
On the Most Visited Sites of

Symmetric Markov Processes∗

Nathalie Eisenbaum
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Abstract

A growing body of recent works have been devoted to the study of the favorite points of
various concrete Markov processes. We contribute to this subject by showing that for a large
class of recurrent strongly symmetric Markov processes, singletons are polar for the most visited
site(s).
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1 Introduction

Given a simple symmetric random walk S with S0 = 0, most visited sites (or favorite points)
Ξ = {Ξ1,Ξ2, . . .} are defined as

Ξn =
{

x ∈ Z :
n∑

j=1

1{Sj=x} = sup
y∈Z

n∑
i=1

1{Si=y}
}

, ∀n = 0, 1, . . . .

The process Ξ = {Ξn; n ≥ 1} was first introduced and studied in Erdős and Révész (1984)
who, amongst other things, showed that any element of Ξn satisfies Khintchine’s law of the it-
erated logarithm as n → ∞. Subsequently, Bass and Griffin (1985) answered a question of
Erdős and Révész (1984) by proving that

lim
n→∞ inf

x∈Ξn

|x| = +∞, a.s., (1.1)

In particular, from (1.1) one deduces the surprising fact that the favorite points of S are transient.
The mentioned results have spurred a good deal of recent activity in the subject; cf. Shi and

Tóth (2000) for a recent survey. In this regard, we also mention a recent preprint of Lifshits

and Shi (2001) where the precise rate of explosion in (1.1) is presented; this solves a long-standing
open problem in this area.

To solve the mentioned problem of Erdős and Révész, Bass and Griffin (1985) first approx-
imate Ξn by the most visited sites of a linear Brownian motion B with B0 = 0. Then, they derive
a continuous-time version of (1.1) by showing that almost surely, limt→∞ infx∈Υt |x| = +∞, where
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Υ denotes the most visited sites of B as defined by Υt = {x ∈ R : `x
t = supy∈R `y

t }, ∀t ≥ 0. Here,
`x
t =

∫ t
0 δx(Bs) ds is Brownian local time. We refer the reader to Revuz and Yor (1991, Ch. VI)

for a pedagogic treatment of local times.
In general, if X is any recurrent Hunt process on some state space E, and with continuous local

times L, one defines its most visited sites (or favorite points) by

Vt =
{
x ∈ E : Lx

t = sup
y∈E

Ly
t

}
. (1.2)

Bass et al (2000) have shown that when X is a symmetric stable process of index α > 1, and
E = R, its favorite points are transient, i.e., limt→∞ infx∈Vt |x| = +∞, a.s. This has been extended
to a larger class of Lévy processes by Marcus (2000). Little is known about the other properties
of the favorite points of Markov processes.

We say that a given compact set K ⊂ E is polar for V, if

Po{∃t > 0 : K ∩ Vt 6= ?} = 0. (1.3)

Here, o ∈ E is some distinguished point that we hold fixed throughout, and Po is the law of X,
given that X0 = o. We are interested in knowing when K is polar for the favorite points of a
Markov process X. Eisenbaum (1997) has made progress toward this problem by showing that if
X is a symmetric stable process of index α > 1, then {o} is polar for V. Equivalently, all singletons
are polar for the most visited sites process. Here, we show that such a polarity result holds in
greater generality. To describe our result, consider

To = inf{t > 0 : Xt = o}. (1.4)

In this way, we define the kernel

g(x, y) = Ex{Ly
To
}, ∀x, y ∈ E. (1.5)

This is the potential kernel for the process X killed upon reaching {o}. Now, suppose that g is a
symmetric function. It is then possible to show that the function g defined in (1.5) is also positive
definite; cf. Eisenbaum (2002). As such, g is the covariance function of some centered Gaussian
process η = {ηx; x ∈ E} that we call the Gaussian process associated to X. For simplicity, we
introduce η on the same probability space as X and assume that X and η are independent. This
can always be done by considering product spaces in a standard way.

Since L is assumed to be continuous, so is η; cf. Marcus and Rosen (1992, Th. 1). We
say that the associated process η has a local envelope at o, if there exists a nonrandom function
ϕ : E → R+ , and a countable sequence {xn}n≥1 ⊂ E, such that

(LE-I) limn→∞ xn = o, whereas 0 = ϕ(o) < ϕ(xn) for all n ≥ 1; and

(LE-II) with probability one, lim supn→∞
ηxn

ϕ(xn)
= 1.

