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Abstract. We present a self-contained and modern survey of some existing
quasi-sure results via the connection to the Brownian sheet. Among other
things, we prove that quasi-every continuous function: (i) satisfies the local
law of the iterated logarithm; (ii) has Lévy’s modulus of continuity for Brow-
nian motion; (iii) is nowhere differentiable; and (iv) has a nontrivial quadratic
variation. We also present a hint of how to extend (iii) to obtain a quasi-sure
refinement of the M. Csörgő–P. Révész modulus of continuity for almost every
continuous function along the lines suggested by M. Fukushima.

1. Introduction

Throughout, we let Ω denote the space of all continuous functions f : [0, 1] →
R. As usual, Ω is endowed with the compact-open topology [i.e., the topology
of uniform convergence] and its corresponding Borel sigma-algebra B(Ω). Then
a number of classical, as well as modern, theorems of probability theory can be
interpreted a saying something about the “typical” function in Ω in the following
sense:1 If we endow (Ω,B(Ω)) with the standard Wiener measure we then obtain
the classical Wiener space, and various “probabilistic” results hold for almost every
f ∈ Ω. Here and throughout, “almost every” is tacitly understood to hold with
respect to Wiener’s measure on (Ω,B(Ω)). As two notable examples we can consider
the following, although frequently one thinks of these as statements about the
Brownian motion:

(1) (Khintchine [27]). Almost every f ∈ Ω satisfies the local law of the iterated
logarithm; i.e.,

(1.1) lim sup
x→0

f(x)√
2x ln ln

(
1
x

) = − lim inf
x→0

f(x)√
2x ln ln

(
1
x

) = 1.

(2) (Paley, Wiener, and Zygmund [42]). Almost every f ∈ Ω is nowhere-
differentiable.
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Other examples abound.
One might ask for a more restrictive notion of what it means for f ∈ Ω to be

“typical.” In the appendix to [15], D. Williams has proposed this problem, and
has shown us an interesting, less restrictive, class of “typical functions” that is
motivated by infinite-dimensional diffusion theory, and in particular the work of P.
Malliavin in the said area ([37]).

Let W denote the two-parameter Brownian sheet, based on which we can con-
struct the Ornstein–Uhlenbeck Brownian sheet,

(1.2) U(s, t) := e−s/2W (es, t), ∀s, t ≥ 0.

One can think of this two-parameter process as the “evaluations” of the follow-
ing infinite-dimensional (in fact, Ω-valued) stochastic process that is called the
Ornstein–Uhlenbeck process in Wiener space:

(1.3) Ys := U(s, •), ∀s ≥ 0.

It is not difficult to see that Y is an Ω-valued diffusion; this follows at once from
Theorem 2.1 below, for instance. Moreover, since Y0 = W (1, •) is a standard
Brownian motion, it follows that the process Y is a stationary diffusion on the
space of continuous function, and the invariant measure of Y is Wiener’s measure.

Next, consider the hitting probabilities Cap(•) of the diffusion Y killed at an
independent mean-one exponential random variable; i.e., for any Borel set G ⊂ Ω,

(1.4) Cap(G) :=
∫ ∞

0

e−sP {∃s ≥ 0 : Ys ∈ G} ds.

Following D. Williams, we then say that a Borel measurable set G ⊆ Ω holds
quasi-surely if Cap(Gc) = 0.

It is not difficult to see that the set function Cap is a natural capacity in the
sense of G. Choquet. From this it follows that G holds quasi-surely if and only if
its complement is a capacity-zero set; i.e., it is almost-surely never visited by the
Ornstein–Uhlenbeck process on Ω. Equivalently—and this requires only a moment
of reflection—G holds quasi-surely if and only if

(1.5) P{∀s ≥ 0 : U(s, •) ∈ G} = 1.

Thanks to (1.2), the quasi-sure analysis of subsets of Ω can be related to the Brow-
nian sheet.

An alternative, more direct, approach was proposed by M. Fukushima ([22]) who
used the properties of the Dirichlet form associated with the infinite-dimensional
process Y to produce interesting quasi-sure theorems. This was an exciting new de-
velopment on the intersection of probability and infinite-dimensional analysis, and
has led to a rich body of works; cf. [6–8, 11–14,19, 22, 30–34,36, 38–41, 43, 44, 46–50].
(Not all of these references employ the quasi-sure notation in their presentation.)

The said connection to the Brownian sheet makes it clear that whenever G ⊆ Ω
holds quasi-surely, then G holds almost-surely as well. For a converse, it has been
noted in [22, p. 165] that there are events that hold almost-surely and not quasi-
surely. For instance, consider G to be the collection of all continuous functions
f : [0, 1] → R such that f(1) 6= 0. It is clear then that G holds almost surely;
equivalently, with probability one a Brownian motion B satisfies B(1) 6= 0. On
the other hand, G does not hold quasi-surely. [This is equivalent to the statement
that the Brownian sheet W satisfies W (t, 1) = 0 for some t ≥ 1, which happens
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with probability one since t 7→ W (t, 1) is a Brownian motion, and hence is point-
recurrent.]

I will say a few things in the final section of this paper about the aforementioned
analytical methods and their potential-theoretic connections in turn. However, this
paper is chiefly concerned with the aspects of quasi-sure analysis that are close in
spirit to what I believe may be the general theme of this volume; namely, meth-
ods that are based on finite-dimensional processes, concentration, and Gaussian
inequalities.

On a few occasions, Ω will denote the space of continuous functions f : [0, 1] →
Rd , and W will denote d-dimensional two-parameter Brownian sheet, where d ≥ 1.
However, this should not cause any confusion.

2. A Strong Markov Property

The following is an infinite-dimensional strong Markov property of the Brownian
sheet. It is not a particularly difficult result, but it is useful. In addition, this is a
natural place to start our discussion.

Let F := {F(s); s ≥ 0} denote the filtration of σ-algebras defined as follows:
For any s ≥ 0, we first define F00(s) to be the σ-algebra generated by the random
variables {W (r, t); r ∈ [0, s], t ≥ 0}. To each F00(s) we can add all the P-null sets
and call the resulting σ-algebra F0(s). Finally, we make this completed filtration
right-continuous in the usual way; namely, we let F(s) := ∩u>sF0(u).

Theorem 2.1 (A Strong Markov Property). If S is a finite F-stopping time, then
the process t 7→W (S, t) is measurable with respect to F(S). Moreover, the infinite-
dimensional process s 7→W (S+ s, •)−W (S, •) is totally independent of F(S), and
has the same law as W .

Remark 2.2. This is a simple consequence of J. B. Walsh’s strong Markov property
with respect to weak stopping points; cf. [48, Theorem 3.6] or [49, Theorem 1.6] for
details.

Proof. Let I(j;n) denote the half-open interval [j2−n, (j+1)2−n), and for any fixed
real number r > 0, define

(2.1) Sn,r :=
b2nrc∑
j=0

j2−n1I(j;n)(S).

Since S is an F-stopping time, so is Sn,r for any fixed n, r; moreover, we have
Sn,r ≤ S ∧ r, and as n ↑ +∞, then Sn,r ↑ S1{S≤r}. Now

(2.2) W (Sn,r, t) =
b2nrc∑
j=0

W (j2−n, t)1I(j;n)(S).

