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Abstract

Let X = {X (t); t ∈RN
+} be an additive L"evy process in Rd with

X (t) = X1(t1) + · · ·+ XN (tN ) ∀t ∈RN
+;

where X1; : : : ; XN are independent, classical L"evy processes on Rd with L"evy exponents �1; : : : ;
�N , respectively. Under mild regularity conditions on the �i’s, we derive moment estimates that
imply joint continuity of the local times in question. These results are then re9ned to precise
estimates for the local and uniform moduli of continuity of local times when all of the Xi’s are
strictly stable processes with the same index 	∈ (0; 2].
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MSC: 60G17; 60J30; 60J55

Keywords: Additive and strictly stable L"evy processes; Local times; Laws of the iterated logarithm; Local
and uniform HBolder estimates

1. Introduction

An N -parameter, d-dimensional random 9eld X={X (t); t ∈RN
+} is an additive L6evy

process, if X has the following pathwise decomposition:

X (t) = X1(t1) + · · ·+ XN (tN ) ∀t ∈RN
+;
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where X1; : : : ; XN are independent, classical L"evy processes on Rd. Using tensor nota-
tion, we will often write X =X1⊕· · ·⊕XN for brevity. Throughout this paper, we will
always be assuming that X (0) = 0.
Since they locally resemble L"evy sheets, and since they are more amenable to analy-

sis, additive L"evy processes 9rst arose to simplify the study of L"evy sheets (see Dalang
and Walsh, 1993a, b; Ehm, 1981; Kahane, 1968; Kendall, 1980). They also arise in the
theory of intersection and self-intersection of L"evy processes (see LeGall et al., 1989;
Fitzsimmons and Salisbury, 1989; Khoshnevisan and Xiao, 2002). Moreover, recent
progress has shown that additive L"evy processes have a rich and interesting structure
on their own; especially noteworthy in this regard is their various connections to po-
tential kernels and operators not found in classical probabilistic potential theory. We
mention Hirsch and Song (1995), Khoshnevisan (1999), Khoshnevisan and Shi (1999),
and Khoshnevisan and Xiao (2002) and refer the reader to the detailed discussion and
the bibliography of the last reference for further works in this area.
In this, and a companion paper, we study the local times of additive L"evy processes.

Formally, local times are de9ned by

L(a; I) =
∫
I

a(X (s)) ds;

where 
a denotes Dirac’s delta function at a. Here, we seek to 9nd conditions that
ensure continuity of L(a; •), as a measure-valued process, assuming that such local
times exist. In a companion paper, we describe a necessary and suPcient condition for
the existence of the mentioned local times.
While the existing literature on local times is too vast to mention here, in the con-

text of L"evy processes and, more generally, Markov processes, we mention Bertoin
(1996), Blumenthal and Getoor (1964), and Getoor and Kesten (1972). In the context
of random 9elds, a good deal of mathematical, as well as historical, information can
be found in Geman and Horowitz (1980) (see also Ehm, 1981; Vares, 1983; Geman
et al., 1984; Lacey, 1990; Xiao, 1997).
The rest of the paper is organized as follows. Section 2 contains the de9nitions

and some basic facts about ordinary, as well as additive, L"evy processes. Some suf-
9cient conditions for the existence of local times of additive L"evy processes are also
derived. In a companion paper, we will show that one of them is also necessary; see
Theorem 2.1 for the precise statement and a proof of the easy half which is suPciency.
The hard half, i.e., necessity, will be presented in Khoshnevisan et al. (2002).
In Section 3, we prove the joint continuity of the local times of additive L"evy

processes under a mild regularity condition. Our argument is based on deriving sharp
moment estimates.
Section 4 establishes upper bounds for the moduli of continuity of the local times

of additive stable processes (Theorem 4.3).
In Section 5, we compute lower envelopes for the oscillations of the sample func-

tions of additive stable processes. Amongst other implications, these results show that
the almost sure estimates of Section 4 are sharp, up to multiplicative constants. An in-
spection of our arguments reveals that the special structure of additive L"evy processes
plays a very important rôle in our derivations.
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This paper raises many questions about additive L"evy processes and L"evy sheets.
We state some of them in Section 6.