Remark 1.1 Roughly speaking, η has a local envelope at o if it satisfies a kind of law of the
iterated logarithm at o, at least along a given subsequence. For example, consider E = R, o = 0.
Then, if η were Brownian motion, it would have a local envelope at o along the sequence xn = 2−n

with ϕ(x) =
√

2x| ln x|. It would also have a local envelope at o along the sequence xn = n−1 with
ϕ(x) =

√
2x| ln | ln(x)||. �
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Remark 1.2 The existence of a local envelope is not a trivial condition, as can be seen by
considering ηx = xZ (x ∈ R ≡ E), where Z is a standard normal variate. [It can be shown that
the latter process η is associated to a symmetric diffusion.] �

The main result of this paper is

Theorem 1.3 Let η = {ηx; x ∈ E} be the Gaussian process associated to X and suppose that
Po-a.s., η has a local envelope at o. Then, o is polar for V.

Showing that η has a local envelope is tantamount to verifying a local law of the iterated
logarithm for η. As such, we can find a sufficient condition, as the following shows.

Proposition 1.4 Suppose there exist x1, x2, . . . ∈ E such that limn→∞ xn = o and

lim
k→∞

(ln k)
1
2 sup

n,m∈N:
|n−m|≥k

g(xn, xm)

[g(xn, xn) g(xm, xm)]
1
2

= 0.

Then, o is polar for V.

This will show that for a large class of Lévy processes, singletons are polar for the most visited
sites process; see Theorem 5.2 below. Such Lévy processes include symmetric stable processes of
index α > 1 on R.

To conclude the introduction, let us mention that we have not succeeded in resolving the
following question that is motivated by a suggestion of an anonymous referee.

Open Problem 1.5 Are there recurrent Markov processes with local times, whose g-function is
symmetric, and such that o is not polar for the most visited site? More specifically, is there a linear,
symmetric, and recurrent Lévy process X, such that X possesses local times, and 0 is non-polar
for the most visited sites? �

Acknowledgement Portions of this work were carried out while the authors were visiting Ecole
Polytechnique Fédérale de Lausanne, and while D. Kh. was visiting Université de Paris VI. We
thank both institutions for their hospitality. We are also happy to thank an anonymous referee for
his/her very careful reading of this paper, and for making a number of useful suggestions that have
led to an improved end product.

2 The Associated Gaussian Process

The Gaussian process associated to X (in the sense of Theorem 1.3) is the process that naturally
arises in the Dynkin’s isomorphism theorem and its variants. We begin by introducing some
notation, all the time remembering that o ∈ E is held fixed. Throughout, τ = {τ(t); t ≥ 0} stands
for the inverse local time process of X at o, defined as

τ(t) = inf
{
t > 0 : Lo

t > t
}
, ∀t ≥ 0. (2.1)

According to Eisenbaum et al (2000, Th.1.1), for any cylinder function F : ER+ → R+ , and for
all t ≥ 0,

Eo

{
F
(
L•τ(t) + 1

2η2
•
)}

= Eo

{
F
(

1
2 (η• +

√
2t)2

)}
. (2.2)

[To be precise, Eisenbaum et al (2000) verifies this under the extra condition of strong symmetry
of X. However, this result continues to hold as long as the function g is symmetric; cf. Eisenbaum
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(2002).] This is a case of an isomorphism theorem relating local times of Markov processes to
Gaussian processes. An important consequence of this isomorphism theorem is that x 7→ ηx has
a continuous modification, which we continue to write as η. This has been alluded to in §1 and
is equivalent to, Eq. (2.2) and the continuity of (t, x) 7→ Lx

t ; cf. Marcus and Rosen (1992, p.
1664) for an argument in a similar setting.

A key step in our proof of Theorem 1.3 is a weak convergence result that may be of independent
interest. For all λ > 0, we define the stochastic process Yλ = {Yλ(x, t); x ∈ E, t ≥ 0} as

Yλ(x, t) = λ−
1
2

[
Lx

τ(λt) − λt
]
. (2.3)

We are interested in deriving asymptotic results for the process Yλ, as λ → +∞. In order to properly
describe these asymptotics, we introduce the spaces on which various modes of weak convergence
shall take place.

For any compact K ⊂ E and for each fixed T > 0, let DT (C(K)) denote the Skorohod space
of cadlag functions f : [0, T ] → C(K) with f(0) = 0. Here, C(K) denotes the space of all real
continuous functions on K, and is endowed with the compact-open topology, i.e., the topology of
uniform convergence. We also endow DT (C(K)) with the corresponding Skorohod topology; see
Ethier and Kurtz (1986; Ch. 3) for details. Weak convergence on DT (C(K)) is denoted by
DT (C(K))−−−−−→, whereas weak convergence in C(K) is denoted by

C(K)−−→.
It is important to recognize that K × T 3 (x, t) 7→ Yλ(x, t) is a process in DT (C(K)) for any

compact K ⊂ E. That is, t 7→ Yλ(x, t) is cadlag, whereas K 3 x 7→ Yλ(x, t) is in C(K).

