ(dy).(2.5)

In other words, we have the following consequence of Theorem 2.2:

COROLLARY 2.4. If X := {X(t)}t≥0 is a symmetric Lévy process in Rd with
Lévy exponent � , then for any Borel set G⊂R+, and all β ∈ (0, d),

Cβ(X(G))= 0 a.s. ⇐⇒ Cfd−β
(G)= 0,(2.6)

where

fγ (x) :=
∫

Rd
e−|x|�(ξ)‖ξ‖−γ dξ ∀x ∈R, γ ∈ (0, d).(2.7)

REMARK 2.5. We believe that Corollary 2.4 is true quite generally, but have
not been successful in proving this. To see the significance of this conjecture,
let us assume further that fγ has the property that as |x| tends to zero, fγ (x) =
O(fγ (2x)). Then, thanks to Corollary 2.4 and a general Frostman theorem [Taylor
(1961), Theorem 1], we deduce that for any Borel set G ⊂ R+ with finite
f−1

d−β -Hausdorff measure, Cβ(X(G)) = 0 almost surely. In general, we do not
know of such conditions in the nonsymmetric case.

Now let us consider the Hausdorff dimension of the image X(G) of any Borel
set G under X. By the theorem of Frostman [Khoshnevisan (2002), Theorem 2.2.1,
Appendix C, and Mattila (1995), Theorem 8.9], given any Borel set F ⊂Rd ,

dimF := sup{β ∈ (0, d) :Cβ(F ) > 0}.(2.8)

Thus, Theorem 2.2 allows us to also compute dimX(G). Namely, we have the
following:

COROLLARY 2.6. Suppose X := {X(t)}t≥0 is a Lévy process in Rd , and
denote its Lévy exponent by � . Then for any Borel set G⊂R+,

dimX(G)

(2.9)
= sup

{
β ∈ (0, d) : inf

µ∈P (G)

∫
Rd

Eχξ (µ)‖ξ‖β−d dξ <+∞
}

a.s.
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In the symmetric case, this is equivalent to the following:

dimX(G)= sup
{
β ∈ (0, d) :Cfd−β

(G) > 0
}

a.s.,(2.10)

where fγ is defined in (2.7).

Corollary 2.6 computes dimX(G) in terms of the Lévy exponent � of the
process X. In particular, it verifies the conjecture of Blumenthal and Getoor
[(1961), page 512]. However, our formulas are not so easy to use for a given � ,
because they involve an infinite number of computations [one for each measure
µ ∈ P (G)]. Next, we mention some simple-to-use bounds that are easily derived
from Corollary 2.6.

COROLLARY 2.7. If X := {X(t)}t≥0 is a symmetric Lévy process in Rd , then
for any Borel set G ⊂ R+, we almost surely have I (G) ≤ dimX(G) ≤ J (G),
where

I (G) := sup
{
β ∈ (0, d) : lim sup

r↓0

logfd−β(r)

log(1/r)
< dimG

}
and

(2.11)

J (G) := inf
{
β ∈ (0, d) : lim inf

r↓0

logfd−β(r)

log(1/r)
> dimG

}
.

In the above, inf ∅ := d and sup ∅ := 0, and fγ is as in (2.7).

We also mention the following zero–one law. Among other things, it tells us
that the a.s.-condition of Theorem 2.2 is sharp.

PROPOSITION 2.8 (Zero–one law). For any β ∈ (0, d), and for all Borel sets
G⊂R+,

P{Cβ(X(G)) > 0} = 0 or 1.(2.12)

This proposition is a handy consequence of our proof of Theorem 2.2, and
its proof is explicitly spelled out in Remark 5.5 below. In the case that X is a
subordinator, the reader can find this in Hawkes [(1998), page 9]. We note that
Hawkes’ proof works for any pure-jump Lévy process.

3. The preimage of a Borel set. Let X := {X(t)}t≥0 be a strictly α-stable
Lévy process in Rd , and let pt(x) be the density function of X(t). Taylor (1967)
proved that


 := {x ∈Rd :pt(x) > 0 for some t > 0}(3.1)

is an open convex cone in Rd with the origin as its vertex. To further study the
structure of 
, Taylor (1967) classified strictly stable Lévy processes into two
types: X is of type A if p1(0) > 0; otherwise it is of type B. He proved that
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when X is of type A, then pt(x) > 0 for all t > 0 and x ∈ Rd . On the other
hand, in the case that X is a type B process, Taylor (1967) conjectured that

 = {x ∈ Rd :pt(x) > 0 for all t > 0}; this was later proved by Port and Vitale
(1988). By combining the said results, we can conclude that all strictly stable Lévy
processes with α ≥ 1 are of type A.

Now one can extend Hawkes’ results (1.9) and (1.10) to all strictly stable Lévy
process X of index α in Rd . It follows from Theorem 1 of Kanda (1976) [see also
Bertoin (1996), page 61, and Sato (1999), Theorem 42.30] and the arguments of
Hawkes (1971) that if α ≥ d , then for every Borel set R ⊂Rd ,

dimX−1(R)= α+ dimR − d

α
a.s.(3.2)

On the other hand, if α < d , then for every Borel set R ⊂ 
,

‖dimX−1(R)‖L∞(P) = α + dimR− d

α
,(3.3)

where negative dimension for a set implies that the set is empty.
Hawkes (1998) has made further progress by proving that whenever X is a

symmetric α-stable process in R, then for all β ∈ (0,1) that satisfy α + β > 1,
and for every Borel R ⊂R,

C(α+β−1)/α

(
X−1(R)

)= 0 a.s. ⇐⇒ Cβ(R)= 0.(3.4)

It is an immediate consequence of the Frostman theorem [Khoshnevisan (2002),
Theorem 2.2.1, Appendix C] that (3.4) generalizes (3.3). Equation (3.2) also
follows from (3.4), Frostman’s theorem and recurrence.

In order to go far beyond symmetric stable processes, we can make use of the
potential theory of multiparameter Lévy processes. We indicate this connection by
proving the following nontrivial generalization of (3.4). For simplicity, we only
consider the Lévy processes with 
 =Rd .

THEOREM 3.1. Let X := {X(t)}t≥0 denote a Lévy process in Rd with Lévy
exponent � . If X has transition densities {pt }t>0 such that for almost all (t, y) ∈
R+ × Rd , pt(y) is strictly positive, then for every Borel set R ⊂ Rd , and all
γ ∈ (0,1),

Cγ

(
X−1(R)

)= 0 a.s.

(3.5)
⇐⇒

∫
Rd
|µ̂(ξ)|2Re

(
1

1+�1−γ (ξ)

)
dξ =+∞ ∀µ ∈P (R).

Theorem 3.1 and Frostman’s theorem (2.8) together prove the following:
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COROLLARY 3.2. Let X := {X(t)}t≥0 denote a Lévy process in Rd with Lévy
exponent � . If X has strictly positive transition densities, then for every Borel set
R ⊂Rd ,

‖dimX−1(R)‖L∞(P)

(3.6)
= sup

{
γ ∈ (0,1) : inf

µ∈P (R)

∫
Rd
|µ̂(ξ)|2Re

(
1

1+�1−γ (ξ)

)
dξ <+∞

}
.

Before commencing with our proof of Theorem 3.1, we develop a simple
technical result.

Suppose X := {X(t)}t≥0 is a Lévy process in Rd , and suppose that it has
transition densities with respect to the Lebesgue measure λd . In other words,
we are assuming that there exist (measurable) functions {pt }t≥0 such that, for all
measurable f : Rd →R+ and all t ≥ 0, E[f (X(t))] = ∫

Rd f (y)pt (y) dy.

Next, we consider a (1 − γ )-stable subordinator σ := {σ(t)}t≥0 that is
independent of the process X. [Of course, γ is necessarily in (0,1).] Let vt denote
the density function of σ(t). It is well known that, for every t > 0, vt (s) > 0 for
all s > 0.

LEMMA 3.3. If X := {X(t)}t≥0 is a Lévy process in Rd with Lévy exponent
� and transition densities {pt }t>0, then the subordinated process X ◦ σ is
a Lévy process with Lévy exponent �1−γ and transition densities (t, y) �→∫∞

0 ps(y)vt (s) ds. Moreover, if ps(y) > 0 for almost all (s, y) ∈ R+ × Rd , then
for every t > 0, the density of X(σ(t)) is positive almost everywhere.

PROOF. Much of this is well known [Sato (1999), Theorem 30.1], and we
content ourselves by deriving the transition densities of X ◦σ . For any measurable
f : Rd → R+, and for all t ≥ 0, E[f (X(σ(t)))] = ∫

Rd f (y)E[pσ(t)(y)]dy. This
verifies the formula for the transition densities of X ◦ σ . The final statement of the
lemma follows from the well-known fact that vt (s) > 0 for all s > 0. �

PROOF OF THEOREM 3.1. As in Lemma 3.3, we let σ denote a (1 − γ )-
stable subordinator that starts at the origin, and is independent of X. Then, it is
well known [Hawkes (1971), Lemma 2] that, for any Borel set B ⊂R+,

P{B ∩ σ(R+) �=∅}> 0 ⇐⇒ Cγ (B) > 0.(3.7)

By conditioning on X, we obtain the following:

P{X−1(R)∩ σ(R+) �=∅}> 0 ⇐⇒ P
{
Cγ

(
X−1(R)

)
> 0

}
> 0.(3.8)

Moreover, it is clear that

P{X−1(R)∩ σ(R+) �=∅}> 0 ⇐⇒ P{R ∩X ◦ σ(R+) �=∅}> 0.(3.9)
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Thus, by Lemma 4.1 below,

P{X−1(R)∩ σ(R+) �=∅}> 0 ⇐⇒ E[λd(X ◦ σ(R+)�R)]> 0.(3.10)

Because X ◦ σ is a Lévy process in Rd with exponent �1−γ (ξ) (Lemma 3.3),
the remainder of the proof follows from Khoshnevisan, Xiao and Zhong [(2003a),
Theorem 1.5] that we restate below as Theorem 4.6; see also Bertoin [(1996),
page 60]. �

4. Background on additive Lévy processes. In this section we rephrase, as
well as refine, some of the potential theory of additive Lévy processes that was
established in Khoshnevisan and Xiao (2002, 2003) and Khoshnevisan, Xiao and
Zhong (2003a). Our emphasis is on how these results are used in order to compute
the Hausdorff dimension of various random sets of interest.