In particular, for any t1, . . . , tk ≥ 0, the vector (W (Sn,r, ti))1≤i≤k is F(Sn,r)-
measurable, which is another way to say that W (Sn,r, •) is F(Sn,r)-measurable.
Since F(Sn,r) ⊆ F(S), this shows that W (Sn,r, •) is F(S)-measurable. Let n ↑ ∞
and r ↑ ∞ (along rationals), and use the path continuity of W to see that W (S, •)
is F(S)-measurable, as asserted. Suppose Φ is the random function

(2.3) Φ(u) :=
m∏

i=1

φi

(
W (u + si, ti)−W (u, ti)

)
,
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where φ1, . . . , φm are bounded continuous functions, and t1, . . . , tm ≥ 0. Then, for
any bounded F(Sn,r)-measurable random variable ξ,

(2.4) E {Φ(Sn,r) · ξ} =
b2nrc∑
j=0

E
{
Φ(j2−n) · ξ1I(n;j)(S)

}
.

The term “ξ times the indicator function” is F(j2−n)-measurable since S is a stop-
ping time. Therefore, the stationary independent-increments property of Brownian
sheet implies that

(2.5) E {Φ(Sn,r) · ξ} = E{Φ(0)} ·
b2nrc∑
j=0

E
{
ξ1I(n;j)(S)

}
= E{Φ(0)} · E{ξ}.

This shows that a.s.,

(2.6) E
{
Φ(Sn,r)

∣∣∣F(Sn,r)
}

= E{Φ(0)},
which is the desired strong Markov property in the case that S ≡ Sn,r. For the
general case, we let n, r ↑ ∞ along rationals, and use the fact that F(Sn,r) ↑ F(S),
and that Φ(Sn,r) → Φ(S) boundedly, together with H. Föllmer’s multiparameter
version of Hunt’s lemma ([20, Lemma 2.3]), to see that E{Φ(S) |F(S)} = E{Φ(0)}.
This completes our proof. �

The above immediately yields a 0–1 law of the following form:

Corollary 2.3 (A Zero-One Law). If S is a finite F-stopping time, then the fol-
lowing σ-algebra is trivial:

(2.7) A(S) :=
⋂

s∈Q+

σ
{
W (S + s, •)−W (S, •)

}
.

Proof. This follows from Theorem 2.1 and R. M. Blumenthal’s 0-1 law (cf. [3]).
However, we include an argument that we will need later on, but do not wish to
repeat. Consider the infinite-dimensional process X(s; δ) := W (S + s, •)−W (S +
δ, •), as s varies over (δ,∞) and δ > 0 is a fixed number. Thanks to Theorem 2.1
applied to the F-stopping times of the form r + T (where r is nonrandom), for
any fixed δ > 0, all s1, s2, . . . , sn > δ, and for all bounded continuous functionals
φ1, . . . , φm,

(2.8) E


m∏

j=1

φj (X(sj ; δ))

∣∣∣∣∣∣ X(δ)

 = E


m∏

j=1

φj (X(sj; δ))

 , a.s.,

where X(δ) is the σ-algebra generated by {W (S+u, •)−W (S, •); u ∈ [0, δ)}. Since
∩δ∈Q+X(δ) = A(S), we can let δ ↓ 0 and apply Hunt’s lemma (cf. C. Dellacherie
and P.-A. Meyer [16, Chapter V, p. 25]) to deduce that

(2.9) E


m∏

j=1

φj (X(sj; 0))

∣∣∣∣∣∣ A(S)

 = E


m∏

j=1

φj (X(sj ; 0))

 , a.s.

The restriction si > δ has been removed since δ has been allowed to go to zero while
keeping the si’s fixed. Thus, (2.9) holds for all bounded continuous functionals
φ1, . . . , φm and all s1, . . . , sm > 0. A monotone class argument shows that A(S) is
independent of itself, and is trivial as a result. �
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3. A Law of the Iterated Logarithm

Theorem 3.1 (G. J. Zimmerman [50, Theorem 3]). Quasi-every f ∈ Ω satisfies
the law of the iterated logarithm.

Remark 3.2. For an analytic proof see [22, Theorem 4].

Equivalently, Zimmerman’s LIL states that with probability one,

(3.1) lim sup
t↓0

U(s, t)√
2t log log

(
1
t

) = 1, ∀s ∈ [0, 1].

Of course, the point is that the null set in question does not depend upon s ∈ [0, 1]
(or for that matter upon s ≥ 0 by scaling). It is easy to see that the preceding
equation can be translated to the following statement about the Brownian sheet:
With probability one,

(3.2) lim sup
t↓0

W (s, t)√
2st log log

(
1
t

) = 1, ∀s ∈ [1, e].

In the next two subsections we will prove this particular reformulation of Theorem
3.1. Before getting on with proofs, I would like to mention—without proof—the
following theorem of [39]. Recall that a function G : R+ → R is an upper function
for a function g : R+ → R if there exists x0 > 0 such that for all x ∈ [0, x0],
g(x) ≤ G(x).

Theorem 3.3 (T. S. Mountford [39]). An increasing function t 7→ √
tφ

(
1
t

)
is in

the upper class of quasi-every function in Ω if and only if

(3.3)
∫ ∞

4

φ3(t)e−φ2(t)/2 dt

t
< +∞.

On the other hand, the upper class for almost all continuous paths has a different
characterization that is described in the classic paper [18]; it states the following:

Theorem 3.4 (P. Erdős [18]). An increasing function t 7→ √
tφ

(
1
t

)
is in the upper

class of almost every function in Ω if and only if

(3.4)
∫ ∞

4

φ(t)e−φ2(t)/2 dt

t
< +∞.

To illustrate, for any α > 0 define

(3.5) φα(t) :=

√
2 log log

(
1
t

)
+ α log log log

(
1
t

)
, ∀t > 4,

and note that when α ∈ (3, 5], φα is an upper function for almost all continuous
paths, but it is not an upper function for quasi-all of them.

We conclude this section by describing our proof of Theorem 3.1.

3.1. Upper Bound. As in Khintchine’s classical proof of the law of iterated log-
arithm, we begin by verifying the following half of (3.2): With probability one,

(3.6) lim sup
t↓0

W (s, t)√
2st log log

(
1
t

) ≤ 1, ∀s ∈ [1, e].

To prove this, we will need an infinite-dimensional reflection principle that we
state in the following abstract form.
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Lemma 3.5 (The Reflection Principle). If B is a continuous Brownian motion in
a separable Banach space B , and if N is any seminorm on B that is compatible with
the topology of B , then for all T, λ > 0,

(3.7) P

{
sup

t∈[0,T ]

N (B(t)) ≥ λ

}
≤ 2P {N (B(T )) ≥ λ} .

Proof. We follow the original ideas of D. André and P. Lévy that were developed
for 1-dimensional Brownian motion.

Consider the stopping time

(3.8) σ := inf {t > 0 : N (B(t)) ≥ λ} .
SinceN is compatible with the topology of B , and sinceW is continuous,N (B(σ)) =
λ on {ω : σ(ω) < +∞}. Now

P

{
sup

t∈[0,T ]

N (B(t)) ≥ λ

}
= P {N (B(T )) ≥ λ}+ P {σ < T , N (B(T )) < λ}

= P {N (B(T )) ≥ λ}+ P {σ < T , N (B(T )−B(σ) +B(σ)) < λ}(3.9)
= P {N (B(T )) ≥ λ}+ P {σ < T , N (−B(T ) + 2B(σ)) < λ} ,

thanks to the symmetry and independent-increments (i.e., the strong Markov; cf.
Theorem 2.1) properties of W . But the seminorm property of N insures us of its
subadditivity. Thus, on {σ < +∞} we have

(3.10) N (−B(T ) + 2B(σ)) ≥ 2N (B(σ)) −N (B(T )) = 2λ−N (B(T )).