Theorem 2.1 Fix some T > 0 and a compact K ⊂ E. Then, as λ → +∞, Yλ
DT (C(K))−−−−−→√

2G,
where G = {(Gt(x); x ∈ E, t ≥ 0} is a centered Gaussian process with the following covariance
function:

E{Gt(x)Gs(y)} = (s ∧ t) g(x, y), s, t ≥ 0, x, y ∈ E.

Remark 2.2 Note that for each fixed x, t 7→ Gt(x) is a Brownian motion with infinitesimal
variance g(x, x). The latter is finite, due to the existence of local times; cf. Getoor and Kesten

(1972), for instance. On the other hand, for each fixed t, x 7→ Gt(x) has the same finite dimensional
distributions as the Gaussian process x 7→ t−

1
2 ηx, where η is the Gaussian process associated to X.

�

Remark 2.3 It is not hard to show that G has a continuous modification. Indeed, according the
previous remark, x 7→ Gt(x) is continuous a.s. for each t ≥ 0. Thus, by the general theory of
Gaussian processes, this alone implies that E{supx∈K |Gt(x)|p} < +∞ for any compact K ⊂ E,
and for all p > 0; cf. Borell’s inequality in Adler (1990, Th. 2.1).

By Remark 2.2, t 7→ Gt is Brownian motion. Combined with the preceeding paragraph, this
shows that t 7→ Gt is a Brownian motion on the space of continuous function on E. In particular,
standard estimates show that for s, t ≥ 0, and for all compact sets K in E,

E{sup
x∈K

|Gt(x)−Gs(x)|p} ≤ Cp,K|t− s| p2 ,

where p > 2 and Cp,K is a finite constant that depends on K and p only. By Kolmogorov’s
continuity theorem, the asserted continuity of G follows. See Revuz and Yor (1991, Th. 2.1) for
an appropriate version of Kolmogorov’s theorem. �
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Before proving Theorem 2.1, we mention, without proof, a lemma on Lévy processes that is
both elementary and well-known.

Lemma 2.4 Suppose that for each 0 ≤ λ ≤ +∞, Zλ = {Zλ(t); t ≥ 0} is a Lévy process on

DT (C(K)), where T > 0 and K is a compact subset of E. If for all t ≥ 0, Zλ(t)
C(K)−−→Z∞(t), as

λ → +∞, then, as λ → +∞, the finite dimensional distributions of Zλ converge to those of Z∞.

We now prove Theorem 2.1.

Proof of Theorem 2.1 By Eq. (2.2), for any t ≥ 0,

{
Lx

τ(λt) + 1
2η2

x; x ∈ E
} (d)

=
{

1
2(ηx +

√
2λt)2; x ∈ E

}
,

where
(d)
= denotes the equality of finite-dimensional distributions. Hence,

{
Yλ(x, t) +

η2
x

2λ
1
2

; x ∈ E
}

(d)
=
{ ηx

2λ
1
2

(
ηx + 2

√
2λt
)
; x ∈ E

}
. (2.4)

Clearly, as λ → +∞, (η, 2 + λ−
1
2 η) converges weakly in C(K)× C(K) to (η, 2). Consequently, for

any fixed t ≥ 0, as λ → +∞,

Yλ(•, t) C(K)−−→
√

2t η• .

By Remark 2.2, for each t ≥ 0

Yλ(•, t) C(K)−−→
√

2 Gt(•). (2.5)

Furthermore, for every fixed λ > 0, {L•τ(λt); t ≥ 0} is a Lévy process and for all t ≥ 0, K 3 x 7→
Lx

τ(λt) is in C(K). Consequently, by Lemma 2.4, we know that the finite dimensional distributions

of {Yλ(•, t); t ≥ 0} converge to those of {√2Gt(•); t ≥ 0}.
In view of Eq. (2.8) and Ethier and Kurtz (1986, Th. 2.5, p. 167, Ch. 4), {Yλ(•, t); t ≥ 0}

converges in law to a Markov process. The previous remark shows that this Markov process has
the same law as {√2Gt(•); t ≥ 0}, from which our theorem follows. �

3 Proof of Theorem 1.3

Henceforth, η denotes the Gaussian process associated to X. Our proof of Theorem 1.3 rests on
the following technical result.

Proposition 3.1 Suppose η has a deterministic envelope at o ∈ E. Then, for all compact K ⊂ E
that contain o,

Po{∃t > 0 : sup
x∈K

Gt(x) ≤ 0} = 0.

Proof We borrow an idea of Walsh (1986, p. 280) for this proof. Throughout, F = {Ft; t ≥ 0}
denotes the right continuous augmented filtration of the infinite-dimensional, C(K)-valued process
t 7→ Gt, where the x-variable is restricted to some fixed compact set K ⊂ E that includes the point
o.

