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1. Introduction

Let
(
B(u);u ∈ RN

+

)
denote an (N, d) Brownian sheet. That is, a centered continuous

Gaussian process which is indexed by N real, positive parameters and takes its values in
Rd . Moreover, its covariance structure is given by the following: for all u,v ∈ RN

+ and all
16 i, j6 d,

E
{
Bi(u)Bj(v)

}
=




∏N
k=1(uk ∧ vk), if i = j

0, if i 6= j

.

Note that along lines which are parallel to the axes, B is a d–dimensional Brownian motion
with a constant speed. To illustrate, let us fix a1, · · · , aN−1 ∈ R1

+ and for all v ∈ R1
+ ,

define 〈v〉 = (a1, · · · , aN−1, v). Then,
(
[
∏N−1

j=1 aj ]−1/2B(〈v〉); v ∈ R1
+

)
is a standard d–

dimensional Brownian motion. This is best seen by checking the covariance structure. As
such,

(
B(〈v〉); v ∈ R1

+

)
is a Markov process; cf. [1] and [30] for the theory of one–parameter

Markov processes. It turns out that Brownian sheet is a temporally inhomogeneous
Markov process; cf. Lemma 3.1 below for a precise statement. Therefore, the methods of
[6] or [10] do not readily apply. One of the goals of this paper is to provide an elementary
proof of the following result:

Theorem 1.1. Suppose M > 0 and 0 < ak < bk < ∞ (k = 1, · · · , N) are fixed. Then
there exists a finite positive constant K0 which only depends on the parameters M , N , d,
min16 j6N aj and max16 j6N bj , such that for all compact sets E ⊂ {

x ∈ Rd : |x|6M}
,

K−1
0 Capd−2N (E)6P

(
B([a,b]

)∩ E 6= ?

)
6K0Capd−2N (E),

where [a,b] ,
∏N

j=1[aj, bj].

Remark 1.1.1. Due to compactness and sample function continuity, measurability prob-
lems do not arise in the above context. In order to obtain a full capacity theory (i.e.,
one that estimates hitting probabilities for Borel or even analytic sets), we need to either
replace P by its Carathéodory outer measure extension P?, or to appropriately enrich many
of the filtrations in the proof of Theorem 2.1 below.

Remark 1.1.2. A more or less immediate consequence of Theorem 1.1 is that A is polar
for the (N, d) Brownian sheet if and only if Capd−2N (A) = 0. This completes the results
of [15] and [17, Theorem 6.1].

It is time to explain the notation. Fix an integer k> 1 and consider a Borel set
A ⊂ Rk . For any µ ∈ P(A) — the collection of all probability measures on A — and for
all β > 0, define the β–energy of µ by,

Eβ(µ) ,
∫ ∫

|x− y|−βµ(dx)µ(dy).

When β = 0, define for all µ ∈ P(A),

E0(µ) ,
∫ ∫

ln
( 1
|x− y| ∨ e

)
µ(dx)µ(dy).

1
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For all β> 0, the β–capacity of A can then be defined by,

Capβ(A) ,
1

infµ∈P(A) Eβ(µ)
.

To keep from having to single out the β < 0 case, we define Cap−β(A) = 1, whenever
β > 0. The notation of Theorem 1.1 should now be clear.

Theorem 1.1 belongs to a class of results in the potential theory of multi–parameter
processes. The latter is a subject of vigorous current research; cf. [6, 10, 11, 29, 32] for some
of the recent activity. An important multi–parameter process which is covered by most if
not all of the above references is the Ornstein–Uhlenbeck sheet (written as the O–U
sheet). One way to think of a d–dimensional, N–parameter O–U sheet

{
U(t); t ∈ RN

+

}
is

as follows: given an (N, d) Brownian sheet, define

U(t) , exp
(
−

∑N
j=1 tj

2

)
B(et), t ∈ RN

+ ,

where et denotes the N–dimensional vector whose i–th coordinate is eti (16 i6N). Then,
according to [32], for all a,b ∈ RN

+ such that ak < bk (16 k6N), for every M > 1 and
for all compact sets E ⊂ [−M,M ]N , there exists a constant K ′

0 > 1 such that

1
K ′

0

Capd−2N (E)6P
(
U([a,b]) ∩ E 6= ?

)
6K ′

0Capd−2N (E). (1.1)

(The upper bound on the above hitting probability is essentially contained in a variational
form in [28, Theorem 3.2] and [32, Lemma 4.4], while the asserted lower bound can be
shown to follow from [32, Theorem 5.2].) References [6, 10, 11, 29] contain extensions
of such a result to a larger class of what are now aptly called “multi–parameter Markov
processes”.

As mentioned above, the proof of Eq. (1.1) (stated in a different form) is given in
[32] (some of the ideas for the case N = 2 appear also in [33]); see also [28, Theorem
3.2] for a related result. The arguments of [32] are based on two novel ideas: the first is
an appropriate use of Cairoli’s maximal inequality ([35]); the second idea is to use facts
about the potential theory of U to compute the “energy” of certain “continuous additive
functionals”. These facts rely on the stationarity of the increments of U , and in particular
on the observation that the distribution of

(
U(t), U(t + s)

)
and

(
U(0), U(s)

)
are the same

for any s, t ∈ RN
+ . (In the argument used to prove [32, Lemma 4.2], this is how Φ is

approximated by suitably chosen “potentials” Φk.) While the processes U and B are
closely related, their analyses markedly differ in this second step. Just as Ref. [32]’s
proof of (1.1), our proof of Theorem 1.1 uses Cairoli’s maximal inequality as a first step.
The main portion of this paper is concerned with overcoming the nonstationarity of the
increments of Brownian sheet. Our methods are elementary and quite robust; for example,
they can be used to study the polar sets of more general, non–stationary multi–parameter
processes. At the heart of our method lies the multi–parameter analogue of a “Markov
property” of Brownian sheet which we will now sketch for the case N = 2; see [4, 14] for
earlier appearances of such ideas in a different context.
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Fix any s ∈ R2
+ and consider the process B ◦ θs ,

(
B(s + t); t ∈ RN

+

)
, with the

understanding that B ◦ θs(t) = B(s + t). (To borrow from the language of 1–parameter
Markov processes, this is one of the two possible “post-s” processes. Recall that N = 2
for this discussion). Then, it can be shown that the process B ◦ θs has the following
decomposition:

B ◦ θs(t) = B(s) +
√
s1β1(t2) +

√
s2β2(t1) + B̃(t), t ∈ R2

+ ,

where, β1 and β2 are d–dimensional (1–parameter) Brownian motions, B̃ is a 2–parameter
Brownian sheet, and β1, β2, B̃ and

{
B(r); 06 r6 s

}
are mutually independent. When

t is coordinatewise small, β1(t2) is of rough order t1/2
2 , β2(t1) is of rough order t1/2

1 and
B̃(t) is of rough order (t1t2)1/2. By the asserted independence, for any fixed s ∈ RN

+ ,

B ◦ θs(t) ' B(s) +
√
s1β1(t2) +

√
s2β2(t1), (1.2)

when t ' 0. It is part of the folklore of Markov processes that potential theory is typically
based on local properties. With this in mind, it should not be surprising that what is
relevant is the behavior of the process t 7→ B ◦ θs(t) when t is close to 0. Recalling
once more that s is fixed, we can “conclude” from (1.2) that despite the fact that B is
non–stationary, it is “approximately locally stationary” in the following sense:

B ◦ θ(1,1)(t) ' B(1, 1) + β1(t2) + β2(t1).