The previous two displays, used in conjunction, prove the result. �

Proof of (3.6). Fix c, θ > 1, and consider the measurable events

(3.11) Fn :=

{
ω : ∃s ∈ [1, e], sup

0≤t≤θ−n

W (s, t) ≥
√

2csθ−n log log θn

}
.

We can rewrite Fn as follows.

(3.12) Fn =

{
ω : sup

0≤t≤θ−n

N (B(t)) ≥
√

2cθ−n log log θn

}
,

where for all f ∈ Ω, N is the seminorm

(3.13) N (f) = sup
1≤s≤e

f(s)√
s
,

and t 7→ B(t) is the following Brownian motion in the Banach space B of continuous
functions on [1, e] endowed with its compact-open topology:

(3.14) B(t)(s) =
W (s, t)√

s
.

It follows readily that all of the assumptions of the reflection principle are verified
in the present context; cf. Lemma 3.5. Thus, the latter lemma implies that

P (Fn) ≤ 2P
{

sup
1≤s≤e

W (s, θ−n)√
s

≥
√

2cθ−n log log θn

}
= 2P

{
sup

0≤s≤1
O(s) ≥

√
2c log log θn

}
,

(3.15)
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where O denotes a one-parameter Ornstein–Uhlenbeck process. C. Borell’s inequal-
ity ([2]) shows that as n→∞, we have the estimate P {Fn} ≤ n−c+o(1). Since c > 1,
n 7→ P{Fn} forms a summable sequence in n; thus, by the Borel–Cantelli lemma,
with probability one, eventually Fn does not occur. Equivalently, with probability
one,

(3.16) lim sup
n→∞

sup0≤t≤θ−n W (s, t)√
2sθ−n log log θn

≤ √
c, ∀s ∈ [1, e].

Since c, θ > 1 are arbitrary, monotonicity arguments yield (3.6). �

3.2. Lower Bound. Theorem 3.1 now follows once we show that

(3.17) lim sup
t↓0

W (s, t)√
2st log log

(
1
t

) ≥ 1, ∀s ∈ [1, e].

Proof of (3.17). Fix four constants ε, c ∈ (0, 1), τ > 0, and θ > 1, and consider the
events

(3.18) En :=

{
ω : ∀s ∈ [τ, τ(1 + ε)],

W (s, θ−n)−W (s, θ−n−1)√
2cs(θ−n − θ−n−1) log log θn

≥ 1

}
.

Evidently, independently of τ > 0,

(3.19) P(En) = P
{

inf
1≤s≤1+ε

B(s)√
s
≥

√
2c log log θn

}
,

where B is a Brownian motion. Trivially, for any given c′ ∈ (c, 1), and as n→∞,

P (En) ≥ P
{

inf
1≤s≤1+ε

B(s) ≥
√

2c(1 + ε) log log θn

}
≥ P

{
sup

1≤s≤1+ε
|B(s)−B(1)| ≤ 1

}
P

{
B(1) ≥

√
2c′(1 + ε) log log θn

}
= n−c′(1+ε)+o(1).

(3.20)

Now if we also insist that c(1+ε) < 1, then we can arrange things so that c′(1+ε) <
1. In this case, the independence of E1,E2, . . ., used in conjunction with (3.20) and
the Borel–Cantelli lemma, shows that infinitely many En’s occur with probability
one. Consequently, as long as c(1 + ε) < 1, then outside one null set, the following
holds simultaneously for all s ∈ [τ, τ(1 + ε)]:

lim sup
n→∞

W (s, θ−n)√
2cs(θ−n − θ−n−1) log log θn

≥ 1− lim sup
n→∞

|W (s, θ−n−1)|√
2cs(θ−n − θ−n−1) log log θn

.

(3.21)

The already-proven upper bound (cf. §3.1) implies that a.s., and simultaneously
for all s ∈ [τ, τ(1 + ε)],

lim sup
n→∞

|W (s, θ−n−1)|√
2cs(θ−n − θ−n−1) log log θn

=
1√
θ − 1

lim sup
n→∞

|W (s, θ−n−1)|√
2csθ−n−1 log log θn+1

≤ 1√
c(θ − 1)

.

(3.22)
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Thus, by (3.21) and (3.22), a.s., and simultaneously for all s ∈ [τ, τ(1 + ε)],

lim sup
t→0

W (s, t)√
2cst log log

(
1
t

) ≥ lim sup
n→∞

W (s, θ−n)√
2csθ−n log log θn

≥
√

1− 1
θ
· lim sup

n→∞
W (s, θ−n)√

2cs(θ−n − θ−n−1) log log θn
≥

√
1− 1

θ
−

√
1
cθ
.

(3.23)

Since θ > 1 is arbitrary, we can let θ ↑ +∞ along a rational sequence to deduce
that if c(1 + ε) > 1, then almost surely,

(3.24) lim sup
t→0

W (s, t)√
2cst log log

(
1
t

) ≥ 1, ∀s ∈ [τ, τ(1 + ε)], ∀τ ∈ Q+ .

Let c ↑ (1 + ε)−1 along a rational sequence to see that

(3.25) lim sup
t→0

W (s, t)√
2st log log

(
1
t

) ≥ √
1

1 + ε
, ∀s ∈ [τ, τ(1 + ε)], ∀τ ∈ Q+ .

Equation (3.17) follows from this readily. �

4. J. B. Walsh’s Proof of Theorem 3.1

The argument that was used to derive Theorem 3.1 (essentially due to G. J.
Zimmerman) is quite natural, and has other uses in quasi-sure analysis as we shall
see in the next section. I now wish to present a different derivation of Theorem 3.1—
due to J. B. Walsh—that is elegant and short. It also has striking consequences on
the “propagation of singularities” along the Brownian sheet. The main ingredient
of Walsh’s proof is the celebrated “section theorem” of [15] that, borrowing from
the words of M. Sharpe, “is one of the prime achievements of [stochastic analysis].”
See [45, p. 388].

4.1. P.-A. Meyer’s Section Theorem. In order to describe a version of Meyer’s
section theorem that is suitable for our needs, we need to recall a few notions from
the general theory of processes.

Let (Ω,G,P) denote a filtered probability space, where the filtration G :=
(Gt)t≥0 satisfies the “usual conditions” of stochastic analysis, i.e., G0 contains
all the P-null sets, and Gt = ∩r>tGr. A stochastic process {Xt}t≥0 is said to
be optional if: (i) For all t ≥ 0, Xt is Gt-measurable; and (ii) t 7→ Xt(ω) is right-
continuous with left-limits for each ω ∈ Ω. The optional σ-algebra O is the smallest
σ-algebra of subsets of [0,∞)×Ω that renders optional processes measurable; i.e., O
is the σ-algebra generated by all sets of the form {(t, ω) ∈ [0,∞)×Ω : Xt(ω) ∈ A}
where A ⊆ R is measurable and X is an optional process. Finally, a stochastic set
Γ ⊆ [0,∞)× Ω is optional if it is measurable with respect to O.