A p-parameter, Rd -valued, additive Lévy process �X = { �X(�t )}�t∈Rp
+ is a

multiparameter stochastic process that is defined by

�X(�t ) :=
p∑

j=1

Xj(tj ) ∀ �t = (t1, . . . , tp) ∈Rp
+.(4.1)

Here, X1, . . . ,Xp denote independent Lévy processes in Rd . Following the
notation in Khoshnevisan and Xiao (2002, 2003), we may denote the random
field �X by

�X :=X1 ⊕ · · · ⊕Xp.(4.2)

These additive random fields naturally arise in the analysis of multiparameter
processes such as Lévy’s sheets and in the studies of intersections of Lévy
processes [Khoshnevisan and Xiao (2002)]. [At first sight, the term “additive
Lévy” may be redundant. Indeed, historically, the term “additive process” refers
to a process with independent increments. Thus, in this sense every Lévy process
is additive. However, we feel strongly that our usage of the term “additive process”
is more mathematically sound, as can be seen by considering the additive group G

created by direct-summing cadlag functions f1, . . . , fp : R+ → Rd to obtain a
function f : Rp

+ → Rd defined by f (�t ) := (f1 ⊕ · · · ⊕ fp)(�t ) = f1(t1) + · · · +
fp(tp). Therefore, if X1, . . . ,Xp+1 are independent Lévy processes, then t1 �→
X1(t1) ⊕ X2(•) ⊕ · · · ⊕ X1+p(•) is a Lévy process on the infinite-dimensional
additive group G.]

For each �t ∈Rp
+, the characteristic function of �X(�t ) is given by

E
[
eiξ · �X(�t )]= e

−∑p
j=1 tj�j (ξ) := e−�t · ��(ξ) ∀ ξ ∈Rd,(4.3)

where ��(ξ) := �1(ξ) ⊗ · · · ⊗ �p(ξ), in tensor notation. We will call ��(ξ) the
characteristic exponent of the additive Lévy process �X.
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Additive Lévy processes have a theory that extends much of the existing theory
of Lévy processes. For instance, corresponding to any additive Lévy process �X,
there is a potential measure �U that we define as follows: For all measurable sets
F ⊂Rd ,

�U(F) := E
[∫

Rp
+

e
−∑p

j=1 sj 1F

( �X(�s )
)
d�s

]
.(4.4)

If �U is absolutely continuous with respect to the Lebesgue measure λd , its density
is called the 1-potential density of �X. There is also a notion of transition densities.
However, for technical reasons, we sometimes assume more; see Khoshnevisan
and Xiao (2002, 2003). Namely, we say that the process �X is absolutely continuous
if for each �t ∈ Rp

+\∂Rp
+, e−�t · �� ∈L1(Rd). In this case, for all �t ∈ Rp

+\∂Rp
+, �X(�t)

has a bounded and continuous density function p(�t; •), which is described by the
following formula:

p(�t;x) := (2π)−d
∫

Rd
e−iξ ·x−�t · ��(ξ) dξ ∀x ∈Rd .(4.5)

We remark that when �X is absolutely continuous, �U is absolutely continuous

and the 1-potential density is
∫

Rp
+ p(�s; •)e−

∑p
j=1 sj d�s. See Hawkes [(1979),

Lemma 2.1] for a necessary and sufficient condition for the existence of a
1-potential density.

When �X is absolutely continuous, the following function 
 is well defined, and
is called the gauge function for �X:


(�s ) := p(|s1|, . . . , |sp|;0) ∀ �s ∈Rp.(4.6)

It is clear that 
(�0) = +∞ and, when X1, . . . ,Xp are symmetric, �s �→ 
(�s ) is
nonincreasing in each |si |. It is also not too hard to see that C
(·) is a natural
capacity in the sense of Choquet [Dellacherie and Meyer (1978)].

In order to apply our previous results [Khoshnevisan and Xiao (2002, 2003) and
Khoshnevisan, Xiao and Zhong (2003a)], we first extend a one-parameter theorem
of Kahane (1972, 1983) to additive Lévy processes in Rd . In the following, we
write A�B := {x− y :x ∈A,y ∈ B}. (Note that when either A or B is the empty
set ∅, then A�B =∅.)

LEMMA 4.1. Let �X be a p-parameter additive Lévy process in Rd . We
assume that, for every t ∈ (0,∞)p , the distribution of �X(�t ) is mutually absolutely
continuous with respect to λd . Then for all Borel sets G⊂ (0,∞)p and F ⊂ Rd ,
the following are equivalent:

1. with positive probability, G∩ �X−1(F ) �=∅;
2. with positive probability, F ∩ �X(G) �=∅;
3. with positive probability, λd(F � �X(G)) > 0.
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PROOF. It is clear that 1⇔ 2. To prove 2⇔ 3, we note that part 2 is equivalent
to the following:

∃ δ > 0 such that P
{
F ∩ �X(

G∩ (δ,∞)p
) �=∅

}
> 0.(4.7)

Hence, without loss of generality, we can assume that G⊂ (δ,∞)p for some δ > 0.
By our assumption, we may choose �a ∈ (0,∞)p such that:

(i) �a ≺ �t for all �t ∈G.
(ii) The distribution of �X(�a) is equivalent to λd .

Next, define the additive Lévy process �X�a := { �X�a(�t )}�t∈Rp
+ by

�X�a(�t ) := �X(�t + �a)− �X(�a) ∀ �t ∈Rp
+.(4.8)

Then, we point out that

F ∩ �X(G)=∅ ⇐⇒ �X(�a) /∈ F � �X�a(G− �a).(4.9)

Since �X(�a) is independent of the random Borel set F � �X�a(G − �a) and the
distribution of �X(�a) is equivalent to λd , we have

�X(�a) /∈ F � �X�a(G− �a) a.s.
(4.10)

⇐⇒ λd

(
F � �X�a(G− �a)

)= 0 a.s.

Note that �X�a(G− �a) = �X(G)� { �X(�a)}, so that the translation invariance of the
Lebesgue measure, (4.9) and (4.10) imply that

F ∩ �X(G)=∅ a.s. ⇐⇒ λd

(
F � �X(G)

)= 0 a.s.(4.11)

This proves 2⇔ 3, whence the lemma. �

The following theorem connects the positiveness of the Lebesgue measure of
the range X(G) and the hitting probability of the level set X−1(a) to a class of
natural capacities. It is a consequence of the results in Khoshnevisan and Xiao
[(2002), Theorem 5.1, and (2003)] and Lemma 4.1.

THEOREM 4.2. Suppose X1, . . . ,Xp are p independent symmetric Lévy
processes on Rd , and let �X denote X1 ⊕ · · · ⊕Xp , which we assume is absolutely
continuous with an a.e.-positive density function at every time �t ∈ Rp

+. Let 
 be
the gauge function of �X. Then for every Borel set G⊂ (0,∞)p , the following are
equivalent:

1. C
(G) > 0.
2. With positive probability, λd( �X(G)) > 0.
3. Any a ∈Rd can be in the random set �X(G) with positive probability.
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REMARK 4.3. Theorem 4.2 asserts that, for every Borel set G⊂ (0,∞)p ,

C
(G) > 0 ⇐⇒ �X−1({0})∩G �=∅ with positive probability.(4.12)

In fact, (4.12) holds even without the assumption that the density function of
�X(�t ) is positive almost everywhere; see Corollary 2.13 of Khoshnevisan and
Xiao (2002). In Section 6 we apply this minor variation of Theorem 4.2 to derive
Theorem 6.5.

We recall that X1⊕· · ·⊕Xp is additive α-stable if X1, . . . ,Xp are independent
isotropic α-stable processes. The following is a consequence of Lemma 4.1 and
Khoshnevisan, Xiao and Zhong [(2003a), Theorem 7.2], which improves the
earlier results of Hirsch (1995), Hirsch and Song (1995a, b) and Khoshnevisan
(2002).

THEOREM 4.4. Suppose �X :=X1 ⊕ · · · ⊕Xp is an additive α-stable process
in Rd . Then, dim �X(Rp

+)= αp ∧ d , a.s. Moreover, for all Borel sets F ⊂ Rd , the
following are equivalent:

1. Cd−αp(F ) > 0.
2. With positive probability, λd(F ⊕ �X(Rp

+)) > 0.
3. F is not polar for �X; that is, with positive probability, F ∩ �X(Rp

+\{�0}) �=∅.

REMARK 4.5. Note that the second part of Theorem 4.4 is of interest only
in the case that αp ≤ d . When αp > d , X hits every point in Rd almost surely.
Therefore, �X(Rp

+)= Rd , a.s. In this case, there is a rich theory of local times and
level sets [Khoshnevisan, Xiao and Zhong (2003b)].

PROOF OF THEOREM 4.4. The first statement regarding the dimension
of �X(Rp

+) follows from Khoshnevisan, Xiao and Zhong [(2003a), Theorem 1.6],
whereas 1 ⇔ 2 for all compact sets F is precisely Theorem 7.2 of
Khoshnevisan, Xiao and Zhong (2003a). In the following we first prove 2 ⇔ 3
and then use it to remove the compactness restriction in 1⇔ 2.

For every �t ∈ Rp
+\{�0}, the distribution of �X(�t ) has a strictly positive and

continuous density. We write Rp
+\{�0} = (0,∞)p ∪ (∂Rp

+\{�0}). Lemma 4.1 implies
that, for every Borel set F ⊂Rd ,

P
{
λd

{
F ⊕ �X(

(0,∞)p
)}

> 0
}
> 0

(4.13)
⇐⇒ P

{
F ∩ �X(

(0,∞)p
) �=∅

}
> 0.

For the boundary ∂Rp
+\{�0}, we apply Lemma 4.1 to additive stable processes that

have fewer than p parameters to obtain

P
{
λd{F ⊕ �X(∂Rp

+)}> 0
}
> 0 ⇐⇒ P

{
F ∩ �X(∂Rp

+\{�0}) �=∅
}
> 0.(4.14)
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Therefore, we have proven 2 ⇔ 3 for all Borel sets F ⊂ Rd . From the above, we
derive that, for every compact set F ⊂Rd , 1⇔ 3. But Cd−αp(·) and C(·) are both
Choquet capacities, where

C(F )= P
{
F ∩ �X(Rp

+\{�0}) �=∅
}
.(4.15)

Thus, the compactness restriction on F can be removed by Choquet’s capacibility
theorem [Dellacherie and Meyer (1978)], whence the validity of 1⇔ 2 in general.
�

We conclude this section by recalling the main results of Khoshnevisan, Xiao
and Zhong (2003a). The first is from Khoshnevisan, Xiao and Zhong [(2003a),
Theorem 1.5], which can be applied to compute the Hausdorff dimension of the
range of an arbitrary Lévy process; for earlier progress on this problem, see Pruitt
(1969).