By Remark 2.2, t−
1
2 G (restricted to K) has the same law as η (also restricted to K) for every

t > 0. Consequently, Fubini’s theorem and the existence of an envelope, together imply the existence
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of a sequence {xn}n≥1 converging to o, and a function ϕ with ϕ(o) = 0 < ϕ(xn), such that with
probability one,

lim sup
n→∞

Gt(xn)
ϕ(xn)

=
√

t, for almost every t > 0. (3.1)

Suppose that there exists a nonrandom δ ∈ (0, 1), such that with positive probability,

∃t > 0 : lim sup
n→∞

Gt(xn)
ϕ(xn)

≤ (1− δ)
√

t. (3.2)

Thanks to progressive measurability, and thanks to the section theorem, for any ε > 0, we can find
an F-stopping time τ , such that (i) with probability at least ε, {0 < τ < +∞} agrees with the
collection of all ω for which (3.2) holds; and (ii) on {0 < τ < ∞},

lim sup
n→∞

Gτ (xn)
ϕ(xn)

≤ (1− δ)
√

τ ;

see Dellacherie and Meyer (1975, Th. 44) for the section theorem. Our goal is to show that

Po{0 < τ < +∞} = 0. (3.3)

Since ε > 0 is arbitrary, this would prove our theorem.
By the strong Markov property, on {0 < τ < ∞}, t 7→ Gτ+t − Gτ is a copy of G that is also

independent of Fτ . Thus, on {0 < τ < ∞},

lim sup
n→∞

Gτ+t(xn)
ϕ(xn)

≤ (1− δ)
√

τ + lim sup
n→∞

Gτ+t(xn)−Gτ (xn)
ϕ(xn)

.

Hence, thanks to (3.1), on {0 < τ < ∞},

lim sup
n→∞

Gτ+t(xn)
ϕ(xn)

≤ (1− δ)
√

τ +
√

t, for almost every t > 0.

On the other hand, note the real-variable inequality:(
1− δ

2

)√
t + τ ≥ (1− δ)

√
τ +

√
t, ∀0 < t ≤ ( δ

2

)2
τ.

In particular, on {0 < τ < ∞},

lim sup
n→∞

Gτ+t(xn)
ϕ(xn)

≤ (1− δ
2

)√
t + τ , on a t-set of positive Lebesgue measure.

Since δ ∈ (0, 1), this would contradict (3.1) unless Eq. (3.3) holds. �

We have established the requisite results for our proof of Theorem 1.3.

Proof of Theorem 1.3 Fix µ, T > 0 and a compact K ⊂ E, and consider the measurable set

Cµ =
{
ω ∈ DT (C(K)) : ∃t ∈ [0, T ] : ω ∈ [Q1(t) ∪Q2(t)

] ∩ [Q3(t) ∪Q4(t)
]}

, where
Q1(t) =

{
ω ∈ DT (C(K)) : sup

x∈K
ω(x, t) ≤ 0

}
Q2(t) =

{
ω ∈ DT (C(K)) : sup

x∈K
ω(x, t−) ≤ 0

}
Q3(t) =

{
ω ∈ DT (C(K)) : inf

x∈K
ω(x, t) ≤ −µ

}
Q4(t) =

{
ω ∈ DT (C(K)) : inf

x∈K
ω(x, t−) ≤ −µ

}
.
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Since Cµ(t) is closed in DT (C(K)), thanks to Theorem 2.1, and by properties of weak convergence,

lim sup
λ→∞

Po

{
Yλ ∈ Cµ

} ≤ Po

{√
2G ∈ Cµ

}
≤ Po

{∃t ∈ [0, T ] :
√

2 Gt ∈ Q1(t) ∩Q3(t)},
since G is continuous; cf. Remark 2.3. By Proposition 3.1,

Po

{∃t ∈ (0, T ] :
√

2Gt ∈ Q1(t) ∩Q3(t)} = 0.

On the other hand, since G0(•) ≡ 0, and since µ > 0,

Po

{√
2G0 ∈ Q3(0)} = 0.

Consequently, we have shown that

lim
λ→∞

Po

{
Yλ ∈ Cµ

}
= 0. (3.4)

Recalling Eq. (1.2), define

VK
t =

{
x ∈ E : Lx

t = sup
y∈K

Ly
t

}
.

Then, thanks to Eq. (3.4),

lim
λ→∞

Po

{ ∃t ∈ [0, T ] :
[
o ∈ VK

τ(λt) or o ∈ VK
τ(λt−)

]
and[

infx∈K Yλ(x, t) ≤ −µ or infx∈K Yλ(x, t−) ≤ −µ
] } = 0.