Theorem 4.1 (P.-A. Meyer [15, Chapter IV, pp. 84–85]). If F is an optional
set, then for every ε > 0, there exists a stopping time Tε : Ω → [0,∞) such that
P{Tε < +∞} ≥ P{Π(F )} − ε, where Π is the natural projection from [0,∞) × Ω
onto Ω.
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4.2. J. B. Walsh’s Proof. For all s ∈ [0, 1] define

(4.1) Ls := lim sup
t→0+

W (s, t)√
2t log log

(
1
t

) .
The standard law of the iterated logarithm implies that for each fixed s > 0,
Ls =

√
s, a.s. In particular, thanks to Fubini’s theorem,

(4.2) Leb
{
s > 0 : Ls 6=

√
s
}

= 0, a.s.,

where Leb denotes Lebesgue’s measure on R. Our goal is to show that P{∀s > 0 :
Ls =

√
s} = 1. Suppose to the contrary that P{∃s > 0 : Ls 6= √

s} > 0. We
will use the section theorem to obtain a contradiction. To do so, we need to meet
the conditions of Theorem 4.1. Let Gt := F(t) (the filtration of §2), that we recall
satisfies the usual conditions. Let

(4.3) F :=
{
(t, ω) : Lt(ω) 6= √

t
}
.

Since s 7→ W (s, •) is continuous (in the space of continuous functions on [0, 1]
endowed with compact-open topology), and since F is generated by the latter pro-
cess, the stochastic set F is optional. By the section theorem (Theorem 4.1), there
would then exist a finite F-stopping time S, such that P{LS 6=

√
S} > 0. (Technical

remark: The process s 7→ W (s, •) is not real-valued. However, by considering all
processes of the form

∫
W (s, t)µ(dt) where µ is a linear combination of point masses,

we can see that F is generated by continuous real-valued processes, so that the sec-
tion theorem can be applied as stated.) Without loss of generality, we can assume
that there exists a δ > 0 (fixed and nonrandom), such that P{LS <

√
S − δ} > 0.

(If for some δ > 0, P{LS >
√
S + δ} > 0, then a similar argument can be invoked

to get a contradiction.)
Thanks to the strong Markov property (Theorem 2.1) and the usual LIL, for any

s > 0, there exists a null set off of which,

(4.4) LS+s ≤ LS + lim sup
t→0+

W (S + s, t)−W (S, t)√
2t log log

(
1
t

) = LS +
√
s.

Therefore, for all s > 0 sufficiently small,

(4.5) P
{
LS+s <

√
S + s

}
≥ P{LS+s <

√
S +

√
s− δ} > 0.

We can integrate this [ds] and use Fubini’s theorem to deduce that with positive
probability,

(4.6) Leb
{
s > 0 : LS+s <

√
S + s

}
> 0,

which contradicts (4.2). �

5. Modulus of Continuity

A well-known result of P. Lévy ([35]) states that almost all f ∈ Ω have the
following uniform modulus of continuity:

(5.1) lim sup
ε→0+

sup
u,v∈[0,1]:
|u−v|≤ε

|f(u)− f(v)|√
2ε log

(
1
ε

) = 1.
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In an elegant paper that popularized the subject of quasi-sure analysis, M. Fukush-
mia proved the following quasi-sure analogue.

Theorem 5.1 (M. Fukushima [22, Theorem 3]). Quasi-every f ∈ Ω has the uni-
form modulus of continuity described by (5.1).

The argument of [22] involves infinite-dimensional analysis and Dirichlet form
estimates. Instead of going that route, we follow a more classical route that has the
advantage of providing us with a more delicate result. To explain this extension,
we first recall that in their book ([9]), M. Csörgő and P. Révész have shown us that
even if we replace the lim sup by a proper limit there, (5.1) holds for almost every
function. By adapting their argument, we plan to prove the following refinement
of Theorem 5.1.

Theorem 5.2 (M. Fukushima [22, Theorem 3]). Quasi-every f ∈ Ω satisfies (5.1)
with lim sup replaced by a proper limit.

Proof. Our goal is to show that with probability one,

(5.2) lim
ε→0+

sup
u,v∈[0,1]:
|u−v|≤ε

|U(s, u)− U(s, v)|√
2ε| log ε| = 1, ∀s ∈ [0, 1].

Instead, we will prove the following stronger result: Almost surely, as ε→ 0+,

(5.3) sup
u,v∈[0,1]:
|u−v|≤ε

|U(s, u)− U(s, v)|√
2ε| log ε| −→ 1,

uniformly for all s ∈ [0, 1]. Clearly, this is equivalent to the following statement
about the Brownian sheet that we propose to derive: With probability one,

(5.4) lim
ε→0+

sup
s∈[1,e]

∣∣∣∣∣∣∣ sup
u,v∈[0,1]:
|u−v|≤ε

|W (s, u)−W (s, v)|√
2sε| log ε| − 1

∣∣∣∣∣∣∣ = 0.

5.1. The Upper Bound. Fix 0 < θ < 1, and define δn := n2θn, and Θn := {jθn :
0 ≤ j ≤ θ−n}, and notice that

(5.5) P

 max
u,v∈Θn:
|u−v|≤δn

|W (s, u)−W (s, v)| ≥
√

2sδnλ

 ≤ 2n2|Θn|e−λ,

since for every v ∈ Θn, there are no more than 2n2 many u ∈ Θn such that
|u− v| ≤ δn. Let λ := p log(δ−1

n ) for a fixed p > 1, and appeal to our abstract form
of reflection principle (Lemma 3.5) to deduce that for any τ > 0,

P

 max
s∈[0,τ ]

max
u,v∈Θn:
|u−v|≤δn

|W (s, u)−W (s, v)| ≥
√

2pτδn log(δ−1
n )


≤ 2P

 max
u,v∈Θn:
|u−v|≤δn

|W (τ, u)−W (τ, v)| ≥
√

2τpδn log(δ−1
n )


≤ θn(p−1)+o(n).

(5.6)
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On the other hand, by Kolmogorov’s continuity theorem (cf. [28, Chapter 5, Exer-
cise 2.5.1] for a suitable version of the latter theorem), for any integer k ≥ 1, there
exists a contant Ak such that for all r ∈ (0, 1),

(5.7) E

 sup
s∈[0,e]

sup
u,v∈[0,1]:
|u−v|≤r

|W (s, u)−W (s, v)|k
 ≤ Akr

k
2 .

Thus, thanks to the triangle inequality, for any fixed η > 0 and ` ≥ 0,

(5.8) P {sup |W (s, u)−W (s, v)| ≥ ψn} ≤ θn(p−1)+o(n) + 2A4n
−2,

where the supremum is taken over all s ∈ [1 + `η, 1 + (`+1)η] and u, v ∈ [0, 1] such

that |u− v| ≤ δn, and ψn :=
√

2p{1 + (`+ 1)η}δn log
(
δ−1
n

)
+ 2nθ

n
2 . The displayed

probability is summable in n. But as n→∞, we have δn = (1+o(1))δn+1; moreover
p > 1 is arbitrary. Therefore, the Borel–Cantelli lemma and monotonicity together
show that with probability one

(5.9) lim sup
ε→0+

sup
|W (s, u)−W (s, v)|√

2ε| log ε| ≤
√

1 + (`+ 1)η,

where the supremum is taken over all s ∈ [1 + `η, 1 + (`+1)η] and u, v ∈ [0, 1] such
that |u− v| ≤ ε. For the s in question, 1 + (`+ 1)η ≤ s(1 + η). Since there are only
finitely many integers ` to consider (namely, 0 ≤ ` ≤ e/η),

(5.10) lim sup
ε→0+

sup
s∈[1,e]

sup
u,v∈[0,1]:
|u−v|≤ε

|W (s, u)−W (s, v)|√
2sε| log ε| ≤

√
1 + η.

