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Abstract

Our main intention is to describe the behavior of the (cumulative) distribu-
tion function of the random variable M0,1 := sup06 s,t6 1 W (s, t) near 0, where
W denotes one–dimensional, two–parameter Brownian sheet. A remarkable re-
sult of Florit and Nualart asserts that M0,1 has a smooth density function
with respect to Lebesgue’s measure; cf. [13]. Our estimates, in turn, seem to
imply that the behavior of the density function of M0,1 near 0 is quite exotic
and, in particular, there is no clear-cut notion of a two–parameter reflection
principle.

We also consider the supremum of Brownian sheet over rectangles that are
away from the origin. We apply our estimates to get an infinite dimensional
analogue of Hirsch’s theorem for Brownian motion.

Keywords Tail probability, Quasi-sure analysis, Brownian sheet

1991 AMS Mathematics Subject Classification 60G60; 60G17.
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1 Introduction

While it is simple and completely classical, the following boundary crossing
problem is still illuminating to this day. Given a standard linear Brownian
motion B =

{
B(t); t> 0

}
, we let Ta = inf

{
s> 0 : B(s)> a

}
denote the first

passage time to a ∈ R+ and recall that as n →∞,

P
{
Ta > n

} ∼ ( 2
πn

)1/2

a. (1.1)

This is a very well understood ‘Tauberian’ phenomenon and, together with its
numerous extensions, can be shown by a variety of techniques. For example,
see the treatment of Feller [11, Ch. III] and [12, Ch. VI, XIV.5]. One way to
verify (1.1) is by relating Ta to the supremum of B as follows:

P
{
Ta > n

}
= P

{
sup

06 s6n
B(s)6 a

}
.

At this point, one can use André’s reflection principle, Brownian scaling and
L’Hospital’s rule to derive Eq. (1.1) readily. It is interesting to point out that
modern applications of (1.1) and its refinements still abound in the literature;
see [22, 26] for two striking classes of examples.

In the context of a more general random field B, the argument of the
previous paragraph relates “boundary crossing problems” to the cumulative
distribution function of sup06 s6n B(s) (henceforth, written as the c.d.f. of
sup06 s6n B(s)). Even when B is a Gaussian random field, outside a handful
of examples, neither this c.d.f., nor its behavior near 0, are known; cf. [3] for a
list and for detailed references. However, it is well known that the tail of the
distribution of the maximum of a Gaussian process plays an important rôle in
the structure and regularity of its sample paths; cf. [3, 23] for two textbook
treatments. Such large deviation estimates are quite well–understood and, in
certain cases, can be shown to a surprising degree of accuracy. For this, and for
other interesting applications, see [1, 2, 5, 7, 10, 15, 17, 18, 23, 27, 32, 33].

Our main intention for writing this article is to understand boundary crossing
problems for a two–parameter Brownian sheet W =

{
W (s, t); s, t> 0

}
. In light

of our argument leading to Eq. (1.1), such boundary crossing issues translate to,
and should be interpreted as, the estimation of the c.d.f. of sup(s,t)∈[0,1]2 W (s, t)
near 0. While very good asymptotic results of a large deviations type are found
in [25], the analysis of the lower tails of sup(s,t)∈[0,1]2 W (s, t) requires more subtle
methods, as we shall see below.

Other than the results of this paper, we are aware of the following discovery
of Florit and Nualart regarding the c.d.f. of the maximum of W : the
law of sup(s,t)∈[0,1]2 W (s, t) is absolutely continuous with respect to Lebesgue’s
measure on R and has a C∞ density. Our Theorem 1.1 below strongly suggests
that the behavior of this density function near 0 is very exotic.

Throughout, we let W := {W (s, t); (s, t) ∈ R2
+} designate a standard Brow-

nian sheet. That is, W is a centered, real–valued Gaussian process with contin-
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uous samples and whose covariance is given by

E {W (s1, t1)W (s2, t2)} = min(s1, s2)×min(t1, t2), s1, s2, t1, t2> 0.

We are interested in the distribution function of the maximum of W over a com-
pact set (say, a rectangle along coordinates) in R2

+ . To expedite out exposition,
for all 06a < b, we define

Ma,b := sup
(s,t)∈[a, b]×[0,1]

W (s, t), (1.2)

ξ∗a,b :=
2π

π + 2 arcsin
√

a/b
. (1.3)

We shall soon see that the degree of regularity of the c.d.f. of Ma,b depends
on whether or not a > 0. Equivalently, the behavior of the c.d.f. of Ma,b will
be shown to depend on whether or not the rectangle [a, b]× [0, 1] contains the
origin. First, let us look at this c.d.f. when the rectangle in question is bounded
away from the origin.