THEOREM 4.6 [Khoshnevisan, Xiao and Zhong (2003a), Theorem 1.5].
Consider a p-parameter additive Lévy process �X := { �X(�t )}�t∈Rp

+ in Rd with Lévy

exponent � . Suppose that there exists a constant c > 0 such that, for all ξ ∈Rd ,

Re
p∏

j=1

{1+�j(ξ)}−1 ≥ c

p∏
j=1

Re{1+�j(ξ)}−1.(4.16)

Then, given a Borel set F ⊂Rd , E[λd( �X(Rp
+)⊕F)]> 0 if and only if there exists

µ ∈P (F ) such that∫
Rd
|µ̂(ξ)|2

p∏
j=1

Re{1+�j(ξ)}−1 dξ <+∞.(4.17)

As a corollary to this, Khoshnevisan, Xiao and Zhong [(2003a), Theorem 1.6]
obtained the following refinement of the results of Pruitt (1969):

COROLLARY 4.7. If X is a Lévy process in Rd with Lévy exponent � , then
a.s.,

dimX(R+)

(4.18) = sup
{
γ ∈ (0, d) :

∫
{ξ∈Rd : ‖ξ‖≥1}

Re
(

1

1+�(ξ)

)
dξ

‖ξ‖d−γ
<+∞

}
.

The next requisite result is from Khoshnevisan, Xiao and Zhong [(2003a),
Theorem 2.1 and Lemma 2.4], which characterizes E[λd( �X(G))]> 0 completely
in terms of its Lévy exponent � and G. Notice that it is more general than 1⇔ 2
in Theorem 4.2.
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THEOREM 4.8. Suppose �X := { �X(�t )}�t∈Rp
+ is a p-parameter additive Lévy

process in Rd with Lévy exponent � . Then, given a Borel set G ⊂ Rp
+,

E[λd( �X(G))]> 0 if and only if there exists µ ∈P (G) such that∫
Rd

E⊗p
j=1χ

�j
ξ

(µ)dξ <+∞,

where

E⊗p
j=1χ

�j
ξ

(µ)=
∫

Rp
+

∫
Rp
+

e
−∑p

j=1 |sj−tj |�j (sgn(sj−tj )ξ)
µ(d�s )µ(d�t ).(4.19)

5. Proof of Theorem 2.2. Next, for any fixed α ∈ (0,2], we introduce p

independent isotropic α-stable Lévy processes X1, . . . ,Xp in Rd , each of which
is normalized as follows:

E
[
eiξ ·Xl(u)]= e−u‖ξ‖α ∀ ξ ∈Rd, u≥ 0, l = 1, . . . , p.(5.1)

We assume that X1, . . . ,Xp are independent of the Lévy process X and then
consider the additive Lévy process {A(t)}

t∈R1+p
+

; this is the (1 + p)-parameter

random field that is prescribed by the following:

A(t) :=X(t0)+X1(t1)+ · · · +Xp(tp) ∀ t ∈R1+p
+ .(5.2)

For this random field and any µ ∈ P (R+), we consider the random measure Oµ

on Rd defined by

Oµ(f ) :=
∫

R1+p
+

f (A(t))µ(dt),(5.3)

where µ is defined by (1.12). This is well defined for all nonnegative measurable
f : Rd →R+, for instance.

LEMMA 5.1. For all probability measures µ on R+, and ξ ∈Rd ,

2−p(1+ ‖ξ‖)−αpEχξ (µ)≤ E[|Ôµ(ξ)|2]
(5.4)

≤ 2pα(1+ ‖ξ‖)−αpEχξ (µ).

PROOF. By Khoshnevisan, Xiao and Zhong [(2003a), Lemma 2.4], for all
ξ ∈Rd ,

E[|Ôµ(ξ)|2]
(5.5) =

∫ ∫
R1+p
+ ×R1+p

+

e
−∑p

j=1 |sj−tj |‖ξ‖α

e−|s0−t0|�(sgn(s0−t0)ξ)µ(dt)µ(ds).
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On the other hand, it is easy to see that∫ ∫
Rp
+×Rp

+

e
−∑p

j=1 |sj−tj |‖ξ‖α−∑p
j=1(sj+tj )

d�t d�s = (1+ ‖ξ‖α)−p.(5.6)

Therefore,

E[|Ôµ(ξ)|2] = (1+ ‖ξ‖α)−pEχξ (µ).(5.7)

To finish the proof, we note merely that
1
2(1+ ‖ξ‖α)≤ (1+ ‖ξ‖)α ≤ 2α(1+ ‖ξ‖α).(5.8)

(For the upper bound, consider the cases ‖ξ‖ ≤ 1 and ‖ξ‖> 1 separately.) �

We obtain the following upon integrating the preceding lemma [dξ ]:
LEMMA 5.2. For all µ ∈P (R+),

2−p(2π)dQαp
µ (Rd)≤ E

[‖Ôµ‖2
L2(Rd )

]≤ 2pα(2π)dQαp
µ (Rd),(5.9)

where for any β > 0,

Qβ
µ(dξ)

dξ
:= (2π)−d

Eχξ (µ)

(1+ ‖ξ‖)β .(5.10)

REMARK 5.3. Since χξ is bounded by 1 (Lemma 2.1), for any probability
measure µ on R+, Eχξ (µ)≤ 1. Thus, for all β ∈ (0, d),

Qβ
µ(Rd) <∞ ⇐⇒

∫
Rd

Eχξ (µ)‖ξ‖−β dξ <+∞.(5.11)

Next, we develop a variant of Lemma 5.2. In order to describe it, it is convenient
to put all subsequent Lévy processes on the canonical probability space defined by
all cadlag paths from R+ into Rd ; see Khoshnevisan, Xiao and Zhong [(2003a),
pages 1107 and 1108] for the details of this more-or-less standard construction.
Then, we can define the measure Px , for each x ∈ Rd , as the measure that starts
the process A at A(0) = x. Formally speaking, we have Px := P ◦ (A(0)+ x)−1.
Since λd denotes the Lebesgue measure on the Borel subsets of Rd , we can then
define

Pλd
(W) :=

∫
Rd

Px(W)dx and Eλd
[Y ] :=

∫
Y dPλd

,(5.12)

for all measurable subsets W of the path space and all positive random
variables Y . An important fact about additive Lévy processes is that they satisfy
the Markov property with respect to the σ -finite measure Pλd

. See Khoshnevisan
and Xiao [(2002), Proposition 5.8] or Khoshnevisan, Xiao and Zhong [(2003a),
Proposition 3.2] for details.

We are ready to present the Pλd
-analogue of Lemma 5.2.
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LEMMA 5.4. For all f : Rd → R+ in L1(Rd) ∩ L2(Rd), and for all
µ ∈P (R+),

2−p‖f̂ ‖2
L2(Qαp

µ )
≤ Eλd

[|Oµ(f )|2] ≤ 2pα‖f̂ ‖2
L2(Qαp

µ )
,(5.13)

where the measure Qβ
µ is defined in (5.10).

PROOF. In the notation of the present note, if we further assume that
f̂ ∈ L1(Rd), then Lemma 3.5 of Khoshnevisan, Xiao and Zhong (2003a) and
symmetry together show that

Eλd
[|Oµ(f )|2] = (2π)−d

∫
Rd
|f̂ (ξ)|2E[|Ôµ(ξ)|2]dξ.(5.14)

The lemma—under the extra assumption that f̂ ∈ L1(Rd)—follows from this,
used in conjunction with (5.7) and (5.8). To drop the integrability condition on f̂ ,
note a mollification argument reveals that all that is needed is f̂ ∈L2(Rd); but by
the Plancherel theorem, this is equivalent to f ∈L2(Rd). �

We are ready to dispense with the first part of the proof of Theorem 2.2.

PROOF OF THEOREM 2.2 (First half ). Choose α ∈ (0,2] and an integer p ≥ 1
such that

αp = d − β.(5.15)

Then we introduce an independent p-parameter additive α-stable process �X :=
{ �X(t)}t∈Rp

+ by

�X(t) :=X1(t1)+ · · · +Xp(tp) ∀ t ∈Rp
+.(5.16)

This also defines a (1 + p)-parameter additive Lévy process A := {A(t)}
t∈R1+p

+
defined by (5.2).

Now suppose there exists a µ ∈P (G) such that
∫

Rd Eχξ (µ)‖ξ‖β−d dξ <+∞.
Then, Lemma 5.2 and Plancherel’s theorem, used in conjunction, tell us that there
exists a (measurable) process {�µ(x)}x∈Rd such that:

1. E[‖�µ‖2
L2(Rd )

] = (2π)−dE[‖Ôµ‖2
L2(Rd )

] ≤ 2pαQαp
µ (Rd) < +∞; see also Re-

mark 5.3.
2. With probability one, for all bounded measurable functions f : Rd → R,

Oµ(f )= ∫
Rd f (x)�µ(x) dx.

Apply part 2 with f (x) := 1A(G×Rp
+)(x), and apply the Cauchy–Schwarz inequal-

ity to deduce that almost surely,

1= Oµ

(
1A(G×Rp

+)

)= ∫
Rd

√
1A(G×Rp

+)(x) �µ(x) dx

(5.17)
≤

√
λd

(
A(G×Rp

+)
)‖�µ‖L2(Rd ).