Let η ↓ 0 along a rational sequence to deduce that a.s.,

(5.11) lim sup
ε→0+

sup
s∈[1,e]

sup
u,v∈[0,1]:
|u−v|≤ε

|W (s, u)−W (s, v)|√
2sε| log ε| ≤ 1.

This proves half of (5.4).

5.2. The Lower Bound. Notice that for any p ∈ (0, 1) fixed, all integers n ≥ 1,
and all s > 0,

P

 sup
u,v∈[0,1]:

|u−v|≤n−1

|W (s, u)−W (s, v)| ≤
√

2ps
n

logn


≤ P

{
max

0≤j≤n−1

∣∣∣∣W (
s,
j + 1
n

)
−W

(
s,
j

n

)∣∣∣∣ ≤
√

2ps
n

logn

}
=

(
1− P

{
|N | >

√
2p logn

})n

,

(5.12)

where N denotes a standard normal variable. Consequently, as n→∞,

(5.13) P

 sup
u,v∈[0,1]:

|u−v|≤n−1

|W (s, u)−W (s, v)| ≤
√

2ps
n

logn

 ≤ exp
(
−n1−p+o(1)

)
,
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where o(1) goes to 0 uniformly in s > 0. Let

(5.14) σn :=
{
1 + jn−4 : 0 ≤ j ≤ (n+ 1)4

}
to see that as n→∞,

(5.15)
∞∑

n=1

P

min
s∈σn

sup
u,v∈[0,1]:

|u−v|≤n−1

|W (s, u)−W (s, v)|√
s

≤
√

2p
n

logn

 < +∞.

Since p ∈ (0, 1) is arbitrary, by the Borel–Cantelli, and after applying another
interpolation argument involving (5.7) and yet another monotonicity argument, we
conclude that a.s.,

(5.16) lim inf
ε→0+

inf
s∈[1,e]

sup
u,v∈[0,1]:
|u−v|≤ε

|W (s, u)−W (s, v)|√
2sε| log ε| ≥ 1.

Together with (5.11), this yields (5.4) whence (5.3). �

6. Nowhere-Differentiability

A classical result of R. E. A. C. Paley, N. Wiener and A. Zygmund ([42]) states
that almost all continuous functions are nowhere-differentiable; see also [17]. This
has been extended in various directions in [8], a consequence of which is the follow-
ing; see [22, Theorem 2] for an analytical proof of most of this theorem.

Theorem 6.1 (M. Csörgő and P. Révész [8, Theorem 3]). Quasi-every f ∈ Ω is
nowhere-differentiable.

We mention—without proof—the following uniform modulus of nondifferentia-
bility that is a two-parameter extension of the result of [10]: With probability one,
as ε→ 0+,

(6.1) inf
t∈[0,T ]

sup
u∈[0,ε]

|U(s, t+ u)− U(s, t)|√
ε/| log ε| −→ π√

8
,

uniformly for all s ∈ [0, 1]. In particular, the Csörgő–Révész modulus of nondiffer-
entiability holds for quasi-all continuous functions.

In fact, M. Csörgő and P. Révész [8, Theorem 3] proved the much stronger
theorem that the Brownian sheet is nowhere-differentiable along any line in the
plane. Here we have specialized this result to the simpler case where the lines are
parallel to one of the axes. A consequence of this more general theorem of [8] is that
the level sets of the Brownian sheet a.s. do not contain straight-line segments. More
recently, R. C. Dalang and T. S. Mountford have discovered a striking generalization
of this fact:

Theorem 6.2 (R. C. Dalang and T. S. Mountford [12]). With probability one, the
level curves of the Brownian sheet do not contain any curve that is differentiable
somewhere.

Proof of Theorem 6.1. Motivated by the analysis of [8], our strategy will be to show
that if T > 0 is held fixed, then with probability one,

(6.2) inf
s∈[0,1]

lim sup
n→∞

inf
t∈[0,T ]

sup
u∈[0,n−1]

|U(s, t+ u)− U(s, t)|
n−1

= +∞.
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This implies Theorem 6.1. With this in mind, let us first recall the following
estimate: If B denotes standard Brownian motion, then there exists a constant
p > 0 such that for all x > 0, − logP

{
sup0≤t≤1 |B(t)| ≤ x

}
is bounded below by

(px2)−1; cf. K. L. Chung [5, Theorem 2]. Equivalently, for any n ≥ 1 and all
t, a > 0,

(6.3) P

{
sup

u∈[0,n−1]

|B (t+ u)−B(t)| ≤ a

n

}
≤ exp

(
− n

pa2

)
,

for the same constant p whose valued does not depend on our choice of (a, t, n). [In
fact, the optimal choice is p = 8π−2.] Consequently,

P

{
inf

t∈[0,T ]
sup

u∈[0,n−1]

|B (t+ u)−B(t)| ≤ a

n

}

≤ P

{
min

0≤j≤n4
sup

u∈[0,n−1]

∣∣B (
jn−4T + u

)−B
(
jn−4T

)∣∣ ≤ 2a
n

}
+ P

{
sup |B(u)−B(v)| ≥ a

2n

}
≤ (1 + n4) exp

(
− n

4pa2

)
+

( n

2a

)2

E
[
sup |B(u)−B(v)|2

]
,

(6.4)

where the last two suprema are over all u, v ∈ [0, 1] such that |u− v| ≤ n−4T . By
(5.7), the last expectation is seen to be no more than A2Tn

−4. Consequently,

(6.5)
∞∑

n=1

P

{
inf

t∈[0,T ]
sup

r∈[0,n−1]

|B (t+ r) −B(t)| ≤ a

n

}
< +∞.

An interpolation argument improves this condition to the following one for the
Brownian sheet W :

(6.6)
∞∑

n=1

P

{
inf

s∈[0,e]
inf

t∈[0,T ]
sup

r∈[0,n−1]

|W (s, t+ r)−W (s, t)| ≤ a

n

}
< +∞,

from which we can easily deduce (6.2). �

7. Quadratic Variation

We now come to the theorem that started much of the interest in quasi-sure
analysis. Namely, D. Williams’s quasi-sure refinement of the classical theorem of P.
Lévy that states that for almost every continuous function f , at time t the function
f has finite quadratic variation t; cf. the appendix of [38].

Theorem 7.1 (D. Williams [15, Appendix]). For each n = 1, 2, . . ., let 0 = π0,n <
π1,n < · · · < πn,n = 1 denote a partition of [0, 1] such that

∑
n max1≤j≤n(πj,n −

πj−1,n) < +∞. Then quasi-every f ∈ Ω has the following property: For all t ∈
[0, 1],

(7.1) lim
n→∞

n∑
j=1

∣∣∣f(πj,nt)− f(πj−1,nt)
∣∣∣2 = t.
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Proof. In the interest of saving space, I will prove the slightly weaker statement
that for each fixed t > 0, with probability one,

(7.2) lim
n→∞ sup

1≤s≤e

∣∣∣∣∣∣
n∑

j=1

∣∣W (s, πj,nt)−W (s, πj−1,nt)
∣∣2 − st

∣∣∣∣∣∣ = 0.