That is, in the notation of Section 6 below, 2–parameter, d–dimensional Brownian sheet
locally resembles a 2–parameter, d–dimensional additive Brownian motion. As the latter is
much easier to analyze, this relationship is a distinct simplification. While the preceeding
discussion is a mere heuristic, it is the guiding light behind the estimates of Section 3. In
fact, in the above notation, the process Zs,t of Section 3 is none other than B ◦ θs(t) −
B(s). Lemmas 3.6 and 3.7 below implicitly show that Zs,t behaves like the (N, d) additive
Brownian motion of Section 6. More will be said about this connection in Section 6.

We now explain some of the notation which is to be used in this paper. Throughout,
log+(x) , ln(x ∨ e) and for all x ∈ Rd ,

κ(x) ,



|x|−d+2N , if d > 2N

log+(1/|x|), if d = 2N

1, if d < 2N

.

Thus, for any compact set E ⊂ Rd and any µ ∈ P(E),

Ed−2N (µ) =
∫
Rd

∫
Rd

κ(x− y)µ(dx)µ(dy).

We shall always impose the following partial order on RN
+ : s6 t if and only if for all

16 i6N , si6 ti. In agreement with the above, all temporal variables will be in bold

3
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face while spatial ones are not. Somewhat ambiguously, expressions like |x| refer to the
Euclidean (`2) norm of the (spatial, or temporal when in bold face) vector x in any di-
mensions. Finally, we need some σ–fields. For all t ∈ RN

+ , we let F(t) denote the σ–field
generated by the collection {B(r); 06 r6 t} and F , ∨t> 0F(t).

We close this section with concluding remarks on the organization of this paper.
Section 2 contains some elementary facts about multi–parameter martingales of interest
to us. In Section 3, we prove a few preliminary inequalities for some (conditioned and
unconditioned) Gaussian laws. Section 4 contains the proof of Theorem 1.1. In Section
5, we address the question of escape rates, thus completing the earlier work of [24] and
parts of the work of the authors in [17]. Section 6 is concerned with the closely related
additive Brownian motion. It turns out that additive Brownian motion and Brownian sheet
are equi-polar. For a precise quantitative statement see Corollary 6.2. We present some
further assorted facts about the Markovian nature of additive Brownian motion. Section
7 contains some applications to analysis on Wiener space. In particular, we extend the
results of Ref.’s [7, 18] on the quasi–sure transience of continuous paths in Rd (d > 4) and
those of [20] on the quasi–sure non–polarity of singletons in Rd (d6 3).

2. Multi–Parameter Martingales

Throughout this section, for any p > 0, Lp denotes the collection of all random
variables Y : Ω 7→ R1 such that Y is F–measurable and E

[|Y |p] < ∞. The multi–
parameter martingales of this section are of the form:

ΠtY , E
[
Y

∣∣ F(t)
]
, (2.1)

for Y ∈ L1. It is not too difficult to see that Πt is a projection when Y ∈ L2. It is also
easy to see that Πt = Π1

t1
· · ·ΠN

tN
, where

Πi
ti
Y , E

[
Y

∣∣∣ ∨
tj > 0:j 6=i

F(t)
]
. (2.2)

Indeed, we have the following:

Lemma 2.1. For all Y ∈ L1 and all t ∈ RN
+ ,

ΠtY = Π1
t1
· · ·ΠN

tN
Y.

Proof. It suffices to show the above for Y ∈ L2 of the form:

Y = f
(∫

h1(s) ·B(ds), · · · ,
∫
hk(s) ·B(ds)

)
,

where f : Rk 7→ R1
+ and hi : RN

+ 7→ Rd (16 i6 k) are Borel measurable and for all 16 i6 k,∫
RN

+

∣∣hi(s)
∣∣2ds <∞.

4
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As the integrand h is nonrandom, there are no problems with the definition (and existence,
for that matter) of the stochastic integals in the definition of Y ; they are all Bochner
integrals. In analogy with Itô theory, much more can be done; see [35], for instance. By
the Stone–Weierstrauss theorem, it suffices to prove the above for Y of the form:

Y = exp
( ∫

h(s) ·B(ds)
)
, (2.3)

where h : RN
+ 7→ Rd is Borel measurable with

∫
RN

+

∣∣h(s)∣∣2ds <∞.

In this case, a direct evaluation yields,

ΠtY = exp
( ∫

[0,t]

h(s) ·B(ds) +
1
2

∫
RN

+\[0,t]

|h(s)|2 ds
)
. (2.4)

On the other hand, for our Y (i.e., given by (2.3)),

Π1
t1Y = exp

( ∫
[0,t1]×RN−1

+

h(s) ·B(ds) +
1
2

∫
(t1,∞)×RN−1

+

∣∣h(s)∣∣2ds).
Similarly,

Π2
t2

Π1
t1
Y =exp

(∫
[0,t1]×[0,t2]×RN−2

+

h(s) ·B(ds)

+
1
2

∫
(0,t1)×(t2,∞)×RN−2

+

∣∣h(s)∣∣2ds +
1
2

∫
(t1,∞)×RN−1

+

∣∣h(s)∣∣2ds).
In RN

+ ,

(
(0, t1)× (t2,∞)× RN−2

+

)⋃(
(t1,∞)× RN−1

+

)
=

(
[0, t1]× [0, t2]× RN−2

+

)c

.

We obtain the result from induction. ♦

Cairoli’s maximal inequality (Lemma 2.2 below) is an immediate consequence of the
above. It can be found in various forms in Ref.’s [10, 19, 35]. We provide a proof for the
sake of completeness.

Lemma 2.2. Suppose p > 1 and Y ∈ Lp. Then,

E
[

sup
t∈QN

+

∣∣ΠtY
∣∣p]6( p

p− 1

)Np

E
[|Y |p].

5
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Proof. By Lemma 2.1, simultaneuosly over all t ∈ QN
+ ,

ΠtY = Π1
t1

[
Π2

t2
· · ·ΠN

tN
Y

]
.