Theorem 1.1 For all b > a > 0, there exists a finite constant ξa,b> ξ∗a,b, such
that

lim
ε→0

logP(Ma,b < ε)
log ε

= ξa,b . (1.4)

Remark 1.2 It is important to note that the constant ξa,b of Eq. (1.4) is
strictly greater than 1. This observation will lead us to a new class of excep-
tional sets for Brownian motion in the sense of Williams; cf. [31]. In fact,
Theorem 1.1 yields a quasi-sure analogue of a theorem of Hirsch for Brownian
motion; see Section 6 for details. �

Remark 1.3 Roughly speaking, Theorem 1.1 states that the decay of the dis-
tribution function of the maximum of W over a rectangle that is bounded away
from the origin satisfies a power law. �

Remark 1.4 Theorem 1.1 and Theorem 1.5 below are not related to the small
ball problem for the Brownian sheet: the lack of absolute values around W in
(1.2) is critical, as it is in the 1–parameter setting. In fact, Talagrand [30]
shows that for some finite constants K1, K2 > 0 and all sufficiently small ε > 0,

exp
(
− K1{log(1/ε)}3

ε2

)
6P{S < ε}6 exp

(
− K2{log(1/ε)}3

ε2

)
,

where S := sup(s,t)∈[0,1]2 |W (s, t)|. �

Next, we look at the distribution function of the maximum of W over a
rectangle that contains the origin. By scaling, we may restrict our attention to
the supremum of W over [0, 1]2 which, you may recall, we denote by M0,1.
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Upon formally taking a = 0 and b = 1 in Theorem 1.1, one may be tempted
to think that for small ε, P(M0,1 < ε) also behaves like a power of ε; cf. Remark
1.3. However, the covariance structure of W has a “kink” at the origin which
forces M0,1 to be much larger than M1,2, say. A more precise statement follows.

Theorem 1.5 There exist finite constants c1, c2 > 0, such that for all suffi-
ciently small ε > 0,

exp
(
−c1

{
log(1/ε)

}2
)
6P(M0,1 < ε)6 exp

(
−c2

{
log(1/ε)

}2

log log(1/ε)

)
. (1.5)

Remark 1.6 The second inequality in (1.5) shows that the distribution of
M0,1 decays faster than any power function. It also suggests that the density
function of M0,1 near 0 has unusual behavior. In fact, if f denotes the density
of M0,1, one may guess from (1.5) that as ε → 0+, log f(ε) is of the same rough
order as −{ log(1/ε)

}2. Furthermore, Theorem 1.5 implies that the law of the
maximum of the Brownian sheet is incomparable to that of the absolute value
of the Brownian sheet at any given time point. As such, there can never be a
two–parameter reflection principle for Brownian sheet. �

Remark 1.7 An important property of the 2–parameter Brownian sheet is that,
locally and away from the axes, it looks like 2–parameter additive Brownian
motion; cf. [9, 19, 21]. Recall that the latter is defined as the 2–parameter
process A :=

{
A(s, t); s, t> 0

}
, where A(s, t) := B1(s) + B2(t) and where B1

and B2 are independent standard Brownian motions. It is not hard to check
the following directly: as ε → 0+,

P

{
sup

(s,t)∈[0,1]2
A(s, t) < ε

}
∼ 1

π
ε2.

Comparing this with Theorem 1.5, we see that the nonpower decay law of the
latter theorem is indeed caused by a “kink” near the axes. �

As an interesting consequence of Theorem 1.5, we mention the following
boundary crossing estimate for the samples of 2–parameter Brownian sheet.

Corollary 1.8 There exist two finite constants γ1 > 0 and γ2 > 0, such that
with probability one,

1. for all R > 0 large enough,

sup
06 s,t6R

W (s, t)>R · exp
{
− γ1

√
log log R · log log log R

}
; and

2. there exists a random sequence R1, R2, . . ., tending to infinity, such that
for all k> 1,

sup
06 s,t6Rk

W (s, t)6Rk · exp
{
− γ2

√
log log Rk

}
.
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The proof of Corollary 1.8 can also be modified to imply the following local
version. We leave the details to the interested reader.

Corollary 1.9 There exist two finite constants γ3 > 0 and γ4 > 0, such that
with probability one,

1. for all ε > 0 small enough,

sup
06 s,t6 ε

W (s, t)> ε · exp
{
− γ3

√
log log(1/ε) · log log log(1/ε)

}
; and

2. there exists a random sequence ε1, ε2, . . ., tending to zero, such that for all
k> 1,

sup
06 s,t6 εk

W (s, t)6 εk · exp
{
− γ4

√
log log(1/εk)

}
.