Since Yλ(x, 0) = 0 for all x ∈ E, and since µ > 0, this shows that

lim
λ→∞

Po

{ ∃t ∈ (0, T ] :
[
o ∈ VK

τ(λt) or o ∈ VK
τ(λt−)

]
and[

infx∈K Yλ(x, t) ≤ −µ or infx∈K Yλ(x, t−) ≤ −µ
] } = 0. (3.5)

The difference between this and the previous display is in the fact that the closed interval [0, T ] is
now replaced with the half-open interval (0, T ]. Next, consider the set Bµ ⊂ DT (C(K)), defined by

Bµ =
{
ω ∈ DT (C(K)) : ∀t ∈ (0, T ], inf

x∈K
ω(x, t) ≤ −µ or inf

x∈K
ω(x, t−) ≤ −µ

}
. (3.6)

We propose to show that
lim
µ→0

lim inf
λ→∞

Po{Yλ ∈ Bµ} = 1. (3.7)

This would imply the theorem as we argue next. Indeed, Eq.’s (3.5) and (3.7) combine to show
that

lim
λ→∞

Po

{∃t ∈ (0, T ] : o ∈ VK
τ(λt) or o ∈ VK

τ(λt−)

}
= 0.

As a result,
Po

{∃r > 0 : Lo
τ(r) = sup

x∈K
Lx

τ(r) or Lo
τ(r−) = sup

x∈K
Lx

τ(r−)

}
= 0. (3.8)

Now, let us suppose, to the contrary, that there exists a (random) t > 0 such that supx∈K Lx
t

= Lo
t
,

and set Lo
t

= `. Then, by the continuity of local times and using the inequality τ(`−) ≤ t ≤ τ(`),
we obtain

` ≤ sup
x∈K

Lo
τ(`−) ≤ sup

x∈K
Lx

t
= `.
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In particular, we would have ` = supx∈K Lx
τ(`−), which would contradict Eq. (3.8) unless

Po{∃t > 0 : Lo
t = sup

x∈K
Lx

t } = 0. (3.9)

Since E is assumed to be σ-compact, we can choose compact sets K1 ⊂ K2 ⊂ · · · that exhaust E.
On the other hand, by the right-continuity of t 7→ Xt, for every m > 0,

lim
n→∞Po{∃t ∈ [0,m] : sup

x∈Kn

Lx
t < sup

y∈E
Ly

t } = 0.

In conjunction with Eq. (3.9), this easily yields our theorem. Thus, it suffices to demonstrate (3.7).
For any µ > 0,

B{
µ ⊆

{
ω ∈ DT (C(K)) : ∃t ∈ (0, T ], inf

x∈K
ω(x, t) > −µ and inf

x∈K
ω(x, t−) > −µ

}
⊆ {ω ∈ DT (C(K)) : ∃t ∈ (0, T ], inf

x∈K
ω(x, t) ≥ −2µ and inf

x∈K
ω(x, t−) ≥ −2µ

}
= Aµ.

Since Aµ is closed, Theorem 2.1 implies that

lim sup
λ→∞

Po{Yλ ∈ Bµ} ≤ Po{
√

2G ∈ Aµ}

= Po{∃t ∈ (0, T ] : inf
x∈K

Gt(x) ≥ −
√

2µ},

since by Remark 2.3, G is continuous. In particular,

lim sup
µ→0

lim sup
λ→∞

Po{Yλ ∈ B{
µ} ≤ Po{∃t ∈ (0, T ] : inf

x∈K
Gt(x) ≥ 0

}
= 0,

thanks to Proposition 3.1. This demonstrates (3.7) and completes our proof. �

4 Proof of Proposition 1.4

Proposition 1.4 is an immediate consequence of Theorem 1.3, and the following refinement/variant
of Arcones (1995, Lemma 2.1).

Lemma 4.1 Suppose ξ1, ξ2, . . . are jointly standard Gaussian variates, and assume that

lim
k→∞

(ln k)
1
2 sup

n,m∈Z+:
|m−n|≥k

∣∣E{ξnξm}
∣∣ = 0. (4.1)

Then, lim supn→∞(2 ln n)−
1
2 ξn = 1, a.s.

Proof Throughout, we write for all x ∈ R, Φ̄(x) = P{ξ1 > x}, and recall Mill’s ratios, viz.,

1− x−2

x
√

2π
e−x2/2 ≤ Φ̄(x) ≤ 1

x
√

2π
e−x2/2, ∀x > 1. (4.2)

see Shorack and Wellner (1986, p. 850), for the latter, for instance.
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As usual, one proves such a result in two steps. The first step is completely standard. Indeed,
by Eq. (4.2), for any n, ϑ > 1, P{ξn >

√
2ϑ ln n} ≤ n−ϑ, which sums in n. Thus, the Borel–

Cantelli lemma shows us that a.s., lim supn(2 ln n)−
1
2 ξn ≤ ϑ, for any ϑ > 1. Choose ϑ ↓ 1 along a

rational sequence to deduce that lim supn(2 ln n)−
1
2 ξn ≤ 1, a.s. The second half proves the converse

inequality. This is where the correlation condition (4.1) enters the picture.
Choose ϑ ∈ (0, 1), and note that, thanks to Eq. (4.2), there exist constants, c1 and c2, such

that for all N > 2,

c1N
1−ϑ(ln N)−

1
2 ≤

N∑
n=1

P{ξn >
√

2ϑ ln n} ≤ c2N
1−ϑ(ln N)−

1
2 . (4.3)