By Jensen’s inequality, sup Π2
t2
· · ·ΠN

tN
Y ∈ Lp, where the supremum is taken over all

positive rationals t2, · · · , tN . Therefore, applying Doob’s maximal inequality,

E
[

sup
t∈QN

+

∣∣ΠtY
∣∣p]6( p

p− 1

)
E
[

sup
t2,···,tN∈Q1

+

∣∣Π2
t2
· · ·ΠN

tn
Y

∣∣p]

6
( p

p− 1

)
E
[

sup
t2∈Q1

+

Π2
t2

∣∣ sup
t3,···,tN∈Q1

+

Π3
t3
· · ·ΠN

tN
Y

∣∣p]

6
( p

p− 1

)2

E
[

sup
t3,···,tN∈Q1

+

∣∣Π3
t3
· · ·ΠN

tN
Y

∣∣p].
Iterating this procedure yields the Lemma. ♦

In fact, one can replace the quantifier “supt∈QN ” by “supt∈RN
+
” in the statement of

Lemma 2.2. The following is clearly more than sufficient for this purpose.

Proposition 2.3. Suppose p > 1 and Y ∈ Lp. Then ΠtY has an almost surely continuous
modification.

Proof. Suppose Y ∈ L2 and is of the form given by (2.3) where h : RN
+ 7→ Rd is a C∞

function with compact support. In this case,

ΠtY = exp
(∫

[0,t]

h(s) ·B(ds) +
1
2

∫
RN

+\[0,t]

∣∣h(s)∣∣2ds),
which clearly is continuous, since the B with which we work has continuous sample paths.
If Y ∈ L2, take hn : RN

+ 7→ Rd with
∫ |hn(s)|2ds < ∞ and Yn ,

∫
hn · dB such that

limn Yn = Y in L2. That is, limn→∞ E
[
(Yn − Y )2

]
= 0. By Lemma 2.2 and Jensen’s

inequality,
E
[

sup
t∈QN

+

(
ΠtYn −ΠtY

)2
]
6 4NE

[
(Y − Yn)2

]
,

which goes to 0 as n → ∞. We have proven the result in L2 and thus in Lp when p> 2.
When p ∈ (1, 2), we can take Y ′

n , Y ∧ n ∨ (−n) and use Lemma 2.2 again to see that

E
[

sup
t∈QN

+

∣∣∣ΠtY − ΠtY
′
n

∣∣∣p]6( p

p− 1

)Np

E
[|Y |p; |Y | > n

]
,

which goes to 0 as n→∞. This proves the result. ♦

3. Preliminary Estimates

6
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Our first result is a simple fact which can be gleaned from covariance considerations.

Lemma 3.1. For all s, t ∈ RN
+ , Zs,t , B(t + s) − B(s) is independent of F(s) and is a

d–dimensional multivariate normal with mean vector zero and covariance matrix σ2(s, t)
times the identity, where

σ2(s, t) ,
N∏

j=1

(sj + tj)−
N∏

j=1

sj.

We need to estimate σ2(s, t) in terms of nicer (i.e., more manageable) quantities.
First, we need a lemma from calculus.

Lemma 3.2. For all x ∈ RN
+ ,

exp
{ N∑

j=1

(
xj −

x2
j

2

)}
− 16

N∏
j=1

(1 + xj)− 16 exp
{ N∑

j=1

xj

}
− 1.

Proof. For all x > 0,

x− x2

2
6 ln(1 + x)6x.

The lemma follows immediately. ♦

Next, we wish to prove that Brownian sheet locally looks like a stationary process. A
useful way to make this statement precise is the following:

Lemma 3.3. Suppose s ∈ [1, 2]N and t ∈ [0, 2]N . Then

1
4

∣∣t∣∣6σ2(s, t)6N1/22Ne2N
∣∣t∣∣.

Proof. Of course,

σ2(s, t) =
( N∏

j=1

sj

)( N∏
k=1

[
1 +

tk
sk

]
− 1

)
.

Using sj ∈ [1, 2] for all j,

N∏
k=1

(
1 +

tk
2

)
− 16σ2(s, t)6 2N

[ N∏
k=1

(
1 + tk

)− 1
]
.

By Lemma 3.2,

exp
{1

2

N∑
j=1

tj

(
1− tj

4

)}
− 16σ2(s, t)6 2N

{
exp

{ N∑
j=1

tj
}− 1

}
.

7



THE ANNALS OF PROBABILITY, 27, 11, 1135–1159 (1999)

Since ti ∈ [0, 2] for all i,
1
2
ti

(
1− ti

4

)
>

1
4
ti.

Therefore, over the range in question,

exp
{1

4

N∑
j=1

tj

}
− 16σ2(s, t)6 2N

{
exp

{ N∑
j=1

tj
}− 1

}
. (3.1)

Observe that 1 + x6 ex6 1 + xex for all x > 0. Applying this in (3.1) and using the fact
that ti6 2 for all i, we obtain the following over the range in question:

1
4

N∑
j=1

tj 6σ
2(s, t)6 2N

N∑
i=1

ti exp
( N∑

j=1

tj
)
6 2Ne2N

N∑
i=1

ti.

To finish, note that by the Cauchy–Schwarz inequality, |t|6∑N
j=1 tj 6N

1/2|t|. This com-
pletes the proof. ♦

For all r > 0, define

ϕ(r) ,
∫

[0,r]N
|s|−d/2 exp

(
− 1
|s|

)
ds. (3.2)

Recall the definition of the random field Zs,t defined in Lemma 3.1. The significance
of (3.2) is an estimate for the L2(P)–norm of additive functionals of B to which we will
come shortly. First, a few more technical lemmas are in order.

Lemma 3.4. For any ε > 0 there exists a constant K1(ε;N, d) ∈ (0, 1) such that for all
r > 2ε,

K1(ε;N, d)κ(r−1/2)6 rd/2−Nϕ(r)6K−1
1 (ε;N, d)κ(r−1/2),

where r−1/2 , (r−1/2, 0, · · · , 0) ∈ Rd .

Proof. Let ωN denote the area of the N–dimensional unit sphere {x ∈ RN : |x| = 1}.
By symmetry and a calculation in polar coordinates,

ϕ(r)>
∫
|s|6 r

s−d/2 exp
(
− 1
|s|

)
ds

= ωN

∫ r

0

x−
d
2 +N−1e−1/xdx

>ωNe
−1/ε

∫ r

ε

x−
d
2 +N−1dx.

The lemma’s lower bound follows from a few elementary computations. The upper bound
is proven along the same lines. ♦

8
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An immediate but important corollary of the above is the following.

Lemma 3.5. For any c,M > 0 there exists a constant K2(c,M ;N, d) ∈ (0, 1) such that
for all b ∈ Rd with |b|6M ,

K2(c,M ;N, d)κ(b)6 |b|−d+2Nϕ
( 1
c|b|2

)
6K−1

2 (c,M ;N, d)κ(b).