Our methods rely on exploiting the relationships between the Brownian sheet
(viewed as infinite-dimensional Brownian motion) and (Euclidean) Brownian
motion. In the proof of Theorem 1.5, the lower bound for P(M0,1 < ε) is
obtained by using the comparison method of Slepian applied to a sequence
of nearly independent Brownian motions extracted from W . The proof of the
corresponding upper bound is much harder and is at the heart of this article;
it is done by first coupling the Brownian sheet to a sequence of independent
Brownian motions, and then by using a variation of a theorem of Kesten on
the collision time of several Brownian particles. In the proof of Theorem 1.1,
we relate the tail of Ma,b to the first exit time of a planar Brownian motion
from a cone. This, in turn, allows us to use an estimate of Spitzer [29] on the
winding angle of planar Brownian motion.

This paper is organized as follows: Section 2 is devoted to the presentation
of the mentioned theorem of Kesten on several Brownian particles. Theorem
1.1 is proved in Section 4. The proof of Theorem 1.5 is divided in two parts: we
prove its upper bound in Section 3 and the lower bound in §5. As an application
of our estimates, in §6, we obtain a quasi-sure version of Hirsch’s theorem for
Brownian motion and in a final Section 7, we present a proof for Corollary 1.8.
While the latter argument is standard in spirit, it needs care in a few spots and
we include it at the risk of one or two more (admittedly too terse) paragraphs.

Acknowledgement We thank two anonymous referees whose suggestions have
led to improvements in the presentation of this article.

2 A Variation on a Theorem of Kesten

Throughout this section, {Wk(t); t> 0} (k = 0, 1, 2, · · ·) denote independent
Brownian motions, all starting from 0. The following was raised by Bramson

and Griffeath [6], but was originally formulated for random walks: when is
E{τN } < ∞, where

τN = inf
{
t > 0 : max

16 k6N
Wk(t) = W0(t) + 1

}
? (N = 1, 2, · · ·)
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This can be viewed as a random pursuit problem. Assume that a Brown-
ian prisoner escapes, running along the path of W0. In his/her pursuit, there
are N independent Brownian policemen who run along the paths of W1, · · ·,
WN , respectively. If, at the outset, the prisoner is ahead of the policemen by
some fixed distance (1 unit, in our model), then τN represents the capture time
when the fastest of the policemen catches the prisoner. Thus, the question of
Bramson and Griffeath is whether the expected capture time is finite. A
more animated interpretation is “How many Brownian policemen does it take to
arrest a Brownian prisoner?” Based on computer simulations, Bramson and

Griffeath conjectured that E{τ4} < ∞. By a simple monotonicity argument,
if this were true, E{τN } would be finite for any N > 4. While this problem
still remains open, Kesten found the following partial answer in [20]: there
exists N0 < ∞ such that E{τN } < ∞ for all N >N0. What Kesten actually
demonstrated was an upper bound for the tail of the distribution of τN . (For
the exact statement of Kesten’s theorem, see the comments after Lemma 2.1
below). Of course, estimating the tail of τN is the same as estimating the law
of max16 k6N sup06 t6T (Wk(t)−W0(t)). In fact, for any T > 0,

P (τN > T ) = P

(
max

16 k6N
sup

06 t6T
(Wk(t)−W0(t)) < 1

)
.

It turns out that the boundary crossing problem discussed in the Introduction
is closely related to (a variation of) the random pursuit problem for Brownian
particles. More precisely, we need to estimate the following, for δ > 0:

P

(
max

16 k6N
sup

06 t6T
(Wk(t)− δW0(t)) < 1

)
.

Let us first introduce some notation. Throughout, Φ(·) denotes the standard
Gaussian distribution function:

Φ(x) =
1√
2π

∫ x

−∞
e−u2/2 du, x ∈ R.

We shall also frequently use the following function:

h(d, L) = Φ
(
−1 + d + de−L

√
1− e−2L

)
, (d, L) ∈ (0,∞)2. (2.1)

We mention that h(d, L) is the same as the “constant” C1(d, L) in [20, p. 65].
Below is the main estimate of this section. This will be applied in Section 3

to prove the upper bound in Theorem 1.5.

Lemma 2.1 Let 0 < β < 1/2, γ > 0, d > 0, L > 0, δ > 0, N > 1 and T > 1.
Assume that

Φ(−d) < β,
d

δ
>

e√
2π β

∨
√

8γ

β
. (2.2)
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Then

P

(
max

16 k6N
sup

06 t6T
(Wk(t)− δW0(t)) < 1

)
6T−γ + (I1 + I2)N , (2.3)

where

I1 := exp
{
− (1− 2β)h(d, L) log T

2L
+ 3h(d, L)

}
, (2.4)

I2 := exp
{
−β log T

4

(
Φ(−d)

β
− 1 + log

β

Φ(−d)

)}
, (2.5)

and h(d, L) is defined in (2.1).

When δ = 1, this is implicitly proved by Kesten in [20]. For arbitrary
δ > 0, we can use his method with some modifications. First, let

Uk(t) = e−tWk(e2t), t ∈ R, (2.6)

which are the associated Ornstein–Uhlenbeck processes. Let us recall two tech-
nical lemmas. The first, estimates the probability that the sojourn time of an
Ornstein–Uhlenbeck process is far from being typical.