In particular, since ϑ ∈ (0, 1), the above sum goes to infinity as N → ∞. In light of the Paley–
Zygmund inequality, it suffices to show that

E

{∣∣∣ N∑
n=1

1{ξn>
√

2ϑ lnn}
∣∣∣2} ≤ (1 + o(1)) ·

∣∣∣E{ N∑
n=1

1{ξn>
√

2ϑ ln n}
}∣∣∣2, as N →∞. (4.4)

We follow Khoshnevisan and Shi (2000) to estimate the above. Indeed, for any a, b > 0, and
writing ρn,m = E{ξnξm} for the correlation,

P{ξn > a, ξm > b} =
1

2π
√

1− ρ2
n,m

∫ ∞

a

∫ ∞

b
exp

(
− x2 + y2 − 2ρn,mxy

2(1 − ρ2
n,m)

)
dx dy

≤ 1

2π
√

1− ρ2
n,m

∫ ∞

a

∫ ∞

b
exp

(
− (1− 4ρ+

n,m)
2(1− ρ2

n,m)
(x2 + y2)

)
dx dy,

where ρ+
n,m = max(ρn,m, 0). A change of variables yields the following, as long as ρ+

n,m < 1
4 :

P{ξn > a, ξm > b} ≤
√

1− ρ2
n,m

1− 4ρ+
n,m

Φ̄

(
a

√
1− 4ρ+

n,m

1− ρ2
n,m

)
Φ̄

(
b

√
1− 4ρ+

n,m

1− ρ2
n,m

)
. (4.5)

Eq. (4.4) follows from Eq.’s (4.1), (4.3), and (4.5), and a few lengthy computations. We will omit
the details, as they follow similar ideas used in the second moment calculations of Khoshnevisan

and Shi (2000). �

5 Symmetric Lévy Processes

In this section, we verify the condition of Proposition 1.4 in case X is a symmetric Lévy process on
E = R. We will write 0 for the distinguished point o, as it makes sense to do so, and assume that∫ ∞

1

dξ

Ψ(ξ)
< +∞, whereas

∫ 1

0

dξ

Ψ(ξ)
= +∞, (5.1)

where Ψ is the Lévy exponent of X. That is, E{eiξXt } = e−tΨ(ξ). The convergence of the first
integral in (5.1) is equivalent to the existence of local times (Kesten 1969, Th. 2), while the
divergence of the second integral is equivalent to recurrence (Port and Stone 1971, Th. 16.2).
We also assume that the local times are continuous; see (Barlow 1988; Marcus and Rosen
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1992) for an analytical condition in terms of Ψ that is equivalent to the mentioned continuity of
local times. We recall the potential kernel for the recurrent process X is defined as

a(x) =
1
π

∫ ∞

0

1− cos(xλ)
Ψ(λ)

dλ, ∀x ∈ R; (5.2)

cf. (Bertoin 1996; Sato 1999). Then, it is well-known that

g(x, y) = a(x) + a(y)− a(x− y), ∀x, y ∈ R. (5.3)

This identity can be found in (Barlow 1988; Eisenbaum et al 1999; Getoor and Kesten

1972); see also (Bertoin 1996; Sato 1999) for pedagogical treatments.

5.1 Symmetric Stable Processes

First, consider X to be a symmetric stable process on E = R with index α ∈ (1, 2]. We note that
Eq. (5.1) holding, so that X is both recurrent and has local times. Moreover, according to Boylan

(1964), X has continuous local times. Thus, all conditions of Theorem 1.3 are verified. In this case,
we have

Theorem 5.1 (Eisenbaum 1997) If X is a symmetric stable process of index α ∈ (1, 2], any
x ∈ R is polar for the most visited sites.

This was shown by different arguments. We now show how this result follows from our The-
orem 1.3 (via Proposition 1.4), and also use this opportunity to fill a small gap in the proof of
Eisenbaum (1997).

Proof We begin by computing the potential a defined in (5.2). Recall that Ψ(λ) = χ|λ|α for
some χ > 0. Consequently,

a(x) = cα|x|α−1, (5.4)

where cα = (χπ)−1
∫∞
0 λ−α[1− cos(λ)] dλ. On the other hand,

|a(y)− a(x− y)| ≤ 1
πχ

∫ ∞

0

| cos(λy)− cos(λ(y − x))|
λα

dλ

=
yα−1

πχ

∫ ∞

0

| cos(ζ)− cos(ζ(1− x
y ))|

ζα
dζ

≤ 2yα−1

πχ

∫ ∞

0

ζ
(

x
y

) ∧ 1

ζα
dζ.