In complete analogy to 1–parameter potential theory, we need a lower bound for the
occupation measure of B. For technical reasons, it turns out to be simpler to first consider
a lower bound for the occupation measure of Zs,t viewed as an N–parameter process in t.

Lemma 3.6. Suppose g : Rd 7→ R1
+ is a probability density on Rd whose support is in

{x ∈ Rd : |x|6M} for some fixed M > 0. Then there exists K3(M ;N, d) ∈ (0,∞) such
that

inf
s∈[1,3/2]N∩QN

E
[ ∫

[0,1/2]N
g(Zs,t)dt

]
>K3(M ;N, d)

∫
Rd

κ(b)g(b)db.

Proof. For each s ∈ RN
+ , define the (expected) occupation measure, νs, by

〈g, νs〉 , E
[ ∫

[0,1/2]N
g(Zs,t)dt

]
.

The above uniquely defines νs by its action on probability densities g on Rd . By Lemma
3.1 and the exact form of the Gaussian density,

〈g, νs〉 = (2π)−d/2

∫
[0,1/2]N

∫
Rd

g(b)
e−|b|

2/2σ2(s,t)

σd(s, t)
db dt.

By Lemma 3.3, for all s ∈ [1, 3/2]N ,

〈g, νs〉>
(
2N+1πN1/2e2N

)−d/2
∫

[0,1/2]N

∫
Rd

g(b)|t|−d/2e−2|b|2/|t|db dt.

Taking the infimum over s ∈ [1, 3/2]N and using Fubini’s theorem, we obtain:

inf
s∈[1,3/2]N∩QN

〈g, νs〉>
(
2N+1πN1/2e2N

)−d/2
∫
Rd

g(b)db
∫

[0,1/2]N
|t|−d/2e−2|b|2/|t|dt

=
(
2N+1πN1/2e2N

)−d/22N−(d/2)

∫
Rd

g(b)|b|−d+2Nϕ
( 1

4|b|2
)
db.

By Lemma 3.5, |b|−d+2Nϕ
(
1/(4|b|2))>K2(4,M ;N, d)κ(b). Define,

K3(M ;N, d) ,
(
2N+1πN1/2e2N

)−d/22N−(d/2)K2(4,M ;N, d).

9
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This proves the result. ♦

We can now state and prove the main result of this section:

Proposition 3.7. Suppose f : Rd 7→ R1
+ is a probability density on Rd whose support is in

{x ∈ Rd : |x|6M/2} for some M ∈ (0,∞). With probability one, for all s ∈ [1, 3/2]N∩QN ,

E
[ ∫

[1,2]N
f
(
B(u)

)
du

∣∣∣ F(s)
]

>K3(M ;N, d)
∫
Rd

κ(b)f
(
b+B(s)

)
db 1l

{|B(s)|6M/2
}
.

(3.3)

Proof. If |B(s)| > M/2, there is nothing to prove. Therefore, we can and will as-
sume that |B(s)|6M/2. (More precisely, we only work with the realizations ω, such that
|B(s)|(ω)6M/2.)

Let us fix some s ∈ [1, 3/2]N . By Lemma 3.1, Zs,t is independent of F(s). Together
with Lemma 3.6 this implies that for all probability densities g on {x ∈ Rd : |x|6M},

E
[ ∫

[0,1/2]N
g(Zs,t)dt

∣∣∣ F(s)
]
>K3(M ;N, d)

∫
Rd

κ(b)g(b)db, a.s. (3.4)

Note that the above holds even when g is random, as long as it is F(s)–measurable. Since
f is non–negative, a few lines of algebra show that for any s ∈ [1, 3/2]N ,∫

[1,2]N
f
(
B(u)

)
du>

∫
[1,2]N

t> s

f
(
B(t)

)
dt

>

∫
[0,1/2]N

f
(
Zs,t +B(s)

)
dt.

Define,
g(x) , f

(
x+B(s)

)
, x ∈ Rd .

We have, ∫
[1,2]N

f
(
B(u)

)
du>

∫
[0,1/2]N

g
(
Zs,t

)
dt.

Note that g is measurable with respect to F(s). Moreover, on the set
{|B(s)|6M/2

}
, g is

a probability density on {x ∈ Rd : |x|6M}. Therefore, (3.4) implies that (3.3) holds a.s.,
for each fixed s ∈ [1, 3/2]N . The result follows from this. ♦

Proposition 3.7 is fairly sharp. Indeed, one has the following L2(P)–inequality:

Lemma 3.8. For all M > 0, there exists a K4(M ;N, d) ∈ (0,∞) such that for all proba-
bility densities f on {x ∈ Rd : |x|6M},

E

[(∫
[1,2]N

f
(
B(u)

)
du

)2
]
6K4(M ;N, d)Ed−2N(f),

10
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where Ed−2N (f) denotes the (d− 2N)–energy of the measure f(x)dx.

Proof. This lemma is basically a direct calculation. Since the details are similar to those
in the proof of Proposition 3.7, we will merely sketch the essential ideas.

For any s, t ∈ [1, 2]N , define

m(s, t) ,
N∏

j=1

sj ∧ tj
sj

,

τ2(s, t) ,
( N∏

j=1

tj

)(
1−

N∏
k=1

(sk ∧ tk
sk ∨ tk

))
.

Using Gaussian regressions shows that for any x ∈ Rd , the distribution of B(t) conditional
on

{
B(s) = x

}
is Gaussian with mean vector m(s, t)x and covariance matrix τ2(s, t) times

the identity. For all s, t ∈ [1, 2]N ,

N∏
j=1

sj ∧ tj
sj

= exp
{ N∑

j=1

ln
(
1− (sj − tj)+

sj

)}
,

N∏
k=1

sk ∧ tk
sk ∨ tk = exp

{ N∑
k=1

ln
(
1− |sk − tk|

sk ∨ tk
)}

. (3.5)

Note that
ln(1− x)>−x(1 + x), for 06x6 1/2,
ln(1− y)6−y,
1− e−y 6−y, for y> 0,
1− e−z > cN z, for 06 z6N ln 2,

where cN > 0 denotes a positive finite constant whose value depends only on the temporal
dimension N . Since |sk − tk|/(sk ∨ tk)6 1/2, applying this in (3.5) much like in the proof
of Lemma 3.3, we arrive at the following:

1−m(s, t)6 2N1/2 |s− t|,
cN
2
|s− t|6 τ2(s, t)6 2NN1/2 |s− t|.

Therefore, for all s, t ∈ [1, 2]N ,

P
(
B(t) ∈ dy ∣∣ B(s) = x

)
dy

=
1

(2π)d/2τd(s, t)
exp

(
− |y −m(s, t)x|2

2τ2(s, t)

)

6(πcN)−d/2|s− t|−d/2e4N3/2|x|2/cN exp
(
− |y − x|2

2N+1N1/2|s− t|
)
.