858 D. KHOSHNEVISAN AND Y. XIAO

By the Cauchy–Schwarz inequality and part 1,

E
[
λd

(
A(G×Rp

+)
)]≥ 1

E[‖�µ‖2
L2(Rd )

] ≥
1

2pαQαp
µ (Rd)

.(5.18)

Since µ ∈P (G) can be chosen arbitrarily as long as Qαp
µ (Rd) <+∞, and because

of Remark 5.3 and (5.15), we have demonstrated that

inf
µ∈P (G)

∫
Rd

Eχξ (µ)‖ξ‖β−d dξ <+∞ �⇒ E
[
λd

(
A(G×Rp

+)
)]

> 0.(5.19)

According to Theorem 4.4, and thanks to (5.15), for any Borel set F ⊂Rd ,

E
[
λd

(
F ⊕ �X(Rp

+)
)]

> 0 ⇐⇒ Cβ(F ) > 0.(5.20)

Since X is independent of �X, we can apply this, conditionally, with F := X(G),
and then integrate [dP], to deduce that

E
[
λd

(
A(G×Rp

+)
)]

> 0 ⇐⇒ E[Cβ(X(G))]> 0.(5.21)

This and (5.19) together imply that

inf
µ∈P (G)

∫
Rd

Eχξ (µ)‖ξ‖β−d dξ <+∞ �⇒ E[Cβ(X(G))]> 0.(5.22)

This proves fully half of Theorem 2.2. �

PROOF OF THEOREM 2.2 (Second half ). We now prove the more difficult
second half of Theorem 2.2; that is,

E[Cβ(X(G))]> 0 �⇒ inf
µ∈P (G)

∫
Rd

Eχξ (µ)‖ξ‖β−d dξ <+∞.(5.23)

In so doing, we can assume without loss of generality that the set G is compact.
Indeed, consider both sides, in (5.23), of “⇒” as set functions in G. Both of
the said functions are Choquet capacities. Hence, Choquet’s theorem reduces our
analysis to the study of compact sets G.

Henceforth, {ϕε}ε>0 denotes the Gaussian approximation to the identity,

ϕε(x) := (2πε2)−d/2 exp
(
−‖x‖

2

2ε2

)
∀x ∈Rd, ε > 0.(5.24)

As we did earlier, we choose α ∈ (0,2] and an integer p ≥ 1 such that αp = d−β .
We bring in p independent α-stable Lévy processes X1, . . . ,Xp , and construct the
corresponding additive Lévy process A :=X⊕ �X defined by (5.2).

Let us start with setting some preliminary groundwork. To begin with, we define
a (1+ p)-parameter filtration F := {F(t)}

t∈R1+p
+

by defining F(t) to be the sigma-

algebra defined by {A(r)}r≺t. Without loss of generality, we can assume that each
F(t) has been completed with respect to all measures Px (x ∈Rd ). We remark that
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F is, indeed, a filtration in the partial order ≺. By this we mean that whenever
s≺ t, then F(s)⊆ F(t); a fact that can be readily checked.

Next we define, for any µ ∈ P (G), the (1 + p)-parameter process
{Mµϕε(t)}t∈R1+p

+
as follows:

Mµϕε(t) := Eλd
[Oµ(ϕε)|F(t)] ∀ t ∈R1+p

+ ,(5.25)

where Oµ(ϕε) is defined by (5.3). It should be recognized that Mµϕε is a (1+p)-
parameter martingale in the partial order ≺ and in the infinite-measure space
(�,F,Pλd

). By a martingale here, we mean that whenever s ≺ t, then Pλd
-almost

surely,

Eλd
[Mµϕε(t)|F(s)] =Mµϕε(s).(5.26)

By specializing Lemma 4.1 of Khoshnevisan, Xiao and Zhong (2003a) to the
present setting, we obtain the following:

Eλd
[Mµϕε(t)] = 1 ∀ t ∈R1+p

+ ,

sup
t∈R1+p

+
Eλd

[(
Mµϕε(t)

)2] ≤ (2π)−d
∫

Rd
|ϕ̂ε(ξ)|2E[|Ôµ(ξ)|2]dξ(5.27)

≤ 2pα‖ϕ̂ε‖2
L2(Qαp

µ )
;

see Lemma 5.1 for the last line.
Next, we work toward a bound in the reverse direction. For this, we note that

for any s ∈R1+p
+ ,

Mµϕε(s)≥ Eλd

[∫
t�s

ϕε(A(t))µ(dt)
∣∣∣F(s)

]
=

∫
t�s

Pt−sϕε(A(s))µ(dt),(5.28)

where

Ptg(x) := E
[
g
(
x +A(t)

)] ∀ t ∈R1+p
+ , x ∈Rd,(5.29)

and the last equality in (5.28) follows from the Markov property of the additive
Lévy process A under Pλd

. See Khoshnevisan and Xiao [(2002), Proposition 5.8]
or Khoshnevisan, Xiao and Zhong [(2003a), Proposition 3.2].

Now suppose that G ⊂ (0,∞) is compact, and E[Cβ(X(G))] > 0. By (5.21),
this is equivalent to assuming

E
[
λd

(
A(G×Rp

+)
)]

> 0.(5.30)

By (5.28), Pλd
-almost surely,

Mµϕε(s) ≥
∫

t�s
Pt−sϕε(A(s))µ(dt) · 1{‖A(s)‖≤δ}

(5.31)
=

∫
t�s

E
[
ϕε

(
A(s)+A′(t− s)

)|A(s)
]
µ(dt) · 1{‖A(s)‖≤δ},



860 D. KHOSHNEVISAN AND Y. XIAO

where {A′(t)}
t∈R1+p

+
is an independent copy of {A(t)}

t∈R1+p
+

. In particular,

Pλd
-almost surely,

Mµϕε(s)≥
∫

t�s
inf

z∈Rd : ‖z‖≤δ
E

[
ϕε

(
z+A′(t− s)

)]
µ(dt) · 1{‖A(s)‖≤δ}.(5.32)

On the other hand, one can directly check that∫
t�s

inf
z∈Rd : ‖z‖≤δ

E
[
ϕε

(
z+A′(t− s)

)]
µ(dt)

(5.33)
=

∫ ∞
s0

∫ ∞
s1

· · ·
∫ ∞
sp

inf
z∈Rd : ‖z‖≤δ

Pt−sϕε(z)e
−∑p

j=1 tj µ(dt0) d�t .

According to Lemma 3.1 of Khoshnevisan, Xiao and Zhong (2003a),

Pt−sϕε(0)

(5.34)
= (2π)−d

∫
Rd

e
−(t0−s0)�(ξ)−∑p

j=1(tj−sj )‖ξ‖α−(1/2)ε2‖ξ‖2
dξ.

Because the left-hand side is strictly positive, so is the right-hand side. In addition,∫ ∞
s0

∫ ∞
s1

· · ·
∫ ∞
sp

Pt−sϕε(0) e
−∑p

j=1 tj µ(dt0) d�t

= (2π)−d
∫ ∞
s0

∫
Rd

e−(1/2)ε2‖ξ‖2−(t0−s0)�(ξ)

(5.35)

×
p∏

j=1

∫ ∞
sj

e−(v−sj )‖ξ‖α−v dv dξ µ(dt0)

= (2π)−de
−∑p

j=1 sj

∫ ∞
s0

∫
Rd

e−(1/2)ε2‖ξ‖2−(t0−s0)�(ξ) dξ

(1+ ‖ξ‖α)p
µ(dt0).

We plug this into (5.32) and deduce the following from Fatou’s lemma: Pλd
-almost

surely, for all s ∈Q
1+p
+ ,

Mµϕε(s)≥ 1{‖A(s)‖≤δ}(2π)−d(
1+ o(1)

)
e
−∑p

j=1 sj

(5.36)
×

∫ ∞
s0

∫
Rd

e−(1/2)ε2‖ξ‖2−(t0−s0)�(ξ) dξ

(1+ ‖ξ‖α)p
µ(dt0),

where o(1) is a term that goes to 0, uniformly in �s and µ (but not ε), as δ → 0.
(This follows merely from the Lipschitz continuity of ϕε .)

For any δ > 0, define Gδ to be the closed δ-enlargement of G, and note that
Gδ is compact in R+. Choose some point � /∈ R+, and let T δ,l denote any
measurable (Q+ ∩Gδ)∪�-valued function on � such that T δ,l �=� if and only if
there exists some �t ∈ [0, l]p such that ‖A(T δ,l, �t )‖ ≤ δ. This can always be done
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since the Xj ’s have cadlag paths, and since B(0, δ) := {x ∈ Rd :‖x‖ ≤ δ} has an
open interior. It may help to think, informally, that T δ,l is any measurably selected
point in Gδ such that, for some �t ∈ [0, l]p , ‖A(T δ,l, �t )‖ ≤ δ, as long as such a point
exists. If such a point does not exist, then the value of T δ,l is set to �. [Warning:
This is very close to, but not the same as, the construction of Khoshnevisan, Xiao
and Zhong (2003a).] Thus, (5.36) implies that Pλd

-almost surely,

sup
s∈R1+p

+
Mµϕε(s)≥ 1{T δ,l �=�}

(2π)−d(1+ o(1))

epl

(5.37)

×
∫ ∞
T δ,l

∫
Rd

e−(1/2)ε2‖ξ‖2−(t0−T δ,l)�(ξ)

(1+ ‖ξ‖α)p
dξ µ(dt0).

Finally, we choose µ ∈ P(Gδ) judiciously. Fix l > 0, and define

µδ,k(•) := Pλd
{T δ,l ∈ •, T δ,l �=�,‖A(0)‖ ≤ k}
Pλd

{T δ,l �=�,‖A(0)‖ ≤ k} .(5.38)

Then, thanks to (5.30), for all sufficiently large k, µδ,k∈P (Gδ); see Khoshnevisan,
Xiao and Zhong [(2003a), (4.3)] and its subsequent display. Furthermore,
Pλd

-almost surely,

sup
s∈R1+p

+
Mµδ,kϕε(s)≥ 1{T δ,l �=�,‖A(0)‖≤k}

(2π)−d(1+ o(1))

epl

(5.39)

×
∫ ∞
T δ,l

∫
Rd

e−(1/2)ε2‖ξ‖2−(t0−T δ,l)�(ξ)

(1+ ‖ξ‖α)p
dξ µδ,k(dt0).

We can square both sides of this inequality, and then take expectations to deduce
that

Eλd

[(
sup

s∈R1+p
+

Mµδ,kϕε(s)
)2]

≥ Pλd
{T δ,l �=�,‖A(0)‖ ≤ k} × (2π)−2d(

1+ o(1)
)
e−2pl

× Eλd

[(∫ ∞
T δ,l

∫
Rd
· · · dξ µδ,k(dt0)

)2∣∣∣T δ,l �=�,‖A(0)‖ ≤ k

]
(5.40)

= Pλd
{T δ,l �=�,‖A(0)‖ ≤ k} × (2π)−2d(

1+ o(1)
)
e−2pl

×
∫ ∞

0

(∫ ∞
y

∫
Rd

e−(1/2)ε2‖ξ‖2−(x−y)�(ξ)

(1+ ‖ξ‖α)p
dξ µδ,k(dx)

)2

µδ,k(dy).