The proof that is to follow can be enhanced, using similar ideas, to show that in
fact the above holds outside a single null set, uniformly for all t ∈ [0, 1], which
yields the full statement of the theorem.

We define the following, all the time keeping t ∈ [0, 1] fixed:

(7.3) θj(s) :=
∣∣∣W (s, πj,nt)−W (s, πj−1,nt)

∣∣∣2.
A few lines of calculations then show the existence of a universal constant K1 such
that E{|θj(s′) − θj(s)|8} ≤ K1|s − s′|4(πj,n − πj−1,n)4. Thus, by the Kolmogorov
continuity theorem ([28, Chapter 5, Exercise 2.5.1]), we can find a universal constant
K2 such that for all η ∈ (0, 1), j = 1, . . . , n, and n = 1, 2, . . .,

(7.4) E

 max
s,s′∈[1,e]:
|s−s′|≤η

|θj(s)− θj(s′)|8
 ≤ K2η

3(πj,n − πj−1,n)4.

Now choose an equipartition Sn of [1, e] with mesh(Sn) → 0 at a rate to be described
shortly, and note that for any fixed δ > 0,

(7.5) P
{

max
s∈Sn

|Vn(s, t)| ≥ δ

}
≤ #(Sn)

δ2
max
s∈Sn

Var(Vn(s, t)),

where

(7.6) Vn(s, t) :=
n∑

j=1

|W (s, πj,nt)−W (s, πj−1,nt)|2 − st.

On the other hand, Vn(s, t) is a sum of n i.i.d. random variables, and a sim-
ple computation yields a universal constant K3 such that uniformly for all s ≤
e, Var(Vn(s, t)) ≤ K3

∑n
j=1(πj,n − πj−1,n)2 ≤ K3 max1≤j≤n(πj,n − πj−1,n)) :=

K3‖Π‖n. This yields

(7.7) P
{

max
s∈Sn

|Vn(s, t)| ≥ δ

2

}
≤ K3

δ2
#(Sn)‖Π‖n.

Thus, for all n large,

P

{
sup

s∈[1,e]

|Vn(s, t)| ≥ δ

2

}

≤ K3

δ2
#(Sn)‖Π‖n + P

 max
s,s′∈[1,e]

|s−s′|≤mesh(Sn)

n∑
j=1

|θj(s)− θj(s′)| ≥ δ

4


≤ K3

δ2
#(Sn)‖Π‖n +K2

(
4
δ

)8

[mesh(Sn)]
3

n∑
j=1

(πj,n − πj−1,n)4

≤ K3

δ2
#(Sn)‖Π‖n +K2

(
4
δ

)8

[mesh(Sn)]
3 ‖Π‖3

n,

(7.8)
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thanks to (7.7). Since
∑

n ‖Π‖n < ∞ we can always choose Sn such that the left-
hand side of the preceding display is summable (in n), and this proves (7.2). �

8. W. S. Kendall’s Theorem

Upto this point, we have adopted the viewpoint that the Brownian sheet (equiv-
alently, the Ornstein–Uhlenbeck process) is a natural diffusion on the space of
continuous functions. While this viewpoint provides us with a great deal of insight
about the sheet, it completely ignores the effect of the geometry of the parameter
space on the process. The following is a delightful example of the subtle effect of
the geometry of the parameter space, and was discovered by W. S. Kendall.

Theorem 8.1 (W. S. Kendall [26, Theorem 1.1]). If s, t > 0 are arbitrary but
fixed, then with probability one, the level curve of W that goes through (s, t) is
totally disconnected.

Remark 8.2. One can restate Theorem 8.1 in the following manner: Consider the
level curve of W that goes through (s, t), and let

Γ(s, t) := The connected component of
{
(u, v) : W (u, v) = W (s, t)

}
that contains (s, t).

(8.1)

By the continuity of W , this definition is perfectly well-defined, and Theorem 8.1
asserts that with probability one, Γ(s, t) = {(s, t)}. In other words, the excursion
at the level W (s, t) corresponding to the time-point (s, t) is trivial. See the works
of R. C. Dalang and J. B. Walsh [13, 14] who present very precise descriptions of
the local structure of the excursions of the Brownian sheet.

Remark 8.3. The null set in question depends on the choice of (s, t). Moreover, a
little thought shows that Theorem 8.1 cannot hold a.s. simultaneously for all (s, t)
in any given open set. In this sense, this result is optimal.

The proof of Kendall’s theorem rests on the following zero-one law; it is a two-
parameter analogue of the infinite-dimensional zero-law described earlier in Corol-
lary 2.3.

Lemma 8.4 (S. Orey and W. E. Pruitt [41, p. 140]). For any given s, t > 0, the
following σ-algebra is trivial:

(8.2) G(s, t) :=
⋂

ε∈Q+

σ
{
W (u, v)−W (s, t) : |(s, t)− (u, v)| < ε

}
,

where | · · · | denotes the `∞-norm on R2 for the sake of concreteness.

Proof. (Sketch) This requires ideas that are very close to those introduced in the
proof of Corollary 2.3. Thus, we will indicate only the essential differences between
the two proofs.

We can think of Brownian sheet as the distribution function of white noise.
Namely, let Ẇ denote one-dimensional white noise spread over R2 and define the
Brownian sheet W as

(8.3) W (u, v) := Ẇ
(
[0, u]× [0, v]

)
, ∀u, v ≥ 0.



16 DAVAR KHOSHNEVISAN

[The process Ẇ is a well-defined vector-valued random measure with values in
L2(P); cf. [49, p. 283–285] and [28, Chapter 5, §1.3] for more details.] In this way,
we can write

(8.4) G(s, t) =
⋂

ε∈Q+

σ
{
Ẇ

(
[0, s+ ε]× [0, t+ ε] \ [0, s− ε]× [0, t− ε]

)}
.

Now suppose that R is a rectangle with sides parallel to the axes, and that R does
not intersect the annulus, [0, s + ε] × [0, t + ε] \ [0, s − ε] × [0, t − ε]. Then the
elementary properties of white noise show us that Ẇ(R) is independent of G(s, t).
To finish, consider a finite union of such R’s, and “take limits” in a manner similar
to what we did in the proof of Corollary 2.3. �

Proof of Theorem 8.1. We may assume without loss of too much generality that
s = t = 1. Consider

(8.5) B(r) :=
{
(x, y) ∈ R2 : |(x, y)− (1, 1)| ≤ r

}
,

which is the `∞-ball of radius r > 0 about (1, 1) ∈ R2 . Also let ∂B(r) denote
its Euclidean boundary; this is the perimeter boundary of the square of side 2r
centered at (1, 1). Let

J(r) :=

{
ω : W (1, 1) > sup

(u,v)∈∂B(r)

W (u, v)

}

=

{
ω : W (1, 1) > sup

(u,v)∈∂B(r)

W (ru+ 1− r, rv + 1− r)

}
.

(8.6)

Then the theorem follows at once from Lemma 8.4 and the following:

(8.7) lim inf
r→0+

P{J(r)} > 0.