In the last step, we have used the inequality, | cos(w)−cos(z)| ≤ 2{|w−z|∧1}, valid for all w, z ∈ R.
Consequently, we obtain

|a(y)− a(x− y)| ≤ Cαyα−1
(x

y

)α−1
, (5.5)

where Cα = 2
πχ{(2− α)−1 + (α− 1)−1}. We can combine Eq.’s (5.3), (5.4) and (5.5) to obtain the

following: for all 0 < x < y < 1,

g(x, y)

[g(x, x)g(y, y)]
1
2

≤ 1
2

(a(x)
a(y)

) 1
2 +

|a(y)− a(x− y)|
2
√

a(x)a(y)
(5.6)

≤ c′α
(x

y

)α−1
2

,

10



where c′α = 1
2 (1 + C−1

α ). We apply this with x = xn and y = xm, where x` = 2−` (` ≥ 2) to see
that for all k ≥ 1,

sup
m,n∈Z+:
|m−n|≥k

g(xn, xm)

[g(xn, xm)g(xm, xm)]
1
2

≤ c′α2−
k(α−1)

2 .

Since this is o((ln k)−
1
2 ) as k →∞, the asserted result follows from Proposition 1.4. �

5.2 An Extension

Thanks to Theorem 1.3 and Proposition 1.4, Theorem 5.1 can be extended in various directions.
We will outline one possibility next.

Suppose X has a Lévy exponent of form

Ψ(ξ) = |ξ|αf(|ξ|), ∀ξ ∈ R, (5.7)

where α ∈ (1, 2), f : R+ → (0,∞) is a nondecreasing continuous function such that

∃ε ∈ (0, 2 − α) such that x 7→ xεf
(1
x

)
is also nondecreasing. (5.8)

It is not hard to check that Eq. (5.1) holds for such an X, viz.,∫ ∞

1

dλ

λαf(λ)
≤ 1

f(1)

∫ ∞

1

dλ

λα
< +∞.

On the other hand, ∫ 1

0

dλ

λαf(λ)
≥ 1

f(1)

∫ 1

0

dλ

λα
= +∞.

Thus, Eq. (5.1) holds, as asserted. We then have

Theorem 5.2 Suppose X is a symmetric Lévy process that satisfies the above conditions. Then,
it has continuous local times, and any singleton is polar for V.

Proof The central assertion of this theorem is the polarity of singletons. Assuming that local
times are continuous, for the time being, we will prove this assertion first. Continuity of local times
is deferred to the end of this demonstration.

We begin with an estimate for the growth of the potential kernel a near 0; cf. (5.2). Throughout,
we use the following representation that is obtained from (5.2) by a change of variables:

a(x) =
xα−1

π

∫ ∞

0

1− cos(ζ)

ζαf
( ζ

x

) dζ. (5.9)

Clearly, whenever x ≥ 0,

a(x) ≥ xα−1

π

∫ 1

0

1− cos(ζ)

ζαf
( ζ

x

) dζ ≥ c1,α
xα−1

f
(

1
x

) ,
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where c1,α = π−1
∫ 1
0 ζ−α[1− cos(ζ)] dζ. On the other hand, we can also write

a(x) =
xα−1

π
(J1 + J2), where

J1 =
∫ 1

0

1− cos(ζ)
ζαf

( ζ
x

) dζ, and J2 =
∫ ∞

1

1− cos(ζ)
ζαf

( ζ
x

) dζ.

We estimate J1 and J2 in reverse order. Since f is nondecreasing,

J2 ≤ c2,α

f
(

1
x

) ,
where c2,α =

∫∞
1 ζ−α dζ. On the other hand, since 1− cos(|ζ|) ≤ ζ2,

J1 ≤
∫ 1

0

ζ2−ε−α

x−εfε

(
x
ζ

) dζ,

where fε(r) = rεf(1
r ). Since fε is nondecreasing, whenever ζ ∈ (0, 1), fε(x

ζ ) ≥ fε(x). Thus,

J1 ≤ c3,α

f
(

1
x

) ,
where c3,α =

∫ 1
0 ζ2−ε−α dζ is a finite constant since 0 < ε < 1 < α < 2. We summarize our efforts,

thus far, as follows: for all x ≥ 0,

C1,α
xα−1

f
(

1
x

) ≤ a(x) ≤ C2,α
xα−1

f
(

1
x

) , (5.10)

where C1,α = c1,απ−1, and C2,α = π−1[c2,α + c3,α]. Next, we estimate a(y) − a(y − x) for 0 < x <
y < 1. By (5.2),

|a(y)− a(x− y)| ≤ 1
π

∫ ∞

0

| cos(λy)− cos(λ(y − x))|
λαf(λ)

dλ

=
yα−1

π

∫ ∞

0

| cos(ζ)− cos(ζ[1− x
y ])

ζαf
( ζ

y

) dζ.