From the Cauchy–Schwarz inequality, after making an appeal to the fact that in
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the integrand x ≥ y, we can deduce the following:

Eλd

[(
sup

s∈R1+p
+

Mµδ,kϕε(s)
)2]

≥ Pλd
{T δ,l �=�,‖A(0)‖ ≤ k} × (2π)−2d(

1+ o(1)
)
e−2pl

(5.41)

×
(∫ ∞

0

∫ ∞
y

∫
Rd

e−(1/2)ε2‖ξ‖2−|x−y|�(sgn(x−y)ξ)

× [(1+ ‖ξ‖α)p]−1 dξ µδ,k(dx)µδ,k(dy)

)2

.

This time, o(1) is a term that goes to 0, uniformly over all k ≥ 1, as δ → 0.
We intend to show that, in the preceding display, we can replace, at little cost,∫∞
y by

∫∞
0 . In order to do this, we need some preliminary setup. Most significantly,

we need a new partial order on the enlarged parameter space R1+p
+ .

For any s, t ∈R1+p
+ , we write

s� t ⇐⇒ s0 ≥ t0 but for all j = 1, . . . , p, sj ≤ tj .(5.42)

This is an entirely different partial order from ≺, and gives rise to a new (1+ p)-
parameter filtration R := {R(t)}

t∈R1+p
+

, where R(t) is defined to be the sigma-

algebra generated by {A(r)}r� t. Without loss of generality, we can assume that
each R(t) is complete with respect to every Px (x ∈ Rd ). As we did for F, we
remark that R is a filtration in the new partial order � and, under the σ -finite
measure Pλd

, X satisfies the Markov property with respect to R. (The Fraktur
letters F and R are chosen to remind the reader of “forward” and “reverse,” since
they refer to the time-order of the process X.)

Consider the (1 + p)-parameter process Nµk,δϕε := {Nµk,δϕε(t)}t∈R1+p
+

that is

defined by the following:

Nµk,δϕε(t) := Eλd
[Oµk,δ (ϕε)|R(t)].(5.43)

Clearly, this is a martingale in the partial order �.
By using a similar argument as that which led to (5.41), we arrive at the

following (here, it is essential to work with the infinite measure Pλd
instead of P):

Eλd

[(
sup

s∈R1+p
+

Nµδ,kϕε(s)
)2]

≥ Pλd
{T δ,l �=�,‖A(0)‖ ≤ k} × (2π)−2d(

1+ o(1)
)
e−2pl

(5.44)

×
(∫ ∞

0

∫ y

0

∫
Rd

e−(1/2)ε2‖ξ‖2−|x−y|�(sgn(x−y)ξ)

× [(1+ ‖ξ‖α)p]−1 dξ µδ,k(dx)µδ,k(dy)

)2

.
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[En route, this shows that the terms inside (· · ·)2 are nonnegative real too.] Thus,
we add (5.41) and (5.44), and use 2(a2+b2)≥ (a+b)2—valid for all real a, b—to
obtain the following:

Eλd

[(
sup

s∈R1+p
+

Mµδ,kϕε(s)
)2]

+ Eλd

[(
sup

s∈R1+p
+

Nµδ,kϕε(s)
)2]

≥ Pλd
{T δ,l �=�,‖A(0)‖ ≤ k} ×

(
1

2(2π)2d
+ o(1)

)
e−2pl

(5.45)

×
(∫ ∞

0

∫ ∞
0

∫
Rd

e−(1/2)ε2‖ξ‖2−|x−y|�(sgn(x−y)ξ)

× [(1+ ‖ξ‖α)p]−1 dξ µδ,k(dx)µδ,k(dy)

)2

.

Now the integrand is absolutely integrable [dξ × dµk,δ × dµk,δ]. Thus, by the
Fubini–Tonelli theorem, we can interchange the order of the integrals, and obtain
the following:

∫ ∞
0

∫ ∞
0

∫
Rd

e−(1/2)ε2‖ξ‖2−|x−y|�(sgn(x−y)ξ)

(1+ ‖ξ‖α)p
dξ µδ,k(dx)µδ,k(dy)

=
∫

Rd

e−(1/2)ε2‖ξ‖2

(1+ ‖ξ‖α)p
Eχξ (µ

δ,k) dξ(5.46)

≥ 2−αp(2π)d
∫

Rd
e−(1/2)ε2‖ξ‖2

Qαp

µk,δ (dξ)≥ 2−αp(2π)d‖ϕ̂ε‖2
L2(Qαp

µk,δ )
.

In the above, the first inequality follows from (5.8) and (5.10), and the second
inequality follows from 0 < ϕ̂ε(ξ)≤ 1.

In other words, after recalling (5.10), we arrive at the following:

Eλd

[(
sup

s∈R1+p
+

Mµδ,kϕε(s)
)2]

+ Eλd

[(
sup

s∈R1+p
+

Nµδ,kϕε(s)
)2]

(5.47)

≥ Pλd
{T δ,l �=�,‖A(0)‖ ≤ k} × 1+ o(1)

e2pl21+2αp
‖ϕ̂ε‖4

L2(Qαp

µδ,k )
.

We recall that o(1) is a term that tends to zero, as δ → 0, uniformly in all of the
variables except ε.

It turns out that, under the infinite measure Pλd
, both filtrations F and R are

commuting in the sense of Khoshnevisan [(2002), page 233]; see Khoshnevisan,
Xiao and Zhong [(2003a), proof of Lemma 4.2, page 1111] for a discussion of
a much more general property. Thus, by the Cairoli inequality [Khoshnevisan
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(2002), Theorem 2.3.2, Chapter 7],

Eλd

[(
sup

s∈R1+p
+

Mµδ,kϕε(s)
)2]

≤ 4p+1 sup
s∈R1+p

+
Eλd

[M2
µδ,k (s)]

= 4p+1 sup
s∈R1+p

+
Eλd

[(
Oµδ,k (ϕε)

)2]
(5.48)

≤ 4p+12pα‖ϕ̂ε‖2
L2(Qαp

µδ,k )

[cf. (5.25) and (5.27); the fact that Pλd
is not a probability measure does not cause

any difficulties here]. Moreover, the preceding remains valid if we replace Mµk,δ

by Nµk,δ everywhere. Thus, solving the preceding two displays leads us to the
following:

Pλd
{T δ,l �=�,‖A(0)‖ ≤ k} ≤ e2pl23(1+αp)+2p(

1+ o(1)
)‖ϕ̂ε‖2

L2(Qαp

µδ,k )
.(5.49)

Now we let k →∞ and appeal to Fatou’s lemma to see that there must exist
µδ ∈P (Gδ) such that

Pλd
{T δ,l �=�} ≤ e2pl 23(1+αp)+2p(

1+ o(1)
)‖ϕ̂ε‖−2

L2(
Qαp

µδ

).(5.50)

In order to deduce the above, note that all of the probability measures {µk,δ}k≥1
live on the same compact set Gδ . Therefore, we can extract a subsequence that
converges weakly to µδ ∈ P (Gδ). To finish, note that |ϕ̂ε(ξ)|2 = exp(−ε2‖ξ‖2)

is a bounded continuous function of ξ and it is in L1(Rd). Hence, by the Fubini–
Tonelli theorem, we have

‖ϕ̂ε‖2
L2(Qαp

µδ,k )

(5.51)

=
∫ ∫ [∫

Rd
e−ε2‖ξ‖2 e−|s−t |�(sgn(s−t)ξ)

(1+ ‖ξ‖)αp
dξ

]
µδ,k(ds)µδ,k(dt),

and the kernel in the brackets is a bounded continuous function of (s, t). So we
obtain the asserted bound in (5.50).

Next, we let δ ↓ 0 in (5.50), and appeal to Fatou’s lemma and compactness once
more in order to obtain the following: There exists µ ∈P (G) such that

Pλd
{0 ∈A(G× [0, l]p)} ≤ cp,l,α‖ϕ̂ε‖−2

L2(Qαp
µ )

,(5.52)

where cp,l,α := e2pl 23(1+αp)+2p . We can now let ε ↓ 0, and appeal to the
monotone convergence theorem, to see that

E
[
λd

(
A(G× [0, l]p)

)]≤ Pλd
{0 ∈A(G× [0, l]p)}

(5.53)
≤ cp,l,α lim

ε→0
‖ϕ̂ε‖−2

L2(Qαp
µ )

= cp,l,α

Qαp
µ (Rd)

.
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In accordance with Remark 5.3, for this choice of µ ∈ P (G), we have the
following:

E
[
λd

(
A(G× [0, l]p)

)]
> 0 ⇐⇒

∫
Rd

Eχξ (µ)‖ξ‖−αp dξ <+∞.(5.54)

At this stage, we can apply Theorem 4.4 [see also (5.20)], conditionally, with
F :=X(G) to deduce that (5.30) holds if and only if Cd−αp(F ) > 0 with positive
probability. Hence, we have proven (5.23), and this completes our proof. �

REMARK 5.5. Our proof of Theorem 2.2 is a self-contained argument for
deriving the following:

E[Cβ(X(G))]> 0 ⇐⇒ inf
µ∈P (G)

∫
Rd

Eχξ (µ)‖ξ‖β−d dξ <+∞.(5.55)

We can then use Proposition 2.8 to conclude that the preceding is also equivalent
to the condition that X(G) almost surely has positive β-dimensional Bessel–Riesz
capacity.

In this remark, we describe a proof that (5.55) implies Proposition 2.8. To do
so, we need only to prove that

inf
µ∈P (G)

∫
Rd

Eχξ (µ)‖ξ‖β−d dξ <+∞ �⇒ Cβ(X(G)) > 0 a.s.(5.56)

That is, we assume that there exists µ ∈P (G) such that
∫

Rd Eχξ (µ)‖ξ‖β−d dξ <

+∞, and prove that, with probability one, Cβ(X(G)) > 0.
For such a probability measure µ ∈ P (G), we define the occupation mea-

sure �µ of X by �µ(A) := ∫
1A(X(s))µ(ds), for all Borel sets A ⊂ Rd .