For then it follows that with probability one, infinitely many of the J(n−1)’s occur,
and clearly this does the job. Therefore, it suffices to prove (8.7). By (8.3), we can
write the following path decomposition: For any r ∈ (0, 1) fixed,

W (1− r + ur, 1− r + vr) =
√

(1 − r)r
[
X(u) + Y (v)

]
+ rZ(u, v)−W (1− r, 1− r),

∀u, v ≥ 0,(8.8)

where X and Y are standard Brownian motions, Z is a standard Brownian sheet,
and the three are independent from one another as well as from W (1 − r, 1 − r).
Indeed, here are the formulas for (X,Y, Z) in terms of the white noise Ẇ of (8.3):

X(u) :=
1√

(1 − r)r
Ẇ

(
[1− r, 1− r + ur]× [0, 1− r]

)
Y (v) :=

1√
(1 − r)r

Ẇ
(
[0, 1− r]× [1− r, 1− r + vr]

)
Z(u, v) :=

1
r
Ẇ

(
[1− r, 1− r + ur]× [1− r, 1− r + vr]

)
.

(8.9)

We only need these formulas to check the assertions about (X,Y, Z), and this is
only a matter of checking a few covariances. In light of the second equality in (8.6),
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we have ω ∈ J(r) if and only if√
(1 − r)r

[
X(1) + Y (1)

]
+ rZ(1, 1)

>
√

(1− r)r
[
X(u) + Y (v)

]
+ rZ(u, v),

(8.10)

simultaneously for all (u, v) ∈ ∂B(1). But thanks to the sample function continuity
of Z, the supremum of |Z(u, v)| over all (u, v) ∈ ∂B(1) is bounded almost surely.
Thus, we can divide the preceding display by

√
r and let r → 0+ to see that

(8.11) lim
r→0+

P{J(r)} = P
{
∀(u, v) ∈ ∂B(1) : X(1) + Y (1) > X(u) + Y (v)

}
,

and it is easy to see that the latter probability is strictly positive. To see this, let
Xi := X(i), Yi := Y (i) (i = 1, 2). Also let X+

2 := sup0≤u≤2X(u), and Y +
2 :=

sup0≤v≤2 Y (v), and note that the latter probability is equal to

P
{
X1 + Y1 > X2 + Y +

2 , X1 + Y1 > X+
2 + Y2

}
≥ P

{
X1 −X2 ≥ 1, X1 −X+

2 ≥ −1
}
× P

{
Y +

2 − Y1 ≤ 1, Y2 − Y1 ≤ −1
}
,

(8.12)

and this is easily seen to be positive. This verifies (8.7) and the result follows. �

9. Criterion for Hitting Points

Thus far, we have only touched upon results that hold (or do not hold) for quasi-
every one-dimensional function. This in turn has led us to the one-dimensional
Brownian sheet. Now we turn to results in higher dimensions. With this in mind,
let W denote the Brownian sheet in d dimensions and md the standard Lebesgue
measure on the Lebesgue-measurable subsets of Rd . Stated in terms of Wiener
measure, this yields the following.

We begin with the classical fact that d-dimensional Brownian can hit points if
and only if d = 1.

Theorem 9.1 (P. Lévy). The following are equivalent: Given any x ∈ Rd ,
(i) Almost every continuous f : [0, 1] → Rd avoids {x}; i.e., x 6∈ f([0, 1]).
(ii) Almost every continuous f : [0, 1] → Rd has a Lebesgue-null range; i.e.,

md(f([0, 1])) = 0.
(iii) d ≥ 2.

For the above conditions (i) and (ii) to hold for quasi-every function f , one needs
the stronger condition that d ≥ 4. Indeed, S. Orey and W. E. Pruitt have proven
the following result.

Theorem 9.2 (S. Orey and W. E. Pruitt [41, Theorems 3.3 and 3.4]). The following
are equivalent: Given any fixed x ∈ Rd :

(i) With probability one, d-dimensional Brownian sheet does not hit {x}.
(ii) The random set W (R2

+ ) has zero d-dimensional Lebesgue measure.
(iii) d ≥ 4.
(iv) Quasi-every d-dimensional continuous function avoids x.

Let U(s, t) := e−s/2W (es, t) as before, and note that (iv) is equivalent to the
following:

(9.1) P {∃s ∈ [0, 1] : for some t > 0, U(s, t) = x} = 0, ∀x ∈ Rd .
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On the other hand, by the Cameron–Martin formula, the law of {U(s, t); s, t ∈
[0, 1]} is mutually absolutely continuous with respect to the law of {W (s, t); s ∈
[1, e], t ∈ [0, 1]}; cf. [4]. Therefore, (iv)⇔(i), and we only need to prove the equiva-
lence of (i)–(iii). I will describe most of this proof in three steps.

Proof of (i)⇒(ii). By Fubini’s theorem,

(9.2) E
{
md

(
W ([0, 1]2)

)}
=

∫
Rd

P
{
x ∈W ([0, 1]2)

}
dx = 0,

thanks to (i). Scaling then shows that with probability one, md(W (R2
+ )) = 0. �

Proof of (ii)⇒(iii). We will use the Fourier-analytical ideas of [25], and prove that
if (iii) fails, then so will (ii). Thus, let us assume that d ≤ 3, and consider the
occupation (or sojourn) measure,

(9.3) σ(A) :=
∫ ∞

0

∫ ∞

0

e−s−t1A (W (s, t)) ds dt.

Its Fourier transform is given by

(9.4) σ̂(ξ) =
∫ ∞

0

∫ ∞

0

e−s−teiξ·W (s,t) ds dt, ∀ξ ∈ Rd .

Our strategy is to show that with probability one, σ̂ ∈ L2(Rd). If so, then by
the Plancherel theorem, σ is a.s. absolutely continuous with respect to md, and(

dσ
dmd

)
∈ L2(Rd ) almost surely. But the fact that σ

(
W (R2

+ )
)

= 1 implies that

(9.5) md(W (R2
+ )) =

∫
W (R2

+)

dσ(ξ)
dmd

md(dξ) = 1.

Thus, (ii)⇒(iii) follows once we show that E{‖σ̂‖2
L2(Rd)} < +∞. The latter expec-

tation is equal to the following:

E
{
‖σ̂‖2

L2(Rd)

}
=

∫
R2

+

∫
R2

+

∫
Rd

e−s1−s2−t1−t2E
{
eiξ·[W (s1,s2)−W (t1,t2)]

}
dξ ds dt

=
∫
R2

+

∫
R2

+

∫
Rd

e−s1−s2−t1−t2 exp
(
−|ξ|

2τ2(s, t)
2

)
dξ ds dt,

(9.6)

where τ2(s, t) := Var[W (s1, s2)−W (t1, t2)] is the md-measure of the set difference
between the rectangles [0, s1] × [0, s2] and [0, t1] × [0, t2]. A picture will convince
you that no matter how the two said rectangles are situated, we always have the
bound, τ2(s, t) ≥ (s2 ∧ t2)|s1 − t1|+ (s1 ∧ t1)|s2 − t2|. Thus,

E
{
‖σ̂‖2

L2(Rd)

}
≤ 4

∫∫
0≤s1≤t1

∫∫
0≤s2≤t2

∫
Rd

e−s1−s2−t1−t2

× exp
(
−|ξ|

2 [s2(t1 − s1) + s1(t2 − s2)]
2

)
dξ ds dt

= 4
∫
R2

+

∫
R2

+

∫
Rd

e−2s1−2s2−t1−t2 exp
(
−|ξ|

2 [s2t1 + s1t2]
2

)
dξ ds dt.

(9.7)
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We can integrate [dt] to deduce that E{‖σ̂‖2
L2(Rd)} ≤ 4

∫
Rd Q(ξ) dξ, where

(9.8) Q(ξ) :=
∫
R2

+

e−2(s1+s2)

(
1 +

|ξ|2s1
2

)−1

·
(

1 +
|ξ|2s2

2

)−1

ds.