11
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Accordingly,

E

[(∫
[1,2]N

f
(
B(u)

)
du

)2
]

6
(
2π2cN

N∏
j=1

sj

)−d/2
∫

[1,2]N
ds

∫
[1,2]N

dt
∫
Rd

dx

∫
Rd

dy f(x)f(y)e4N3/2|x|2/cN

× |s− t|−d/2 exp
(
− |x|2

2
∏N

j=1 sj

)
exp

(
− |y − x|2

2N+1N1/2|s− t|
)
.

Write K5(M ;N, d) , (2π2cN )−d/2e4N3/2M2/cN for brevity. Since f is supported in {x ∈
Rd : |x|6M},

E

[(∫
[1,2]N

f
(
B(u)

)
du

)2
]

6K5(M ;N, d)
∫
[1,2]N

ds
∫

[1,2]N
dt

∫
Rd

dx

∫
Rd

dy f(x)f(y)

× |s− t|−d/2 exp
(
− |y − x|2

2N+1N1/2|s− t|
)

6K5(M ;N, d)
∫
s∈[0,1]N

∫
Rd

dx

∫
Rd

dy f(x)f(y)

× |s|−d/2 exp
(
− |y − x|2

2N+1N1/2|s|
)

= K5(M ;N, d) (2N+1N1/2)d/2−N

×
∫
Rd

dx

∫
Rd

dy f(x)f(y)|x− y|−d+2Nϕ
(2N+1N1/2

|x− y|2
)
.

We obtain the desired result from Lemma 3.5. ♦

4. The Proof of Theorem 1.1

In order to keep the exposition notationally simple, we will prove Theorem 1.1 for
[a,b] = [1, 3/2]N . The general case follows by similar arguments.

Fix ε ∈ (0, 1) and define Eε to be the closed ε–enlargement of E. That is,

Eε ,
{
x ∈ Rd : dist(x,E)6 ε

}
.

Let

S1(ε) , inf
{
s1 ∈ [1, 3/2] ∩ Q : B(s) ∈ Eε, for some s2, · · · , sN ∈ [1, 3/2] ∩ Q}

.

with the usual convention that inf? = ∞. By path continuity, if S1(ε) < ∞, there exist
S2(ε), · · · , SN (ε) ∈ [1, 3/2] ∩ Q such that B(S(ε)) ∈ Eε. Moreover, since Eε has a non–
void interior and B is Gaussian, P

(
S(ε) ∈ [1, 3/2]N ∩ QN

)
> 0. This means that we can

12
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(classically) condition on the (measurable) event
{
S(ε) ∈ [1, 3/2]N ∩ QN

}
. For all Borel

sets A ⊂ Rd , define

µε(A) , P
(
B(S(ε)) ∈ A ∣∣ S(ε) ∈ [1, 3/2]N ∩ QN

)
.

The previous discussion shows that µε ∈ P(Eε). Let Bd(x, r) denote the closed ball of
radius r > 0 about x ∈ Rd . Define Vd to be the volume of Bd(0, 1).

With the definition of µε in mind, define for all x ∈ Rd ,

fε(x) ,
µε

(
Bd(x, ε)

)
Vd εd

.

It is easy to see that µε is atomless. Therefore, fε is a probability density on Rd . This is
a consequence of the fact that the volume functional on Rd is translation invariant. Note
that

1l
{|B(S(ε))|6M + 1

}
> 1l

{
S(ε) ∈ [1, 3/2]N ∩ QN

}
.

For this choice of fε, the above observations, together with Proposition 3.7 imply the
following:

sup
s∈[1,3/2]N∩QN

E
( ∫

[1,3/2]N
fε

(
B(u)

)
du

∣∣∣ F(s)
)

>K3(2M + 2;N, d)
∫
Rd

κ(b)fε

(
b+B(S(ε))

)
db 1l

{
S(ε) ∈ [1, 3/2]N ∩ QN

}
.

We wish to square both sides and take expectations. By Lemmas 2.2 and 3.8,

E

[[
sup

s∈[1,3/2]N∩QN

E
( ∫

[1,3/2]N
fε

(
B(u)

)
du

∣∣∣ F(s)
)]2

]
6 4NK4(M + 1;N, d)Ed−2N(fε).

Therefore, by the Cauchy–Schwarz inequality,

4NK4(M + 1;N, d)Ed−2N(fε)

>K2
3 (2M + 2;N, d)P

(
S(ε) ∈ [1, 3/2]N ∩ QN

) ∫
Rd

(∫
Rd

κ(b)fε(a+ b)db
)2

µε(da)

>K2
3 (2M + 2;N, d)P

(
S(ε) ∈ [1, 3/2]N ∩ QN

)( ∫
Rd

∫
Rd

κ(b− a)fε(b)dbµε(da)
)2

.

Now, we need to let ε → 0+. Since for any ε ∈ (0, 1), µε is supported in Bd(0,M + 1)
and since the latter is compact,

(
µε; 0 < ε < 1

)
is a tight family of probability measures

on Rd . By Prohorov’s theorem, µε has a subsequential weak limit µ0. Note that fε is
the convolution of µε with the step function 1l{|x|6 ε}/Vd ε

d. Therefore, by going along a
further subsequence, we see that fε ⊗ µε has µ0 ⊗ µ0 as a subsequential weak limit. By

13
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standard arguments (cf. Theorem 11.11 of [9]), we can let ε → 0+ along an appropriate
subsequence to see that when Ed−2N (µ0) > 0,

lim inf
ε→0+

P
(
S(ε) ∈ [1, 3/2]N ∩ QN

)
6

4NK4(M + 1;N, d)
K2

3 (2M + 2;N, d)Ed−2N(µ0)
,
K0(M ;N, d)
Ed−2N (µ0)

.

By path continuity and by compactness, the left hand side is exactly P
(
B([1, 3/2]N)∩E 6=

?
)
. Since µ0 ∈ P(E), the right hand side is less than K0(M ;N, d)Capd−2N (E). Therefore,

when Ed−2N (µ0) > 0, we have the upper bound in Theorem 1.1. When Ed−2N (µ0) = 0,
consider Eε for ε ∈ (0, 1). It is easy to see that Eε has positive (d−2N) capacity. (Indeed,
normalized Lebesgue measure will work as an equilibrium measure.) By what we have
proven thusfar, for all ε ∈ (0, 1),

P
(
B([1, 3/2]N) ∩Eε 6= ?

)
6K0(M + 1;N, d)Capd−2N (Eε).

Letting ε→ 0+, we obtain the general upper bound.
To prove the lower bound, fix ε ∈ (0, 1) and take probability density f on Rd whose

support is Eε. Define,

I ,
∫

[1,3/2]N
f
(
B(u)

)
du.