Informally, this is exactly the same as Oµ(1A), where p = 0; see (5.3). Note that
�µ ∈ P (X(G)) a.s. and thanks to Plancherel’s theorem in the form of (7.22) be-
low, there exists a constant c′d,β such that Eβ(�µ)= c′d,β

∫
Rd |�̂µ(ξ)|2‖ξ‖β−d dξ.

On the other hand, by (5.7) (with p := 0), E[|�̂µ(ξ)|2] = Eχξ (µ). Thus,

E[Eβ(�µ)] = c′d,β

∫
Rd

Eχξ (µ)‖ξ‖β−d dξ,(5.57)

which is finite. Thus, Eβ(�µ) is finite almost surely, whence (5.56).

6. Kahane’s problem for self-intersections. We now return to Kahane’s
problems, mentioned in the Introduction, regarding when X(F) ∩X(G) �=∅ for
disjoint sets F and G in R+. The following is the most general answer that we
have been able to find.

THEOREM 6.1. If X is a Lévy process in Rd with Lévy exponent � , then given
any two disjoint Borel sets F,G ⊂ R+, E[λd(X(F )� X(G))] > 0 if and only if



866 D. KHOSHNEVISAN AND Y. XIAO

there exists µ ∈P (F ×G) such that∫
Rd

Eχξ⊗χ−ξ (µ)dξ

(6.1)
:=

∫
Rd

∫ ∫
χξ (s1 − t1)χ−ξ (s2 − t2)µ(ds)µ(dt) dξ <+∞.

If, in addition, the distribution of X(t) is equivalent to λd for all t > 0, then the
above condition (6.1) is also equivalent to P{X(F)∩X(G) �=∅}> 0.

In the symmetric case, χξ is real and positive. So by the Fubini–Tonelli theorem,
we have the following:

COROLLARY 6.2 (Kahane’s problem). Let X be a symmetric Lévy process
in Rd with Lévy exponent � . If the distribution of X(t) is equivalent to λd for all
t > 0, then P{X(F)∩X(G) �=∅}> 0 if and only if Cf (F ×G) > 0, where for all
x ∈R2,

f (x) :=
∫

Rd
χξ ⊗ χξ (x) dξ :=

∫
Rd

e−(|x1|+|x2|)�(ξ) dξ.(6.2)

EXAMPLE 6.3. If X is a symmetric α-stable Lévy process in Rd , then
�(ξ)≥ 0 and c‖ξ‖α ≤ �(ξ) ≤ C‖ξ‖α for some constants 0 < c ≤ C, and
we readily obtain the following consequence which solves the problem, due to
Kahane, mentioned in the Introduction:

P{X(F)∩X(G) �=∅}> 0 ⇐⇒ Cd/α(F ×G) > 0.(6.3)

This was previously known only when α = 2; that is, when X is a Brownian motion
[Khoshnevisan (1999), Theorem 8.2].

Now we begin proving our way toward Theorem 6.1. The first step is a
simplification that is well known, as well as interesting on its own. Namely, in
order to prove Theorem 6.1, it suffices to prove the following:

THEOREM 6.4. Suppose X1 and X2 are independent Lévy process in Rd with
Lévy exponents �1 and �2. Then, given any two Borel sets F1 and F2, both in R+,
E[λd(X1(F1)�X2(F2))]> 0 if and only if there exists µ ∈P (F1 ×F2) such that∫

Rd
E

χ
�1
ξ ⊗χ

�2−ξ

(µ)dξ <+∞.(6.4)

If, in addition, the distribution of X1�X2(�t ) is equivalent to λd for all �t ∈ (0,∞)2,
then the above condition is also equivalent to the condition that P{X1(F1) ∩
X2(F2) �=∅}> 0.
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PROOF. Consider the two-parameter additive Lévy process �X := X1 � X2.
The Lévy exponent of the process �X is the function ��(ξ) := (�1(ξ),�2(−ξ)); of
course, �2(−ξ) is the complex conjugate of �2(ξ). The necessary and sufficient
condition for the positivity of E[λd(X1(F1)�X2(F2))] follows from Theorem 4.8.
To finish, we can apply Lemma 4.1 with the choices, F := {0} and G := F1 × F2.

�

We are finally ready to prove Theorem 6.1.

PROOF OF THEOREM 6.1. It suffices to prove this theorem for F and G

compact subsets of R+.
We can simplify the problem further by assuming, without loss of generality,

that there exist 0 < a < b < c < d such that F ⊂ [a, b] and G ⊂ [c, d]. Choose
any nonrandom number τ ∈ (b, c), and note that the translation invariance of λd

implies that λd(X(F )�X(G)) > 0 if and only if λd(X1(F )�X2(G� τ)) > 0,
where X1(t) :=X(t) (0≤ t ≤ τ) and X2(t) :=X(t + τ)−X(τ) (t ≥ 0). Clearly,
X1 and X2 are independent Lévy processes both when exponent � is verified
automatically. Thus, by Theorem 6.4,

E
[
λd

(
X(F)�X(G)

)]
> 0

(6.5) ⇐⇒ inf
µ∈P (F×G�τ)

∫
Rd

Eχξ⊗χ−ξ (µ)dξ <+∞.

By the explicit form of the latter energies [cf. (6.1)], the above condition is
equivalent to the existence of ν ∈P (F ×G) such that

∫
Rd Eχξ⊗χ−ξ (ν) dξ is finite.

This proves the first half of the theorem.
Now suppose, in addition, that the distribution of X(t) is equivalent to λd for

all t > 0. Consider the two-parameter additive Lévy process �X :=X1�X2, where
X1 and X2 are the same processes we used earlier in this proof, and note that
the distribution of �X(�t ) is equivalent to λd for all �t := (t1, t2) ∈ (0,∞)2. Hence,
Lemma 4.1 implies that

P{X1(F )∩X2(G� τ) �=∅}> 0

(6.6) ⇐⇒ inf
µ∈P (F×G)

∫
Rd

Eχξ⊗χ−ξ (µ)dξ <+∞.

Equivalently,

P{X1(F )∩X2(G� τ) �=∅|X(τ )}> 0 with positive probability

(6.7) ⇐⇒ inf
µ∈P (F×G)

∫
Rd

Eχξ⊗χ−ξ (µ)dξ <+∞,

where X(τ ) denotes the sigma-algebra generated by {X(u); u ∈ [0, τ ]}. Now,
X2 is independent of X(τ ) and X1. So we can apply Lemma 4.1 [with p := 1,
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F replaced with Z ⊕ X1(F ), and �X replaced with X2] to deduce that for any
a.s.-finite X(τ )-measurable random variable Z,

P{Z⊕X1(F )∩X2(G� τ) �=∅|X(τ )}> 0 with positive probability

(6.8) ⇐⇒ inf
µ∈P (F×G)

∫
Rd

Eχξ⊗χ−ξ (µ)dξ <+∞.

Choose Z := −X(τ) and unscramble the above to conclude the proof. �

Kahane (1983) has also studied the existence of self-intersections of a
symmetric stable Lévy process X = {X(t)} when t is restricted to the disjoint
compact subsets E1, E2, . . . ,Ek of R+ (k ≥ 2). The proof of Theorem 6.1 can be
modified to give a necessary and sufficient condition for P{X(E1)∩· · ·∩X(Ek) �=
∅} > 0. For simplicity, we content ourselves by deriving the following result
from Theorem 4.2 under the extra assumption that X is symmetric and absolutely
continuous. We point out that when k = 2, the conditions of Theorem 6.5 and
Corollary 6.2 are not always comparable.

THEOREM 6.5. Let X be a symmetric Lévy process in Rd with Lévy
exponent � . Suppose that, for every fixed t > 0, e−t�(·) ∈ L1(Rd). Then, for all
disjoint compact sets E1, . . . ,Ek ⊂ R+, P{X(E1) ∩ · · · ∩X(Ek) �=∅}> 0 if and
only if Cf (E1 ×E2 × · · · ×Ek) > 0. Here,

f (x) := (2π)−d(k−1)
∫

Rd(k−1)
exp

(
−

k∑
j=1

|xj |�(ξj−1 − ξj )

)
dξ

(6.9)
∀x ∈Rk.

We have written ξ ∈ Rd(k−1) as ξ := ξ1 ⊗ · · · ⊗ ξk−1, where ξj ∈ Rd . In addition,
ξ0 := ξk := 0.

PROOF. By the proof of Theorem 6.1, it suffices to consider k independent
symmetric Lévy processes X1, . . . ,Xk in Rd with exponent � . We define a
multiparameter process �X := { �X(t)}t∈Rk+ , with values in R(k−1)d , by

�X(t)= (
X2(t2)−X1(t1), . . . ,Xk(tk)−Xk−1(tk−1)

)
.(6.10)

Then �X can be expressed as an additive Lévy process in R(k−1)d with Lévy
exponent (�1, . . . ,�k), where for every j = 1, . . . , k, �j is defined by

�j(ξ)=�(ξj−1 − ξj ) ∀ ξ = (ξ1, . . . , ξk−1) ∈R(k−1)d .(6.11)

It is easy to verify that, under our assumptions, �X is a symmetric and absolutely
continuous additive Lévy process whose gauge function is given by (6.9). Because
P{⋂k

j=1 Xj(Ej ) �= ∅}> 0 if and only if P{ �X−1(0) ∩ (E1 × · · · × Ek) �= ∅} > 0,

Theorem 6.5 follows from Theorem 4.2 and Remark 4.3. Related information can
be found in Khoshnevisan and Xiao [(2002), pages 93 and 94]. �



LÉVY PROCESSES AND CAPACITY 869

7. Examples of capacity and dimension computations.

7.1. Isotropic processes: image. Throughout this section we consider an
isotropic Lévy process X := {X(t)}t≥0 with an exponent � that is regularly
varying at infinity with index α ∈ (0,2]. Thus, we may write

�(ξ)= ‖ξ‖ακ(‖ξ‖) ∀ ξ ∈Rd\{0}.(7.1)

Here, κ : (0,∞) → R+ is a function that is slowly varying at infinity. We now
derive the following application of Theorem 2.2 for a broad class of such
processes.