To this, we apply the inequality | cos(w)− cos(z)| ≤ 2[|z−w|∧1], valid for all z,w ∈ R, and deduce

|a(y)− a(x− y)| ≤ 2yα−1

π

∫ ∞

0

(xζ
y

) ∧ 1

ζαf
( ζ

y

) dζ =
2yα−1

π
[I1 + I2], (5.11)

where I1 =
∫ y/x
0 (· · · ) and I2 =

∫∞
y/x(· · · ). Clearly,

I1 =
(x

y

)∫ y/x

0

ζ1−α dζ

f
( ζ

y

) =
(x

y

) ∫ y/x

0

ζ1−α−ε dζ

y−εfε

(y
ζ

)
≤
(x

y

)∫ y/x

0

ζ1−α−ε dζ

y−εfε(x)
=
(x

y

)1−ε 1
f
(

1
x

) ∫ y/x

0
ζ1−α−ε dζ

=
1

2− α− ε

(x

y

)α−1 1
f
(

1
x

) . (5.12)
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On the other hand,

I2 =
∫ ∞

y/x

dζ

ζαf
( ζ

y

) ≤ 1
f
(

1
x

) ∫ ∞

y/x
ζ−α dζ

=
1

α− 1

(x

y

)α−1 1
f
(

1
x

) .
Combining this with Eq.’s (5.12) and (5.11), we obtain the following: for all 0 < x < y < 1,

|a(y)− a(x− y)| ≤ C3,α
xα−1

f
(

1
x

) , (5.13)

where C3,α = 2
π{(α − 1)−1 + (2 − α − ε)−1}. Now, we verify the condition on Proposition 1.4 by

estimating the correlation ratio: whenever 0 < x < y < 1,

g(x, y)

[g(x, x)g(y, y)]
1
2

≤ 1
2

(a(x)
a(y)

) 1
2 +

|a(y)− a(y − x)|
2[a(x)a(y)]

1
2

(cf. Eq. (5.6))

≤ C4,α
φ(x)
φ(y)

, (5.14)

where C4,α = 1
2{(C2,α/C1,α)

1
2 +(C3,α/C1,α)}, and φ(x) = {xα−1/f( 1

x)} 1
2 . Now, φ is a nondecreasing

continuous function, such that for all x ∈ (0, 1), |φ(x)|2 ≤ xα−1/f(1) → 0, as x → 0. Hence,
limn→∞ xn = 0, where xn is defined by φ(xn) = 2−n, for all n sufficiently large, and otherwise
chosen arbitrarily in (0, 1). Moreover, thanks to Eq. (5.14),

sup
m,n∈Z+:
|m−n|≥k

g(xn, xm)

[g(xn, xn)g(xm, xm)]
1
2

≤ C4,α2−k = o
(
(ln k)−

1
2
)
, (as k →∞).

Proposition 1.4, then, shows that 0 is polar for the favorite points. The Markov property, and the
latter fact, together imply the important part of Theorem 5.2. We now complete our argument by
verifying that local times are continuous in this case.

We recall from (Barlow and Hawkes 1985; Marcus and Rosen 1992), that a sufficient
condition for the continuity of local times is that

∫
0+

√
lnNd(r) dr < +∞, where Nd is the metric

entropy of a compact set (say [0, 1]) in the pseudo-metric described by d(x, y) =
√
E{(ηx − ηy)2}.

That is, Nd(r) denotes the smallest number of d-balls of radius ≤ r, needed to cover [0, 1] (say).
Simple computations reveal that d(x, y) = g(x, x)+ g(y, y)− 2g(x, y). Using Eq. (5.10), we can see
that d(x, y) = 2a(x− y). Consequently, by Eq. (5.10),

d(x, y) ≤ 2C2,α|φ(|x − y|)|2, ∀x, y ∈ [0, 1].

We have already seen that |φ(r)|2 ≤ rα−1/f(1) for all r ∈ (0, 1]. This yields

d(x, y) ≤ 2C2,α

f(1)
|x− y|α−1, ∀x, y ∈ [0, 1].

This shows that for all r ∈ (0, 1], Nd(r) ≤ M(r), where the latter is the number of ordinary
(Euclidean) intervals of length ≤ qr

1
α−1 , needed to cover [0, 1], where q = {f(1)/2C2,α}

1
α−1 . As

r → 0+, M(r) ∼ q−1r−
1

α−1 , which shows the existence of some constant K, such that∫ 1
2

0

√
lnNd(r) dr ≤

∫ 1
2

0

√
lnM(r) dr ≤ K

∫ 1
2

0
| ln r| 12 dr < +∞,

as was claimed. �
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