Lemma 2.2 Let β > 0, γ > 0 and T > 0. Then, for any r > 0 such that
Φ(−r) < β,

P

( ∫ T

0
1{U0(t)>−r} dt6(1− β)T

)
6 exp

{
−β T

2

(
Φ(−r)

β
− 1 + log

β

Φ(−r)

)}
.

(2.7)

In particular, using the estimate Φ(−r)6 e−r2/2/(
√

2π r), we immediately get

P

( ∫ T

0 1{U0(t)>−r} dt6(1− β)T
)
6 e−2γT , (2.8)

provided that

r>
e√
2π β

∨
√

8γ

β
. (2.9)

The second technical lemma that we need is a boundary crossing estimate
for the typical values of an Ornstein–Uhlenbeck process.

Lemma 2.3 Fix 0 < β < 1/2, L > 0 and T > 0. Let S0 be a determin-
istic measurable subset of [0, T ] such that |S0|>(1 − β)T , where |S0| denotes
Lebesgue’s measure of S0. Then, for each d > 0 and for all 16k6N ,

P (Uk(t) > −d− 1 for all t ∈ S0)

6 exp
{
− (1− 2β)h(d, L)T

L
+ 3h(d, L)

}
+P
( ∫ T

0 1{U0(t)>−d} dt6(1 − β)T
)

,

(2.10)

where h(d, L) is as in (2.1).
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Remark 2.4 Eq. (2.7) is due to Kesten [20] whose Lemma 1 is stated as
Eqs. (2.8)–(2.9), above. Eq. (2.10) is not exactly Lemma 2 of [20]; see the
extra condition (2.8) in [20]. This condition was used only at the last displayed
formula in [20, p. 64]. �

Proof of Lemma 2.1. We recall Uk from Eq. (2.6), fix 0 < β < 1/2, L > 0,
γ > 0 and 0 < δ < 1. We also choose d > 0 such that

d

δ
>

e√
2π β

∨
√

8γ

β
,

(so that Eq. (2.9) is satisfied with (d/δ) in place of r). For T > 1, define

S0 =
{

t ∈ [0, T ] : U0(t) > −d

δ

}
,

E = {|S0|>(1 − β)T }.
By (2.8), P(Ec)6 e−2γT . On the other hand, since Wk (16 k6N) are inde-
pendent, we can use (2.10) to see the following upper bound for the conditional
probability for 16 k6N :

P (Uk(t) > −d− 1 for all t ∈ S0 | E)

6 exp
{
− (1− 2β)h(d, L)T

L
+ 3h(d, L)

}
+

+P
{ ∫ T

0
1{U0(t)>−d} dt6(1− β)T

}
.

If, in addition, Φ(−d) < β, we can apply Lemma 2.2 to r = d for the last
probability term, to arrive at:

P
(
Uk(t) > −d− 1, for all t ∈ S0 | E

)
6 exp

{
− (1− 2β)h(d, L)T

L
+ 3h(d, L)

}
+ exp

{
−β T

2

(
Φ(−d)

β
− 1 + log

β

Φ(−d)

)}
= I1 + I2,

where I1 and I2 are defined in (2.4) and (2.5), respectively. Therefore,

P (Uk(t) + 1 > δU0(t), for all 16 k6N, 06 t6T )

6P(Ec) +
N∏

k=1

P (Uk(t) > −d− 1 for all t ∈ S0 | E)

6 e−2γT + (I1 + I2)N . (2.11)

Observe that for any a > 1,

{Wk(s) + 1 > δW0(s), for all 16 k6N, 06 s6a}
⊂
{

Uk(t) + 1 > δU0(t), for all 16 k6N, 06 t6
log a

2

}
.
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This, in conjunction with (2.11), yields Lemma 2.1 by changing Wk into −Wk.
�

3 Proof of Theorem 1.5: Upper Bound

For the sake of clarity, we prove the upper and lower bounds in Theorem 1.5
separately. This section is devoted to the proof of the upper bound. The lower
bound will be proved in Section 5.

Let ε < 1/100 and N > 1 (the value of N will be chosen later on). We write

M = M(ε) = blog2(1/ε)c,
δ = δ(ε) =

2
M1/4

,

ak = ak(ε) = Mk, 16 k6N.

Define

Wj(t) =
√

aN

(
W (

j

aN
, t)−W (

j − 1
aN

, t)
)

, t> 0. (3.1)

It is clear that {Wj(t); t ∈ R+} (j = 1, 2, · · ·, aN ) are independent (one-
parameter) Brownian motions. By enlarging the underlying probability space if
need be, we can add to this list yet another independent Brownian motion and
label it W0. Define, for 16 k6N ,

Xk(t) = a
−1/2
k ·

ak∑
j=1

Wj(t),

Yk(t) =
{
1 + δ2

}−1/2 · {Wk(t)− δW0(t)
}
, t> 0.