THEOREM 7.1. Suppose κ : (0,∞) → R+ is continuous and slowly varying
at infinity. Then, for any nonrandom Borel set G⊂R+, and all β ∈ (0, d),

Cβ(X(G))= 0 a.s. ⇐⇒ Cgκ (G)= 0,(7.2)

where

gκ(x) := |x|−β/α [κ#(|x|−1/α)]β.(7.3)

Here, κ# is the de Bruijin conjugate of κ .

REMARK 7.2. It is known that κ# is a slowly varying function [Bingham,
Goldie and Teugels (1987), Theorem 1.5.13]. In many cases, the function κ# can be
estimated and/or computed with great accuracy; see Bingham, Goldie and Teugels
[(1987), Section 5.2 and Appendix 5].

REMARK 7.3. If, in Theorem 7.1, we further assume that the function κ(et )

is regularly varying at infinity, then we can choose gκ as follows:

gκ(x) := |x|−β/α

[
κ

(
1

|x|
)]−β

.(7.4)

The proof of this will be given in Remark 7.6 below.

Because Cf is determined by the behavior of f at the origin, Theorem 7.1
follows from Corollary 2.4 at once if we could prove that

0 < lim inf|x|→0

fd−β(x)

gκ(x)
≤ lim sup

|x|→0

fd−β(x)

gκ(x)
<+∞.(7.5)

Recall (2.7), integrate by parts, and change variables to see that

|x|β/αfd−β(x)= vd

∫ ∞
0

e−rακ(r|x|−1/α)rβ−1 dr,(7.6)

where vd := λd−1(S
d−1). Our next lemma will be used to describe the asymptotic

behavior of fd−β(x) for x near zero. We adopt the following notation: Given two
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nonnegative functions h and g, and x0 ∈ [0,∞], we write h(x) � g(x) (x → x0)
to mean that there exists a neighborhood N of x0 such that uniformly for x ∈ N ,
the ratio of h(x) to g(x) is bounded away from zero and infinity. (If x0 = +∞,
neighborhood holds in the sense of the one-point compactification of R+. If no
range of x is specified, then the inequality holds for all x.)

LEMMA 7.4. Under the conditions of Theorem 7.1, for any β > 0,∫ ∞
0

e−rακ(nr)rβ−1 dr � εβ
n (n→∞),(7.7)

where εn is any solution to εα
nκ(nεn)= 1.

PROOF. Let us begin by proving the existence of {εn}n≥1. It follows from
(7.1) that, for every fixed integer n ≥ 1, limx→0 xακ(nx) = 0 [since �(0) = 0]
and limx→∞ xακ(nx) =∞ (since κ is slowly varying at infinity). The assumed
continuity of κ in (0,∞) does the rest.

Next we note that, for any integer n≥ 1,

(nεn)
ακ(nεn)= nα.(7.8)

This implies that limn→∞ nεn =+∞.
Now we estimate the integral in (7.7). It is easier to make a change of variables

(s := r/εn) and deduce the following:∫ ∞
0

e−rακ(nr)rβ−1 dr = εβ
n

∫ ∞
0

e−εα
n κ(nεns)sα

sβ−1 ds := εβ
nTn.(7.9)

Our goal is to show that Tn � 1 (n→∞). Note that if κ(x) � 1 (x →∞), then
εn � 1 and so Tn � 1 (n→∞).

In the general case, it is not a surprise that this is done by analyzing the integral
over different regions; this is what we do next. We will need to make use of the
representation theorem and the uniform convergence theorem for slowly varying
functions; see Bingham, Goldie and Teugels (1987).

Thanks to (7.8), we have∫ ∞
1

e−εα
n κ(nεns)sα

sβ−1 ds

=
∫ ∞

1
exp

(
−εα

nκ(nεn)s
α κ(nεns)

κ(nεn)

)
sβ−1 ds

(7.10)

=
∫ ∞

1
exp

(
−sα κ(nεns)

κ(nεn)

)
sβ−1 ds

≤
∫ ∞

1
exp(−sα−δ)sβ−1 ds <∞,
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where 0 < δ < α is a constant, and we have used the representation theorem for κ

in order to derive that

κ(nεns)

κ(nεn)
≥ s−δ for all n large enough.(7.11)

On the other hand, since κ is nonnegative, we have∫ 1

0
e−εα

n κ(nεns)sα

sβ−1 ds ≤
∫ 1

0
sβ−1 ds = 1

β
.(7.12)

Finally, it follows from (7.8) and the uniform convergence theorem for κ that∫ 2

1
e−εα

n κ(nεns)sα

sβ−1 ds =
∫ 2

1
exp

(
−sα κ(nεns)

κ(nεn)

)
sβ−1 ds

(7.13)

→
∫ 2

1
exp(−sα)sβ−1 ds as n→∞.

Combining (7.10), (7.12) and (7.13), we see that Tn � 1 (n →∞), as asserted.
�

LEMMA 7.5. Under the conditions of Theorem 7.1, (7.5) holds.

PROOF. Let f (x) := xακ(x) (x > 0). Because f is regularly varying at
infinity, it has an asymptotic inverse function f← which is monotone increasing
and regularly varying with index 1/α; see Bingham, Goldie and Teugels [(1987),
page 28]. Furthermore, it follows from Proposition 1.5.15 of Bingham, Goldie and
Teugels (1987) that f← can be expressed as

f←(y)∼ y1/ακ#(y1/α) as y →∞,(7.14)

where κ# is the de Bruijin conjugate of κ .
Now we apply Lemma 7.4 with n := |x|−1/α , and recall (7.6), to deduce that

|x|β/αfd−β(x) � ε
β
n (|x| → 0). For all n ≥ 1, since εα

nκ(nεn) = 1, we have
f (nεn) = nα . Recall that nεn →∞ as n →∞, so our remarks on f← prove
that εn ∼ n−1f←(nα) ∼ κ#(n) (n → ∞). Whence we have |x|β/αfd−β(x) �
[κ#(|x|−1/α)]β (|x| → 0). This completes the proof of Lemma 7.5. �

REMARK 7.6. In order to prove Remark 7.3, we will use the following
connection between κ and its de Brujin conjugate κ#:

κ#(x)∼ [
κ
(
xκ#(x)

)]−1
(x →∞);(7.15)

see Bingham, Goldie and Teugels [(1987), Theorem 1.5.13]. Now we assume,
in addition, that κ(et ) = tγ �(t) for t > 0, where γ is a constant and �(·) is
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slowly varying at infinity. Then we can write κ(x)= (lnx)γ �(lnx) for all x > 1.
Consequently,

κ
(
xκ#(x)

)= κ(x)

[
1+ lnκ#(x)

lnx

]γ �(lnx + lnκ#(x))

�(lnx)
.(7.16)

Since κ# is slowly varying at infinity, we have lnκ#(x)= o(lnx) as x →∞. This,
and the representation theorem for �(·), together imply that �(lnx + lnκ#(x)) ∼
�(lnx) as x →∞. Hence, it follows from (7.15) that

κ#(x)� 1

κ(x)
(x →∞).(7.17)

Using again the assumption that κ(et ) is regularly varying at infinity, we deduce
that Theorem 7.1 holds for the function gκ defined by (7.4).

7.2. Dimension bounds: image. For our next example, we consider the case
where X is an isotropic Lévy process in Rd and satisfies the following for two
fixed constants δ, η ∈ (0,2]:

‖ξ‖δ+o(1) ≤�(ξ)≤ ‖ξ‖η+o(1) (‖ξ‖→∞).(7.18)

A change of variables reveals that, for any β ∈ (0, d),

β

η
≤ lim inf

r↓1

logfd−β(r)

log(1/r)
≤ lim sup

r↓0

logfd−β(r)

log(1/r)
≤ β

δ
.(7.19)

Solve for the critical β to see that I (G)≥ δ dimG and J (G)≤ η dimG. Thus, in
this case,

δ dimG≤ dimX(G)≤ η dimG a.s.(7.20)

Note that the above includes the isotropic α-stable processes, as well as Lévy
processes with exponents that are regularly varying at infinity. Examples of the
later processes can be found in Marcus (2001). More generally, a large class of
Lévy processes satisfying (7.18) can be constructed by using the subordination
method. Let Y := {Y(t)}t≥0 be an isotropic α-stable Lévy process in Rd and
let τ := {τ(t)}t≥0 be a subordinator with lower and upper indices σ and β ,
respectively. Then the subordinated process X := {X(t)}t≥0 defined by X(t) :=
Y(τ(t)) is a Lévy process satisfying (7.18), with δ = σα and η = βα. For other
results along these lines see Blumenthal and Getoor (1961) and Millar (1971).

7.3. Isotropic processes: preimage. Suppose X is isotropic, satisfies the
absolute continuity condition of Corollary 3.2, and the regular variation condition
(7.18) holds. Then, for any γ ∈ (0,1),

‖ξ‖η(γ−1)+o(1) ≤ Re
(

1

1+�1−γ (ξ)

)
≤ ‖ξ‖δ(γ−1)+o(1) (‖ξ‖→∞).(7.21)
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Now recall that, for any β ∈ (0, d), the inverse Fourier transform of Rd  x �→
‖x‖−β is a constant multiple of ξ �→ ‖ξ‖β−d . Thus, by Plancherel’s theorem, for
any ν ∈P (Rd),

Eβ(ν)= cd,β

∫
Rd
|̂ν(ξ)|2 ‖ξ‖β−d dξ ;(7.22)

see Mattila [(1995), Lemma 12.12] and Kahane [(1985a), page 134]. Thus, thanks
to the Frostman theorem (2.8), we have the following calculation in the present
setting:

η+ dimR− d

η
≤ ‖dimX−1(R)‖L∞(P) ≤ δ+ dimR− d

δ
.(7.23)

When δ = η := α, (3.2) and (3.3) are ready consequences of this.
In fact, one can do more at little extra cost. Instead of isotropy, let us assume

that � satisfies the sector condition: As ‖ξ‖ → ∞, Im�(ξ) = O(Re�(ξ)).
A few tedious, but routine, lines of calculations (see below) show that given any
γ ∈ (0,1), �1−γ also satisfies the sector condition, and so there exists a constant
c > 0 such that, for all ξ ∈Rd ,

c

|1+�(ξ)|1−γ
≤ Re

(
1

1+�1−γ (ξ)

)
≤ 1

|1+�(ξ)|1−γ
.(7.24)

If, in addition, there exist δ, η ∈ [0,2] such that ‖ξ‖δ+o(1) ≤ Re�(ξ) ≤
‖ξ‖η+o(1) (‖ξ‖ → ∞), then (7.23) holds. Another simple consequence of this
example is that (3.4) continues to hold for all strictly α-stable processes. We leave
the details to the interested reader, and conclude this subsection by verifying the
claim that whenever � satisfies the sector condition, then so does �a for any a ∈R
with |a|< 1.