We shall only consider the case where Ed−2N (f) > 0. The other case is handled by taking
limits as in the preceding proof of the upper bound. Of course,

E [I] = (2π)−d/2

∫
[1,3/2]N

∫
f(a)

( N∏
j=1

uj

)−d/2 exp
(
− |a|2

2
∏N

j=1 uj

)
da du

>(3π)−d/22−N

∫
f(a)e−|a|

2/2da

>(3π)−d/22−N exp
(−(M + 1)2/2

)
, K6(M,N, d). (4.1)

On the other hand, by Lemma 3.8,

E
[
I2

]
6K4(M + 1;N, d)Ed−2N(f). (4.2)

By the Cauchy–Schwarz inequality,

E [I] = E [I; I > 0]6
{
E
[
I2

]
P
(
I > 0

)}1/2
.

Eqs. (4.1) and (4.2) imply the following:

P
(
B([1, 3/2]N) ∩Eε 6= ?

)
>P

(
I > 0

)
>

K2
6 (M ;N, d)

K4(M + 1;N, d)Ed−2N(f)
.

14
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By a density argument, we can take the infimum over all f(x)dx ∈ P(Eε) and let ε→ 0+

to obtain the capacity of E. ♦

5. Escape Rates

Let
(
B(u);u ∈ RN

+

)
be an N–parameter Brownian sheet taking values in Rd . Accord-

ing to [24], B is transient if and only if d > 2N . As the process B is zero on the axes, one
needs to be careful about the notion of transience here. Following [17], we say that B is
transient, if for any R > 1,

P
(

lim inf
|u|→∞
u∈C(R)

|B(u)| = ∞
)
> 0.

Here, C(R) denotes the R–cone defined by

C(R) ,
{
u ∈ (1,∞)N : max

16 i,j6N

ui

uj
6R

}
.

From Kolmogorov’s 0–1 law, one can deduce that P
(
transience

) ∈ {0, 1}. In this section,
we address the rate of transience. When N = 1 and d> 3, B is d–dimensional Brownian
motion (d> 3) and the rate of transience is determined by [5]. The more subtle neighbor-
hood recurrent case, that is when N = 1 and d = 2, can be found in [34]. When d > 2N ,
in [17] we used rather general Gaussian techniques to determine the rate of transience of
B. The end result is the following:

Theorem 5.1. (cf. [17, Theorem 5.1]) If ψ : R1
+ 7→ R1

+ is decreasing and d > 2N , then
for any R > 1,

lim inf
|u|→∞
u∈C(R)

|B(u)|
|u|N/2ψ(|u|) =



∞, if

∫∞
1
s−1ψd−2N (s)ds <∞

0, otherwise

, a.s.

The goal of this section is to describe Spitzer’s test for the critical case, i.e., when
d = 2N . Indeed, we offer the following:

Theorem 5.2. Let B denote an (N, 2N) Brownian sheet. If ψ : R1
+ 7→ R1

+ is decreasing,
then for all R > 1,

lim inf
|u|→∞
u∈C(R)

|B(u)|
|u|N/2ψ(|u|) =



∞, if

∫∞
1

ds
s| lnψ(s)| <∞

0, otherwise

, a.s.

Proof. Without loss of much generality, we can assume that lims→∞ ψ(s) = 0. Define,

C0(R) ,
{
x ∈ C(R) : 16 |x|6R}

.

15
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Then for
Cn(R) , RnC0(R),

consider the (measurable) event,

En(R) ,
{
ω : inf

u∈Cn(R)
|B(u)|6RnN/2ψ(Rn)

}
.

By the scaling property of B,

P
(
En(R)

)
= P

(
inf

u∈C0(R)
|B(u)|6ψ(Rn)

)
.

Theorem 1.1 shows that

K−1
0 Cap0

(
B2N (0, ψ(Rn))

)
6P

(
En(R)

)
6K0Cap0

(
B2N (0, ψ(Rn))

)
,

where
B2N (0, r) ,

{
x ∈ R2N : |x|6 r}.

The above 0–capacity is of order 1/| lnψ(Rn)|; cf. [27, Proposition 3.4.11]. For a probabilis-
tic alternative, in the proof of Theorem 1.1, replace µ by the Lebesgue measure everywhere
and directly calculate. The upshot is the existence of some K7(R;N, d) ∈ (0,∞), such that
for all n> 1,

1
K7(R;N, d)

∣∣ lnψ(Rn)
∣∣ 6P(

En(R)
)
6
K7(R;N, d)∣∣ lnψ(Rn)

∣∣ .
In particular, ∑

n

P
(
En(R)

)
<∞ ⇔

∫ ∞

1

ds

s
∣∣ lnψ(s)

∣∣ <∞.

With this estimate established, the rest of the proof follows that of [17, Theorem 5.1]
nearly exactly. ♦

6. Additive Brownian Motion

Suppose — on a possibly different probability space — we have N independent stan-
dard Rd–valued Brownian motions W1, · · · ,WN . The (N, d) additive Brownian motion
is defined as the following multi–parameter process:

W (t) ,
N∑

j=1

Wj(tj), t ∈ RN
+ .

The goal of this section is to record some facts about the process W . First, we mention
the following consequence of the proof of Theorem 1.1.

16
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Theorem 6.1. Suppose M > 0 and 0 < ak < bk < ∞ (k = 1, · · · , N) are fixed. Then
there exists a finite positive constant K8 which only depends on the parameters M , N , d,
min16 j6N aj and max16 j6N bj , such that for all compact sets E ⊂ {

x ∈ Rd : |x|6M}
,

K−1
8 Capd−2N (E)6P

(
W ([a,b]

) ∩E 6= ?

)
6K8Capd−2N (E).

The proof of Theorem 6.1 involves a simplification of the arguments of Sections 3 and
4. Thus, we will merely give an outline. For all s, t ∈ RN

+ , define Z̃s,t ,W (s + t)−W (s)
and let F̃t denote the σ–field generated by

(
W (s); 06 s6 t

)
. The process Z̃s,t is clearly

the additive Brownian motion analogue of the process Zs,t of Lemma 3.1. The following
analogues of Lemmas 3.1 and 3.8 as well as Proposition 3.4 are much simpler to prove.
(i) for all s, t ∈ RN

+ , the random vector Z̃s,t is independent of F̃(s) and has the same
distribution as W1

(∑N
j=1 tj

)
;

(ii) let f be as in Proposition 3.7. Then a.s., for all s ∈ [1, 3/2]N ∩ QN ,

E
[ ∫

[1,2]N
f
(
W (u)

)
du

∣∣∣ F̃(s)
]

> E
[ ∫

[1,2]N

t> s

f
(
Z̃s,t +W (s)

)
dt

∣∣∣ F̃(s)
]

>K ′
3(M ;N, d)

∫
Rd

κ(b)f
(
b+W (s)

)
db 1l

{|W (s)|6M/2
}
,

for some constant K ′
3(M ;N, d);

(iii) in the notation of Lemma 3.8,

E

[(∫
[1,2]N

f
(
W (u)

)
du

)2
]
6K ′

4(M ;N, d)Ed−2N(f),

for some constant K ′
4(M ;N, d).