Evidently, Q(ξ) is bounded, and is O(|ξ|−4) as |ξ| → ∞. Therefore, whenever
d < 4, then Q ∈ L1(Rd ), and so E{‖σ̂‖2

L2(Rd)} < +∞, as asserted. �

Partial Proof of (iii)⇒(i). This is the most interesting, as well as difficult, part of
Theorem 9.2, and I will present a proof that is valid in the “supercritical” regime
d ≥ 5. When d = 4, the known proofs are much longer and not included here.
Clearly, it suffices to show that whenever 0 < a < b, P{x ∈ W ([a, b]2)} = 0.
Without loss of too much generality, we will do this for a = 1 and b = 2.

Let us fix ε ∈ (0, 1) and an integer n ≥ 1, and consider the covering [1, 2]2 =
∪n

i,j=0Ii,j , where Ii,j := [1 + (i/n), 1 + (i+ 1)/n]× [1 + (j/n), 1 + (j + 1)/n]. Now
if there exists (s, t) ∈ Ii,j such that |W (s, t)− x| ≤ ε, then∣∣∣∣W (

1 +
i

n
, 1 +

j

n

)
− x

∣∣∣∣
≤ ε+ sup

0≤u,v≤ 1
n

∣∣∣∣W (
1 +

i

n
, 1 +

j

n

)
−W

(
1 +

i

n
+ u, 1 +

j

n
+ v

)∣∣∣∣
:= ε+ δi,j;n.

(9.9)

Because of the white noise representation (8.3) of W , δi,j;n is independent of W (1+
in−1, 1 + jn−1). Moreover, the probability density of W (1 + in−1, 1 + jn−1) is
uniformly bounded above by one. Therefore,

P {∃(s, t) ∈ Ii,j : |W (s, t)− x| ≤ ε} ≤ CdE
[
(ε+ δi,j;n)d

]
≤ 2dCdE

[
εd + δd

i,j;n

]
,

(9.10)

where Cd denotes the volume of the unit ball in Rd . On the other hand, by the
white noise representation of W ,

W

(
1 +

i

n
+ u, 1 +

j

n
+ v

)
−W

(
1 +

i

n
, 1 +

j

n

)
=

√
1 +

j

n
B(u) +

√
1 +

i

n
B′(v) + Z(u, v),

(9.11)

where B, B′, and Z are independent, B and B′ are Brownian motions, and Z is
a Brownian sheet. Consequently, we can take absolute values and maximize over
u, v ≤ n−1 to see that given 0 ≤ i, j ≤ n−1,

(9.12) δi,j;n ≤
√

2 sup
u∈[0,1/n]

|B(u)|+
√

2 sup
v∈[0,1/n]

|B′(v)|+ sup
u,v∈[0,1/n]

|Z(u, v)|.

This and scaling show the existence of a constant Kd such that E[δd
i,j;n] ≤ Kdn

−d/2.

Thus, according to (9.10),

(9.13) P {∃(s, t) ∈ Ii,j : |W (s, t)− x| ≤ ε} ≤ 2dCdKd

[
εd + n−d/2

]
.

We can sum this over all 0 ≤ i, j ≤ n to see that

(9.14) P
{∃(s, t) ∈ [1, 2]2 : |W (s, t)− x| ≤ ε

} ≤ 2dCdKd(n+ 1)2
[
εd + n−d/2

]
.
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Because this is valid for all n ≥ 1, we can choose n := bε−2c, and deduce that

(9.15) sup
x∈Rd

P
{∃(s, t) ∈ [1, 2]2 : |W (s, t)− x| ≤ ε

}
= O

(
εd−4

)
, (ε→ 0).

In particular, if d ≥ 5, then with probability one, x 6∈W ([1, 2]2), as claimed. �

10. The O-U Process on Wiener Space and Two Open Problems

In this section, I very briefly sketch the connection between the process Y and
symmetric forms. This is the starting point for the introduction of the methods
of potential theory; an area which is not the focus of the present article. I then
conclude this discussion by presenting two of my favorite open problems in this
general area.

We have seen already that the Ornstein–Uhlenbeck process Y of (1.3) is a sta-
tionary diffusion on Ω (the space of all real continuous functions on [0, 1]) whose
stationary measure is Wiener’s measure. Moreover, in the usual notation of Markov
processs, we have the following for all continuous φ : Ω → R+ , s > 0, and x ∈ Ω:

Tsφ(x) := E
[
φ(Ys)

∣∣Y0 = x
]

= E
[
φ
(
e−s/2W (es, •)

) ∣∣∣W (1, •) = x
]

= E
[
φ
(
e−s/2

[
W (es, •)−W (1, •)

]
+ e−s/2x

)]
= E

[
φ
(
e−s/2

[
W (es − 1, •)

]
+ e−s/2x

)]
= E

[
φ
(√

1− e−sW (1, •) + e−s/2x
)]
.

(10.1)

On the other hand, W (1, •) is just a Brownian motion, and this leads to the fol-
lowing.

Lemma 10.1 (Mehler’s Formula). If µ denote the Wiener measure on the classical
Wiener space (Ω,B(Ω)), then the transition semigroup of the diffusion Y are given
by the operator-formula: For all s > 0 and all continuous functions x ∈ Ω,

(10.2) Tsf(x) =
∫

Ω

f
(√

1− e−sy + e−s/2x
)
µ(dy).

It is also a simple matter to check that Ts is a symmetric semigroup on the clas-
sical Wiener space; i.e., that 〈g, Tsf〉Ω = 〈Tsg, f〉Ω, where 〈u, v〉Ω is the covariance
form,

∫
Ω uv dµ.

Thus, the standard theory of symmetric Markov processes constructs a Dirichlet
form E for Y killed at an exponential rate that is formally defined as follows:

(10.3) E(f, g) := lim
s→0+

〈
s−1(f − Tsf), g

〉
Ω

+ 〈f, g〉Ω;

cf. [21, (1.3.15) and Theorem 1.4]. Now given any open set G ⊆ Ω one has the
following identity; it relates the capacity of §1 to the Dirichlet forms of [21]:

(10.4) Cap(G) = inf
{
E(f, f); f ∈ dom(E), f ≥ 1 µ-a.e. on G

}
,

where dom(E) denotes the domain of E ; i.e., all f ∈ L2(Ω) such that E(f, f) < +∞.
Furthermore, for a general set A ⊆ Ω, Cap(A) = inf{Cap(G) : A ⊆ G open, }.
The latter remarks are proved in [22, p. 164], and are another starting point for
the analytic treatment of many of the quasi-sure results within the references.

As promised earlier, we conclude this paper by presenting two open problems:
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OP-1 P. Malliavin has introduced a parametric family of Gaussian capacities,
one of which is the Cap of this and the first section. Is there a “truly
probabilistic” description (i.e., one involving concrete random processes) of
all of these capacities? If so, do the quasi-sure results of this paper continue
to holds if Cap is everywhere replaced by any and all of the said capacities?
For related results, see the results of M. Takeda ([47]).

OP-2 One of the outstanding open problems of the geometry of Brownian sheet
is the following: Let L denote the complement of the zero-set of an N -
parameter Brownian sheet. Does the complement of L have an infinite
connected component? When N = 2, this was answered in the negative by
W. S. Kendall ([26]), but the general question remains open.
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