Observe that among the original (aN +1) Brownian motions W0, W1, · · ·, WaN ,
only (N + 1) of them have made contribution to {Yk}16 k6N . This “selective-
ness” allows us to compare the maxima of Xk and Yk via the following argument.
First, it is easily seen that for each k, both {Xk(t); t> 0} and {Yk(t); t> 0}
are Brownian motions. Thus, E

{
X2

k(t)
}

= E
{
Y 2

k (t)
}

= t. It is also possible to
compare the covariances. Indeed, for 16k 6= `6N and (s, t) ∈ R2

+ ,

E
{
Xk(t)X`(s)

}
=

(ak ∧ a`)(s ∧ t)√
aka`

=
s ∧ t

M |k−`|/2

6
s ∧ t

M1/2

6
δ2(s ∧ t)
1 + δ2

= E
{
Yk(t)Y`(s)

}
.
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So we can apply Slepian’s lemma (see [28]), to get the following inequality: for
any T > 0 and x > 0,

P

(
max

16 k6N
sup

06 t6T
Xk(t) < x

)
6P

(
max

16 k6N
sup

06 t6T
Yk(t) < x

)
. (3.2)

Now let us return to our study of the Brownian sheet {W (s, t); (s, t) ∈ R2
+}.

In view of Eq. (3.1),

P
(

M0,1 < ε
)
6 P

 max
16 k6N

sup
06 t6 1

ak∑
j=1

Wj(t) <
√

aN ε


= P

(
max

16 k6N
sup

06 t6 1

√
ak Xk(t) <

√
aN ε

)
6 P

(
max

16 k6N
sup

06 t6 1
Xk(t) <

√
aN ε

)
.

Applying Eq. (3.2) to x :=
√

aN ε gives that

P(M0,1 < ε)6P
(

max
16 k6N

sup
06 t6 1

Yk(t) <
√

aN ε

)
.

We can choose
T :=

1
(1 + δ2)aN ε2

.

Then, by the definition of Yk’s,

P(M0,1 < ε)6P
(

max
16 k6N

sup
06 t6 T

(Wk(t)− δW0(t)) < 1
)

. (3.3)

To complete the proof of the upper bound in Theorem 1.5, let us choose our
parameters:

β := 1/3 , L := 1 , γ := log(1/ε) , d := 10.

Note that condition (2.2) is satisfied. Moreover, h(d, L) defined in (2.1) is a
finite and positive (absolute) constant. Finally, we choose

N :=
log(1/ε)

2 log log(1/ε)
,

so that log T > c1 log(1/ε) for some universal constant c1 > 0. According to
(2.4) and (2.5), I16 exp(−c2 log(1/ε)) and I26 exp(−c3 log(1/ε)), where c2

and c3 are positive universal constants. Therefore, by (2.3),

P

(
max

16 k6N
sup

06 t6T
(Wk(t)− δW0(t)) < 1

)
6 exp

(
−c4

log2(1/ε)
log log(1/ε)

)
,

for some universal constant c4 > 0. In view of (3.3), this yields the upper bound
in Theorem 1.5. �
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4 Proof of Theorem 1.1

Given b > a > 0, we define

αn = P

(
sup

(s,t)∈[a, b]×[0, en]

W (s, t) < 1

)
.

Since W has positive correlations, Slepian’s inequality ([28]) shows that

αn+m>αn P

(
sup

(s,t)∈[a, b]×[en, en+m]

W (s, t) < 1

)
.

Write W̃ (s, t) := W (s, t + en)−W (s, en), so that

αn+m>αn P

(
sup

(s,t)∈[a, b]×[0, en+m−en]

(
W̃ (s, t) + W (s, en)

)
< 1

)
.

Clearly, { W̃ (s, t); (s, t) ∈ R
2
+} is a Brownian sheet that is independent of

{W (s, t); (s, t) ∈ R+ × [0, en]}. Consequently, the probability term on the right
hand side is bounded below by

P

(
sup

(s,t)∈[a, b]×[0, en+m−en]

W (s, t)6 1 + en/2

)
· P
(

sup
s∈[a, b]

W (s, en) < −en/2

)
.