Theorem 6.1 can now be proved using exactly the same argument as that presented
in Section 4. However, all applications of Lemmas 3.1 and 3.8 and those of Proposition
3.4 are to be replaced by applications of (i), (iii) and (ii), respectively.

As a consequence of Theorems 1.1 and 6.1, we have the following curious result.

Corollary 6.2. The (N, d) additive Brownian motion W and the (N, d) Brownian sheet
B are locally intersection equivalent in the following sense: for all M > 0 and all
0 < ak < bk < ∞ (k = 1, · · · , N), there exists a constant K9 depending only on the
parameters

(
M,N, d,min16 j6N aj,max16 j6N bj

)
such that for all compact sets E ⊂{

x ∈ Rd : |x|6M}
,

K−1
9 6

P
(
W ([a,b])∩ E 6= ?

)
P
(
B([a,b])∩E 6= ?

) 6K9.
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Remarks 6.2.1.
(i) The notion of local intersection equivalence is essentially due to [26].
(ii) Brownian sheet and additive Brownian motion have other connections than potential

theoretic ones as well. For a sampler, see [4].
(iii) The above is interpreted with the convention that 0/0 , 1. That is, when one of the

two probabilities is 0, so is the other one. Otherwise, they are both of the same rough
order.

Roughly speaking, Corollary 6.2 says that Brownian sheet B has the same potential
theory as additive Brownian motion W . The latter process turns out to have some very
nice analytical properties. The remainder of this section is devoted to a brief discussion of
some of them.

For any Borel measurable function f : Rd 7→ R1
+ , every x ∈ Rd and all t ∈ RN

+ , define

Qtf(x) , E
[
f
(
W (t) + x

)]
.

We can extend the domain of the definition of Qt to all measurable f : Rd 7→ R1
+ if, for

example, Qt|f |(x) <∞ for all x ∈ Rd . Elementary properties of Qt are listed below. Recall
that for s, t ∈ RN

+ , s6 t if and only if sj 6 tj for all 16 j6N .

Proposition 6.3. For all t, s ∈ RN
+ , Qt+s = Qt+Qs. That is,

(
Qt; t ∈ RN

+

)
is a semi–group

indexed by
(
RN

+ ;6
)
. Furthermore, for any t > 0, Qt : Cb(Rd

+ ,R
1
+) 7→ Cb(Rd

+ ,R
1
+).

Remarks 6.3.1.
(i) As is customary, Cb(X,Y) denotes the collection of all bounded continuous functions

f : X 7→ Y.
(ii) Proposition 6.3 says that

(
Qt; t ∈ RN

+

)
is a multi–parameter “Feller semi–group”.

Proof of Proposition 6.3. A simple consequence of Theorem 6.1 is the following: fix
some s ∈ RN

+ , then as processes indexed by t ∈ RN
+ ,

W (s + t) = W (s) + W̃ (t),

where W̃ is independent of G(s). Now pick s, t ∈ RN
+ and pick a bounded measurable

f : Rd 7→ R1
+ . The above decomposition shows that for all x ∈ Rd ,

Qs+tf(x) = E
[
f
(
W (s) + W̃ (t) + x

)]
= E

[
Qsf

(
W̃ (t) + x

)]
= QsE

[
f
(
W̃ (t) + x

)]
= QsE

[
f
(
W (t) + x

)]
= QsQtf(x).

Since f 7→ Qtf is linear, for all t ∈ RN
+ , a monotone class argument shows the desired

semi–group property. To prove the Feller property, let β define a standard Rd–valued
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Brownian motion. Corresponding to β, let
(
Ht; t> 0

)
be the heat semi–group. That is,

for all bounded measurable f : Rd 7→ R1
+ and all x ∈ Rd , define

Htf(x) , E
[
f
(
β(t) + x

)]
.

It is well–known that for all t > 0, Ht : Cb(Rd ,R1
+) 7→ Cb(Rd ,R1

+). Fix some t > 0 and

some f ∈ Cb(Rd ,R1
+). Define, c ,

{ ∏N
j=2 tj

}1/2 and g(x) , f(cx). Since the random
vector W (t) has the same distribution as cβ(t1), it follows that

Qtf(x) = Ht1g
(x
c

)
.

The desired Feller property follows immediately. ♦

A somewhat surprising fact is that one merely needs a one–parameter family of
“resolvents”.

For any λ > 0 and t ∈ RN , define λ · t , λ
∑N

j=1 tj . Define,

Uλ ,

∫
RN

+

e−λ·tQtdt, λ > 0.

The above satisfies a multi–parameter “resolvent equation”. More precisely,

Lemma 6.4. For any λ > 0, Uλ =
(
Vλ

)N
, where Vλ is the heat resolvent:

Vλ ,

∫ ∞

0

e−λsHsds.

Remarks 6.4.1.
(i) Combining the above with the resolvent equation for Vλ, we see that if f : Rd 7→ R1

+

is Borel measurable and Uλf = 0, then f = 0. Thus,
(
Uλ;λ > 0

)
seperates points. It

is this desriable property which justifies the use of the term resolvent for
(
Vλ;λ > 0

)
.

(ii) Using induction on N , we arrive at the following heat kernel representation of Uλ:

Uλ =
1

(N − 1)!

∫ ∞

0

sN−1e−λsHsds.

(iii) It is possible to show that Qt solves the following weak operator equation:

∂N

∂t1 · · ·∂tN Qt

∣∣∣∣
t=0

= 2−N∆N ,

∂

∂ti
Qt

∣∣∣∣
t=0

=
1
2
∆,

where ∆ is the (spatial) Laplacian on RN . As such, it follows that the N–Laplacian
2−N∆N can be called the “generator” of W .
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Proof of Lemma 6.4. Throughout this proof, whenever t ∈ RN , we shall write [t] for
the N–vector (0, t2, · · · , tN ). Since t = (t1, 0, · · · , 0) + [t], Proposition 6.3 implies that
Qt = Q(t1,0,···,0)Q[t]. However, it is simple to check that Ht1 = Q(t1,0,···,0). Therefore,

Uλ =
∫
RN

+

e−λ·tHt1Q[t]dt

=
∫
R

N−1
+

dtN · · ·dt2
( ∫ ∞

0

e−λt1Ht1dt1

)
Q[t] exp

(− λ

N∑
j=2

tj
)

=
∫
R

N−1
+

dtN · · ·dt2VλQ[t] exp
(− λ

N∑
j=2

tj
)

= Vλ

∫
R

N−1
+

dtN · · ·dt2Q[t] exp
(− λ

N∑
j=2

tj
)
.