Write �(z) := |�(z)|eiθ(z), where θ(z) ∈ [−π,π]. By the sector condition
on � , there exists c > 0 such that, for all ‖ξ‖ large enough, |Im�(ξ)| ≤ cRe�(ξ).
But

| sin(θ(ξ))| = |Im�(ξ)|
|�(ξ)| ≤ c√

1+ c2
:= sin(η) < 1,(7.25)

where η := sin−1(c/
√

1+ c2 ). This means that for any fixed a ∈ R with |a|< 1,
cos(aθ(ξ))≥ cos(aη) > 0 as soon as ‖ξ‖ is large enough. Therefore, there exists
ε := cos(aη) > 0 such that for any a ∈R with |a|< 1, and all ‖ξ‖ large,

Re�a(ξ)= |�(ξ)|a cos(aθ(ξ))≥ ε|�(ξ)|a = ε|�a(ξ)| ≥ ∣∣Im(
�a(ξ)

)∣∣.(7.26)

This proves that the sector condition holds for �a .
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7.4. Processes with stable components. A (Lévy) process X with stable
components is a d-dimensional process with independent components X1, . . . ,Xp

such that Xj is an αj -stable Lévy process in Rdj , where d = ∑p
j=1 dj . By

relabelling the components, we can and will assume throughout that 2 ≥ α1 ≥
α2 ≥ · · · ≥ αp > 0.

Pruitt and Taylor (1969) have studied the range of X, and proved that, with
probability one,

dimX(R+)=
{

α1, if α1 ≤ d1,

1+ α2(1− α1
−1), if α1 > d1 = 1.

(7.27)

Becker-Kern, Meerschaert and Scheffler (2003) have recently extended (7.27) to a
class of operator-stable Lévy processes in Rd , which allow dependence among the
components X1, . . . ,Xp . Their argument involves making a number of technical
probability estimates, and makes heavy use of the results of Pruitt (1969). As a
result, they impose some restrictions on the transition densities of X.

In the following, we give a different analytic proof of the result (7.27). Since
we do not need probability estimates, our argument works for more general Lévy
processes than those of Pruitt and Taylor (1969). In particular, we expect that
our method will work for the cases that have remained unsolved by Becker-Kern,
Meerschaert and Scheffler (2003).

PROPOSITION 7.7. Let X be a Lévy process in Rd , with d ≥ 2, whose Lévy
exponent � satisfies the following:

Re
(

1

1+�(ξ)

)
� 1∑p

j=1 |ξj |αj
as ‖ξ‖ →∞.(7.28)

Then almost surely,

dimX(R+)=
{

α1, if α1 ≤ d1,

1+ α2(1− α−1
1 ), if α1 > d1.

(7.29)

REMARK 7.8. Condition (7.28) is satisfied by a large class of Lévy processes,
including the Lévy processes with stable components considered by Pruitt and
Taylor (1969), as well as more general operator-stable Lévy processes. Moreover,
one can replace the power functions |ξj |αj by regularly varying functions and the
conclusion still holds. In particular, (7.29) still holds if X is a Lévy process in Rd

whose components involve independent asymmetric Cauchy processes.

PROOF OF PROPOSITION 7.7. For any γ > 0, it follows from (7.28) that the
integral in (4.18) is comparable to

Iγ :=
∫
{ξ∈Rd : ‖ξ‖≥1}

1

1+∑p
j=1 |ξj |αj

dξ

‖ξ‖d−γ
.(7.30)
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Notice that Iγ =∞ for all γ ≥ α1 . Hence, we always have dimX(R+)≤ α1 almost
surely (Corollary 4.7).

Now we derive the corresponding lower bound in the case that α1 ≤ d1. It is
sufficient to work with the two-dimensional Lévy process X = (X1,X2). Hence,
without loss of generality, we will assume that d = 2.

Clearly, if d1 = d = 2, then it follows from (7.30) that Iγ < ∞ for all
0 < γ < α1. Thus, Corollary 4.7 implies dimX(R+) ≥ α1 almost surely, as
desired. So we only need to consider the case when d1 = 1 and α1 ≤ 1. Write

Iγ �
[∫ 1

0

∫ ∞
1

+
∫ ∞

1

∫ 1

0

]
1

1+ ξ
α1
1 + ξ

α2
2

· dξ1 dξ2

ξ
2−γ
1 + ξ

2−γ
2

(7.31) +
∫ ∞

1
dξ1

∫ ∞
1

1

1+ ξ
α1
1 + ξ

α2
2

· dξ2

ξ
2−γ
1 + ξ

2−γ
2

:= I (1)
γ + I (2)

γ .

For any 0 < γ < α1 ≤ 1, I
(1)
γ is finite, and

I (2)
γ ≤

∫ ∞
1

dξ1

1+ ξ
α1
1

·
∫ ∞

1

dξ2

ξ
2−γ
1 + ξ

2−γ
2

(7.32)

≤
∫ ∞

1

1

1+ ξ
α1
1

· dξ1

ξ
1−γ
1

·
∫ ∞

0

dξ2

1+ ξ
2−γ
2

<∞.

Consequently, Iγ < ∞ for all γ < α1 . It follows from Corollary 4.7 that, when
α1 ≤ d1, dimX(R+)≥ α1 almost surely. This proves the first part of (7.29).

Next we prove the second part of (7.29). Since α1 > d1 = 1, we have α2 ≤
1+α2(1−α−1

1
)≤ α1. For any γ > 1+α2(1−α−1

1
), in order to prove that Iγ =∞,

we will make use of the following inequality: If d > 1+ γ and α > 0, then for all
constants a, b ≥ 2 that satisfy b1/αa−1 ≥K−1

1 ,∫ ∞
1

1

b+ xα
· dx

(a2 + x2)(d−γ )/2

= a−(d−1−γ )
∫ ∞
a−1

1

b+ aαxα
· dx

(1+ x2)(d−γ )/2
(7.33)

≥ a−(d−1−γ )
∫ K1b

1/αa−1

a−1

1

b+ aαxα
· dx

(1+ x2)(d−γ )/2

≥K2b
−1 a−(d−1−γ ),

where K1 and K2 are positive and finite constants.
We rewrite the integral in (7.30) in all d coordinates and relabel α1, . . . , αp for

each coordinate in an obvious way (now denoted as α1, . . . , αd ) to derive

Iγ ≥
∫ ∞

1
dξ1 · · ·

∫ ∞
1

1

1+ ξ
α1
1 + · · · + ξ

α
d

d

· dξd

‖ξ‖d−γ
.(7.34)
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If d > 2, then we iteratively integrate the integral in (7.34) [dξd × dξd−1 ×
· · · × dξ3], and use (7.33) d − 2 times. (Note that, for the obvious choices of
a and b, the condition b1/αa−1 ≥K−1

1 holds for some constant K1 > 0 because of
the assumption α1 ≥ α2 ≥ · · · ≥ αd .) As a result, we deduce that there is a constant
K3 > 0 such that

Iγ ≥K3

∫ ∞
1

dξ1

∫ ∞
1

1

ξ
α1
1 + ξ

α2
2

· dξ2

ξ
2−γ
1 + ξ

2−γ
2

:=K3 I (3)
γ .(7.35)

Clearly, this inequality also holds for d = 2. A change of variables then yields

I (3)
γ =

∫ ∞
1

dξ1

ξ
1+α2−γ

1

∫ ∞
ξ−1

1

1

ξ
α1−α2
1 + xα2

· dx

1+ x2−γ

≥ 1

2

∫ ∞
1

dξ1

ξ
1+α2−γ

1

∫ ∞
1

1

ξ
α1−α2
1 + xα2

· dx

x2−γ

(7.36)

≥ 1

2

∫ ∞
1

dξ1

ξ
1+α2−γ

1

· ξ−(α1−α2 )(1+(1−γ )/α2 )

1

∫ ∞
1

1

1+ yα2
· dy

y2−γ

≥K4

∫ ∞
1

dξ1

ξ
α1+(1−γ )α1/α2
1

.

Recall that γ > 1+ α2(1− α−1
1

). Equivalently, we have α1 + (1− γ )α1/α2 ≤ 1.
Combining (7.34)–(7.36) together yields Iγ =∞; this proves that dimX(R+) ≤
1+ α2(1+ α−1

1
), a.s. (Corollary 4.7).

Finally, we prove the lower bound for dimX(R+) in the case that α1 > d1 = 1.
Again, it suffices to assume that d = 2; otherwise, consider the projection of X

into R2. For any 1 < γ < 1+ α2(1− α−1
1

), we have 2− γ + α2 > 1; hence, (7.31)
implies that there exist positive and finite constants K5 and K6 such that

Iγ ≤K5 +K6 I (3)
γ .(7.37)

As we did for (7.36), we can prove that

I (3)
γ =

∫ ∞
1

dξ1

ξ
1+α2−γ

1

[∫ 1

ξ−1
1

+
∫ ∞

1

]
1

ξ
α1−α2
1 + xα2

· dx

1+ x2−γ

≤
∫ ∞

1

dξ1

ξ
1+α1−γ

1

+
∫ ∞

1

dξ1

ξ
1+α2−γ

1

∫ ∞
1

1

ξ
α1−α2
1 + xα2

· dx

1+ x2−γ
(7.38)

≤
∫ ∞

1

dξ1

ξ
1+α1−γ

1

+
∫ ∞

1

dξ1

ξ
α1+(1−γ )α1/α2
1

∫ ∞
0

1

1+ xα2
· dx

x2−γ
.

Observe that all three integrals in (7.38) are finite because 1 < γ < 1 + α2(1 −
α−1

1
) < α1 and 2 − γ + α2 > 1. It follows from (7.37) that Iγ < ∞ for all γ <
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1+α2(1−α−1
1

). Hence, Corollary 4.7 implies that dimX(R+)≥ 1+α2(1−α−1
1

),
a.s. This finishes the proof of Proposition 7.7. �
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