Since {e−n/2W (s, en); s ∈ R+} is a standard (one-parameter) Brownian motion,
we have

P

(
sup

s∈[a, b]

W (s, en) < −en/2

)
= P

(
sup

s∈[a, b]

W0(s) < −1

)
:= c5,

where {W0(t); t ∈ R+} is a (one-parameter) Brownian motion, and c5 is a
constant that depends only on a and b. Moreover, and this is where we need
a > 0, since ∞ > b > a > 0, c5 ∈ (0, 1). Accordingly,

αn+m > αn P

(
sup

(s,t)∈[a, b]×[0, en+m−en]

W (s, t) < 1 + en/2

)
c5

= c5 αnP

(
sup

(s,t)∈[a, b]×[0, em]

W (s, t) <
(1 + en/2)em/2

(en+m − en)1/2

)

> c5 αnP

(
sup

(s,t)∈[a, b]×[0, em]

W (s, t) < 1

)
= c5 αnαm.

This shows that {− log(c5 αn)}n> 1 is sub-additive, so that

% := lim
n→∞

− log(c5 αn)
n

= inf
n> 1

− log(c5 αn)
n

,
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exists, and lies in [0,∞). Of course, % = − limn→∞(log αn)/n. A simple argu-
ment using the monotonicity of T 7→ sup(s,t)∈[a, b]×[0, T ] W (s, t) yields that

% = − lim
T→∞

1
log T

logP

(
sup

(s,t)∈[a, b]×[0, T ]

W (s, t) < 1

)
.

This implies the existence of the limit in (1.4) by scaling, with ξa,b = 2%.
It remains to check that ξa,b> ξ∗a,b, where ξ∗a,b is the constant in (1.3). We

observe that

P (Ma,b < ε)6P

(
sup

t∈[0, 1]

W (a, t) < ε, sup
t∈[0, 1]

W (b, t) < ε

)
. (4.1)

Define

B1(t) =
W (a, t)√

a
,

B2(t) =
W (b, t)−W (a, t)√

b− a
, t ∈ R+ .

Clearly, {B1(t); t ∈ R+} and {B2(t); t ∈ R+} are two independent (one-
parameter) Brownian motions. The probability expression on the right hand
side of (4.1) can be written as

= P

(
sup

t∈[0, 1]

(√
a B1(t)

)
< ε, sup

t∈[0, 1]

(√
a B1(t) +

√
b− a B2(t)

)
< ε

)

= P

(
sup

t∈[0, ε−2]

(√
a B1(t)

)
< 1, sup

t∈[0, ε−2]

(√
a B1(t) +

√
b− a B2(t)

)
< 1

)
.

The above is precisely the probability that the planar Brownian motion (B1, B2)
stays in the cone {(x, y) ∈ R2 :

√
a x < 1,

√
a x+

√
b− a y < 1} during the entire

time period [0, ε−2].
It is known that if D ⊂ R

2 is an open cone containing the origin, with angle
θ, then for all T > 1,

P

{(
B1(t), B2(t)

) ∈ D, for all t ∈ [0, T ]
}
6 c6T

−π/(2θ), (4.2)

where c6 is a positive finite constant. Spitzer [29] stated a slightly weaker
version of this, though his argument actually yields (4.2). In this stated form,
the above can be found in the work of Bañuelos and Smits regarding exit
times from general cones; cf. [4].

Applying (4.2) to θ = π/2 + arcsin
√

a/b := θa,b gives

P (Ma,b < ε)6 c6 επ/θa,b .

As a consequence, ξa,b>π/θa,b = ξ∗a,b and Theorem 1.1 is proved. �
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5 Proof of Theorem 1.5: Lower Bound

Fix any constant ξ > ξ1,2, where ξ1,2 is the finite constant defined in (1.4).
According to Theorem 1.1, for all ε ∈ (0, 1),

P

(
sup

(s,t)∈[1, 2]×[0, 1]

W (s, t) < ε

)
> c7 εξ,

where c7 > 0 is a finite constant depending only on ξ. By scaling, for all integer
j> 0 such that 2j/2ε < 1,

P

(
sup

(s,t)∈[2−j , 2−j+1]×[0, 1]

W (s, t) < ε

)
> c7 (2j/2ε)ξ.

Let j0 = j0(ε) = max{j> 0 : 2j/2ε < 1}. Since the Brownian sheet W has
positive covariances, we can apply Slepian’s lemma ([28]) to arrive at the fol-
lowing:

P(M0,1 < ε) > P

{
sup

(s,t)∈[0, 2−j0 ]×[0, 1]

W (s, t) < ε

}

×
j0∏

j=1

P

{
sup

(s,t)∈[2−j , 2−j+1]×[0, 1]

W (s, t) < ε

}

> P

{
M0,1 < 2j0/2ε

} j0∏
j=1

{
c7 (2j/2ε)ξ

}
. (5.1)

By definition, 2j0/2ε> 2−1/2, so that

P

{
M0,1 < 2j0/2ε

}
>P

{
M0,1 < 2−1/2

}
:= c8.

Therefore, the expression on the right hand side of (5.1) is

> c8 exp


j0∑

j=1

(
log c7 − ξ log(1/ε) +

jξ log 2
2

)
= c8 exp

(
j0 log c7 − ξj0 log(1/ε) +

j0(j0 + 1)ξ log 2
4

)
.