Since Q[t] is the semi–group for (N − 1, d) additive Brownian motion, we obtain the result
by induction on N . ♦

7. Applications to Analysis on Wiener Space

Recall from [21, 23] that the d–dimensional Ornstein–Uhlenbeck process O(·) on
Wiener space is a stationary ergodic diffusion on C(R1

+ ,R
d) whose stationary measure

is d–dimensional Wiener measure, w. As observed in [36], this process can be realized as
follows: take a (2, d) Brownian sheet B. Then

O(s) , e−s/2B(es, ·), 06 s6 1. (7.1)

For each fixed s> 0, O(s) is a Brownian motion on Rd . Corresponding to O, there is a
notion of capacity; cf. [7, 8, 32]. Indeed, the following is a Choquet capacity, defined on
analytic subsets of C(R1

+ ,R
d):

Cap∞(F ) ,
∫ ∞

0

e−rPw
(
O(s) ∈ F , for some 06 s6 r

)
dr, (7.2)

where
Pw(· · ·) ,

∫
C(R1

+,Rd)

P
( · · · ∣∣ O(0) = f

)
w(df).

When Cap∞(F ) > 0, we say that F happens quasi–surely. From the properties of
Laplace transforms, it is not hard to see the following (cf. Lemma 2.2.1(ii) of [8], for
example)

Cap∞(F ) > 0 ⇔ Cap(t)
∞ (F ) > 0,

where Cap(t)
∞ is the incomplete capacity on Wiener space defined as follows:

Cap(t)
∞ (F ) , P

(
O(s) ∈ F, for some 06 s6 t

)
.
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Since t 7→ Cap(t)
∞ (F ) is increasing, we see that

Cap∞(F ) > 0 ⇔ Cap(t)
∞ (F ) > 0, for some t> 0. (7.3)

We say that a Borel set F ⊂ C(R1
+ ,R

d) is exceptional, if Cap∞(F ) > 0 while
w(F ) = 0. It is an intereseting problem — due to David Williams (cf. [36]) — to find
non–trivial exceptional sets. Various classes of such exceptional sets F have been found in
the literature; cf. [7, 20, 22, 25, 31]. In particular, [7, Theorem 7] implies that

d > 4 ⇒ Cap∞
{
f ∈ C(R1

+ ,R
d) : lim

t→∞ |f(t)| = ∞
}
> 0.

In other words, paths in C(R1
+ ,R

d) are transient quasi–surely, if d > 4. Conversely, by
[18], if d6 4, paths in C(R1

+ ,R
d) are not transient; for another proof of this fact, use (7.7)

below and standard capacity estimates. In other words,

d > 4 ⇔ Cap∞
{
f ∈ C(R1

+ ,R
d) : lim

t→∞ |f(t)| = ∞
}
> 0. (7.4)

On the other hand, classical results of [5] imply that, paths in C(R1
+ ,R

d) are transient
w–almost surely if and only if d > 2. That is,

d > 2 ⇔ w
{
f ∈ C(R1

+ ,R
d) : lim

t→∞ |f(t)| = ∞
}
> 0. (7.5)

A comparison of Eqs. (7.4) and (7.5) shows that the collection of transient paths in
C(R1

+ ,R
d) is exceptional when 2 < d6 4. In this section, we present a quantitative exten-

sion of this result in terms of a precise integral test for this rate of transience in the case
d > 4. First note that upon combining (7.1)–(7.4), together with a compactness argument,
we obtain the following:

lim
t→∞ |f(t)| = ∞, quasi–surely [f ],

if and only if with probability one,

lim
t→∞ inf

16 s6 2
|B(s, t)| = ∞. (7.6)

The arguments of [17] which lead to our Theorems 5.1 and 5.2 can be used closely to
prove the following quantitative version of (7.6):

Theorem 7.1. Suppose ψ : R1
+ 7→ R1

+ is decreasing. With probability one,

lim inf
t→∞ inf

16 s6 2

|B(s, t)|
t1/2ψ(t)

=



∞, if

∫∞
1

(κ ◦ ψ(x)) x−1 dx <∞

0, if
∫∞
1

(κ ◦ ψ(x)) x−1 dx = ∞
.
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As another application, consider a compact set F ⊂ Rd and define

Hit(F ) ,
{
f ∈ C(R1

+ ,R
d) : inf

06 t6 1
dist

(
f(t), F

)
= 0

}
.

Then, Theorem 1.1, (7.1)–(7.3) and some calculus jointly imply the following: for all t > 0,
there exists a non–trivial constant K10 which depends only on d, t and supF , such that

K−1
10 Capd−4(F )6Cap(t)

∞
(
Hit(F )

)
6K10Capd−4(F ). (7.7)

Actually, the calculus involved is technical but the ideas can all be found in the proof
of [17, Lemma 6.3]. Moreover, one can almost as easily show that for some K11 which
depends only on d and supF ,

K−1
11 Capd−4(F )6Cap∞(F )6K11Capd−4(F ).

We omit the details.
A consequence of the above and (7.3) is that for any Borel set F ⊂ C(R1

+ ,R
d),

Cap∞
(
Hit(F )

)
> 0 ⇔ Capd−4(F ) > 0. (7.8)

This should be compared to the classical result of [13]:

w
(
Hit(F )

)
> 0 ⇔ Capd−2(F ) > 0. (7.9)

Used in conjunction, Eqs. (7.8) and (7.9) show that Hit(F ) is exceptional whenever we
have Capd−2(F ) = 0 but Capd−4(F ) > 0. As an example, consider any Borel set F ⊂ Rd

such that d − 4 < dimH(F ) < d − 2. Here, dimH denotes Hausdorff dimension. By
Frostman’s lemma of classical potential theory, Capd−4(F ) > 0 while Capd−2(F ) = 0. In
such a case, Hit(F ) is exceptional.

As yet another class of applications, let us note that together with standard capacity
estimates, (7.3) and (7.7) extend the results of [20, Section 3].

Corollary 7.2. For any x ∈ Rd and r > 0,

Cap∞
(
Hit

({x})) > 0 ⇔ d6 3,

while
Cap∞

(
Hit

(
Bd(x, r)

))
> 0 ⇔ d6 4.

Remark 7.2.1. The curious relationship between d− 2 and d− 4 in (7.8) and (7.9) seems
to belong to a class of so–called Ciesielski–Taylor results. For earlier occurrences of such
phenomena (in several other contexts), see [3, 12, 16, 37].
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Taylor, Ann. Prob., 24, 761–787.

[17] D. Khoshnevisan and Z. Shi (1996). Hitting estimates for Gaussian random fields.
Manuscript. Available (in postscript) at the following web site:
http://www.math.utah.edu/~davar
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[32] S. Song (1991). Inégalités relatives aux processus d’Ornstein–Uhlenbeck à n-
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