As ε → 0+, j0 ∼ 2(log(1/ε))/ log 2. Thus,

lim inf
ε→0

logP(M0,1 < ε){
log(1/ε)

}2 >− ξ

log 2
, (5.2)

which completes the proof of the lower bound in Theorem 1.5. �
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Remark 5.1 The estimate in (5.2) says that

lim inf
ε→0

logP(M0,1 < ε){
log(1/ε)

}2 >− ξ1,2

log 2
.

Furthermore, since ξ∗1,2 = 4/3, we can deduce that ξ1,2 is a finite constant that
is greater than (or equal to) 4/3. �

6 Quasi-sure Version of Hirsch’s Theorem

Using the Brownian sheet {W (s, t); (s, t) ∈ R
2
+}, we can define the Ornstein–

Uhlenbeck process {Os; s ∈ R+} via

Os(t) = e−s/2W (es, t), t ∈ R+ . (6.1)

The process {Os; s ∈ R+} takes its values in the space of continuous functions
Ω = C(R+ ,R) and is, in fact, a stationary ergodic diffusion whose stationary
measure is Wiener’s measure W ; see Malliavin [24].

For any Borel set A ⊂ Ω = C(R+ ,R), define

Cap(A) =
∫ ∞

0

P
W
{
Os ∈ A for some s ∈ [0, t]

}
e−t dt, (6.2)

where
P
W{A} =

∫
Ω

P
{
A
∣∣O0 = x

}
W ( dx).

It is known that Eq. (6.2) defines a natural capacity on the Wiener space
(see [14, 24]) in the sense of Choquet and is the 1–capacity of the Ornstein–
Uhlenbeck process on Wiener space (or the Fukushima–Malliavin capacity
on Wiener space).

When Cap(A) > 0, we say that A happens quasi-surely A Borel set A ⊂ Ω is
called exceptional, if Cap(A) > 0 whereas W (A) = 0. It is an interesting prob-
lem, going back to Williams, to find exceptional sets; cf. [31]. Various classes
of such exceptional sets have been found in the literature. See for example, [14]
and the references of [21].

Our Theorem 1.1 allows to give a new class of exceptional sets related to
Hirsch’s theorem for Brownian motion. For f ∈ Ω = C(R+ ,R), define

f?(t) = sup
s∈[0,t]

f(s), t ∈ R+ .

Hirsch’s theorem states that if g : R+ 7→ R+ is nonincreasing and if B :={
B(t); t> 0

}
denotes standard Brownian motion, then

lim inf
t→∞

B?(t)
t1/2 g(t)

=

+∞, if
∫∞
1

t−1g(t) dt < ∞

0, otherwise
.
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This result was found in Hirsch [16] in the context of random walks. The
formulation above is for Brownian motion and is borrowed from Csáki [8].

We say that a function g : R+ 7→ R+ is an escape envelope for f ∈ Ω, if for
all M > 0 and for all but finitely many integers k> 1, Eg

k,M (f) 6= ?, where

E
g
k,M (f) :=

{
2k6 s < 2k+1 : f?(s)>M 2k/2g(2k)

}
.

Hirsch’s theorem is, in fact, the following:

Theorem 6.1 (Hirsch) Suppose g : R+ 7→ R+ is nonincreasing and measur-
able. Then, g is an escape envelope for W –almost all f ∈ Ω, if

∫∞
1

t−1g(t) dt <

∞. Conversely, if
∫∞
1

t−1g(t) dt = +∞, then for W –almost all f ∈ Ω, g is not
an escape envelope for f .

In particular, for any ν ∈ (0, 1),

W

{
f ∈ Ω : t 7→ (

log+ t
)−ν is an escape envelope for f

}
= 0.

As we see next, such a statement fails to hold quasi-surely. Consequently, the
following readily provides us with a new class of nontrivial exceptional sets in
Ω.

Theorem 6.2 For any ν ∈ (1
2 , 1),

Cap
{
f ∈ Ω : t 7→ (

log+ t
)−ν is an escape envelope for f

}
= 1.

Proof. Throughout this proof, we let g(t) := (log+ t)−ν , where ν ∈ (1
2 , 1) is

fixed.
Our goal is to show that the collection of all f ∈ Ω for which g is not an

escape envelope has capacity 0. By monotonicity and the fact that Cap(Ω) = 1,
it suffices to show that for all M > 0,

Cap
{

f ∈ Ω : E
g
k,M (f) = ? for infinitely many k

}
= 0. (6.3)

Let us define the incomplete r–capacity Cr(A) of a Borel set A ⊂ Ω as

Cr(A) := P
W

{
Os ∈ A for some s ∈ [0, r]

}
.

Since Cap(A) =
∫∞
0

e−rCr(A) dr, for any r > 0, Cap(A)6Cr(A) + e−r. Sub-
sequently, a Borel–Cantelli argument reveals that Eq. (6.3) is implied by the
following: for all r > 0 large enough,

∞∑
k=1

Cr

{
f ∈ Ω : E

g
k,M (f) = ?

}
< ∞. (6.4)
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To this end, let us pick r > 0 large enough that

2πν

π + arcsin(e−r/2)
> 1.

If ξ∗1,er stands for the constant defined in Eq. (1.3), the above simply means
that νξ∗1,er > 1. Since ξ1,er > ξ∗1,er , we have a fortiori, νξ1,er > 1. Therefore, we
can choose ξ ∈ (0, ξ1,er ) and µ ∈ (0, ν) such that µξ > 1.

Since ξ < ξ1,er , we can apply Theorem 1.1 to see that for all M, r > 0, there
exists t0 > 0, such that for all T > t0,

P

(
sup

(s,t)∈[1,er ]×[0,T ]

W (s, t) < Mer/2T 1/2(log T )−µ

)

= P

(
sup

(s,t)∈[1,er]×[0,1]

W (s, t) < Mer/2(log T )−µ

)
6(log T )−µξ.

By Eq. (6.1), for all T > t0,

P

{
sup

06 v6 T
Ou(v) < MT 1/2

(
log T

)−µ for all u ∈ [0, r]
}

6P

{
sup

06 t6T
W (s, t) < Mer/2T 1/2

(
log T

)−µ for all s ∈ [1, er]
}

6
(
log T

)−µξ
.

Applying the above with T := Tk = 2k, we see that for all k > log t0,

P

{
sup

06 v6Tk

Ou(v) < MT
1/2
k g(Tk) for all u ∈ [0, r]

}
6(k log 2)−µξ,

which sums, since µξ > 1. As the above probability equals the incomplete r–
capacity of the collection of f ∈ Ω, such that Eg

k,M (f) = ?, this yields Eq. (6.4)
and concludes our proof. �

7 Proof of Corollary 1.8

For all integers k> 1 and all γ > 0, define Tk := ek and

Ψk(γ) := exp
{
− γ
√

log log Tk · log log log Tk

}
.

By Theorem 1.5, for all γ > 0 large enough,∑
k

P

{
sup

06 s,t6Tk

W (s, t) < TkΨk(γ)
}

< ∞.
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By the Borel–Cantelli lemma, for any γ > 0 large enough, the following holds
with probability one: for all k large enough,

sup
06 s,t6Tk

W (s, t)>Tk exp
{
− γ
√

log log Tk · log log log Tk

}
.

Thus, outside the above (implicitly stated) null set, if R ∈ [Tk, Tk+1] is large
enough,

sup
06 s,t6R

W (s, t)>
R

e
exp

{
− γ
√

log log R · log log log R
}

.

Since γ is large but otherwise arbitrary, we obtain half of the corollary. To
demonstrate the other (usually harder) half, let us define Sk := kk, k> 1. For
any sequence

{
λk; k> 0

}
, consider the (measurable) events:

Υk(λ) :=
{
ω ∈ Ω : sup

Sk−16 s6Sk

sup
06 t6Sk

[
W (s, t)−W (Sk−1, t)

]
6
√

Sk(Sk − Sk−1)λk

}
.

The elementary properties of Brownian sheet guarantee us that Υ1(λ), Υ2(λ), . . .
are independent events. Moreover,

P
{
Υk(λ)

}
= P

{
M0,1 < λk

}
.

In particular, if λk ↓ 0, by Theorem 1.5 there exists a finite c > 0 such that,

P
{
Υk(λ)

}
> exp

(
− c
{

log(1/λk)
}2
)
.

Choose λk := exp
{ − γ

√
log log Sk

}
for γ > 0 to see that

∑
k P
{
Υk(λ)

}
= ∞,

for γ small enough. By the Borel–Cantelli lemma for independent events, a.s.
infinitely many of Υk(λ)’s must occur. That is, if γ > 0 is small enough, then
almost surely,

sup
Sk−16 s6Sk

sup
06 t6Sk

W (s, t)

6 sup
06 t6Sk

W (Sk−1, t) + (7.1)

+
√

Sk(Sk − Sk−1) exp
{
− γ
√

log log Sk

}
, infinitely often.

On the other hand, by the law of the iterated logarithm (cf. [25]), there exists
a finite random variable Γ such that with probability one, for all k> 1,

sup
06 s6Sk−1

sup
06 t6Sk

W (s, t)6Γ
√

SkSk−1 log log Sk. (7.2)

Since as k →∞,√
SkSk−1 log log Sk = o

(
Sk exp

{
− γ
√

log log Sk

})
,

and since γ > 0 is small but arbitrary, two applications of (7.2), together with
(7.1) complete the proof. �
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