2. Preliminaries

In this section, we present some notation and collect facts about L"evy processes,
additive L"evy processes, as well as local times.

2.1. General notation

The underlying parameter space is RN , or RN
+ = [0;∞)N , throughout. A typical

parameter, t ∈RN , is written as t = (t1; : : : ; tN ), coordinatewise. We frequently write t
as 〈c〉, if t1 = t2 = · · ·= tN = c∈R.
There is a natural partial order, “4”, on RN . Namely, s 4 t if and only if sj6 tj

for all j = 1; : : : ; N . When s 4 t, we de9ne the interval

[s; t] =
N∏

‘=1

[s‘; t‘]:

This partial order is, in fact, one of 2N useful partial orders on RN that we describe
next.
Let � = {1; : : : ; N} and for all A ⊆ �, we de9ne 4(A) via

s4
(A)

t ⇔
{

si6 ti for all i∈A;

si¿ ti for all i∈A–:

Thus, 4 is nothing other than 4(�). We shall often also use ¡ and ¡(A); they mean
the obvious thing: s ¡ t if and only if t 4 s, and so on. In particular, we note that
¡ is the same relation as 4(?).
Throughout, we will let A denote the class of all N -dimensional intervals I ⊂ RN

that are parallel to the axes. That is I ∈A is of the form I = [s; t], where s 4 t are
both in RN . If all the sides of I are of the same lengths, then I is called a cube. We
always write �m for Lebesgue’s measure on Rm, no matter the value of the integer m.
The state space, Rd, is endowed with the ‘2 Euclidean norm ‖ · ‖ and the corre-

sponding dot product 〈x; y〉=∑d
j=1 xjyj (x; y∈Rd). Furthermore, for any x∈Rd; |x|=

max16‘6d |x‘| denotes the ‘∞ norm of x.
We will use K; K1; K2; : : :, to denote unspeci9ed positive 9nite constants that may not

necessarily be the same in each occurrence.

2.2. L6evy processes

Recall that a stochastic process Z = {Z(t); t¿ 0}, with values in Rd, is called a
L6evy process, if it has stationary and independent increments, such that t �→ Z(t) is
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continuous in probability. It is well known that for t¿ s¿ 0, the characteristic function
of Z(t)− Z(s) is given by

E[ei〈�;Z(t)−Z(s)〉] = e−(t−s) (�);

where by the L"evy–Khintchine formula,

 (�) = i〈a; �〉+ 1
2
〈�; ��′〉+

∫
Rd

[
1− ei〈x;�〉 +

i〈x; �〉
1 + ‖x‖2

]
L(dx) ∀�∈Rd;

and a∈Rd is 9xed, � is a non-negative de9nite, symmetric, (d× d) matrix, and L is
a Borel measure on Rd \ {0} that satis9es∫

Rd

‖x‖2
1 + ‖x‖2 L(dx)¡∞:

The function  is the L6evy exponent of Z , and L is the corresponding L6evy measure.
In this regard, we also note that

Re  (�)¿ 0 and Re  (−�) = Re  (�) ∀�∈Rd:

A L"evy process, Z , is symmetric if −Z and Z have the same 9nite dimensional
distributions. It is clear that Z is symmetric if and only if  (�)¿ 0 for all �∈Rd.

Strictly stable processes on Rd with index 	∈ (0; 2] are L"evy processes on Rd,
whose L"evy exponent has the form

 (�) =  ‖�‖	
∫
Sd

w	(�; y)M(dy):

Here,  ¿ 0 is some 9xed constant,

w	(�; y) =
[
1− i sgn(〈�; y〉) tan

(#	
2

)] ∣∣∣∣〈 �
‖�‖ ; y

〉∣∣∣∣	 if 	 �= 1;

w1(�; y) =
∣∣∣∣〈 �

‖�‖ ; y
〉∣∣∣∣+ 2i

#
〈�; y〉 log|〈�; y〉|;

and M is a probability measure on the centered unit sphere Sd ⊂ Rd. When 	= 1, M
must have the origin as its center of mass, i.e.,∫

Sd

yM(dy) = 0:

See, for example, Samorodnitsky and Taqqu (1994, p. 73). In particular, we note that
the completely asymmetric Cauchy process is not strictly stable.
Throughout, we will tacitly assume that all stable distributions are non-degenerate;

that is, the measure M is not supported by any diametral plane of Sd. Then, it is
possible to see that there exists a positive and 9nite constant K , such that

Re  (�)¿K‖�‖	 ∀�∈Rd: (2.1)

Strictly stable processes of index 	 are (1=	)-self-similar. A particularly interesting
class arises when we let M be the uniform distribution on Sd. In this case,  (�)=%‖�‖	
for some constant %¿ 0, and Z is the isotropic stable process with index 	. Isotropic
processes are sometimes also known as radial processes in the literature.
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As discovered in Taylor (1967), it is natural to distinguish between two types of
strictly stable processes: those of Type A and those of Type B. A strictly stable process,
Z , is of Type A, if

p(t; y)¿ 0 ∀t ¿ 0; y∈Rd;

where p(t; y) is the density function of Z(t); all other stable processes are called of
Type B. Taylor (1967) has shown that if 	∈ (0; 1), and if the measure M is concen-
trated on a hemisphere, then, Z is of Type B, while all other strictly stable processes
of index 	 �= 1 are of Type A.
Blumenthal and Getoor (1961) have introduced the lower index, 'low, of a L"evy

process Z as

'low = sup
{
(¿ 0: lim

‖�‖→∞
‖�‖−(Re  (�) =∞

}
: (2.2)

It is always the case that 06 'low6 2. Moreover, when the process Z is strictly stable
with index 	, 'low = 	. For more information on various indices for L"evy processes,
their relationships and their usefulness in characterizing sample path properties of L"evy
processes, we refer to Pruitt and Taylor (1996) and its bibliography.

2.3. Additive L6evy Processes

Let X1; : : : ; XN denote N independent L"evy processes on Rd, whose L"evy exponents
are denoted by �1; : : : ; �N , respectively. For each t ∈RN

+, the characteristic function of
X (t) =

∑N
j=1 Xj(tj) is given by

E[ei〈�;X (t)〉] = e−
∑N

j=1 tj�j(�)

= e−〈t;�(�)〉; �∈Rd; (2.3)

where �(�) = (�1(�); : : : ; �N (�)).
We say that the additive L"evy process X = X1 ⊕ · · · ⊕ XN is absolutely continuous

if for each t ∈RN
+ \ @RN

+, the function � �→ exp{−〈t; �(�)〉}∈L1(Rd). In this case, for
every t ∈RN

+ \@RN
+, X (t) has a density function p(t; •) that is described, by the Fourier

inversion formula, as

p(t; x) = (2#)−d
∫
Rd
e−i〈�;x〉−〈t;�(�)〉 d� ∀x∈Rd:

The gauge function, *, for the multiparameter process, X , is de9ned by

*(s) = (2#)−d
∫
Rd
exp

−
N∑

j=1

|sj|�j([sgn(sj)]�)

 d� ∀s∈RN :

It is important to observe that *(s)= p̃(s; 0)¿ 0, where p̃(s; •) is the density function
of the random variable

X̃ (s) =
N∑

j=1

sgn(sj)Xj(|sj|): (2.4)
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When X is absolutely continuous, this density function exists, since the fact that
� �→ e−〈t;�(�)〉 is in L1(Rd) readily implies the integrability of the characteristic func-
tion of the random variable in Eq. (2.4). In fact, it is easy to verify that X is absolutely
continuous if and only if the characteristic function of X̃ (s) is Lebesgue integrable for
all

s∈RN \
{
t ∈RN : min

16j6N
|tj|= 0

}
:

In this case, we say that the additive L"evy process X̃ is absolutely continuous. We
remark, further that the gauge function, *, is the continuous-time analogue of the gauge
function for the additive random walks of Khoshnevisan and Xiao (2000). Moreover,
when X1; : : : ; XN are all symmetric L"evy processes, our de9nition of gauge function
agrees with that of Khoshnevisan and Xiao (2002).

2.4. Local times

We end this section by brieVy recalling aspects of the theory of local times. More
information on local times of random, as well as non-random, functions can be found
in Geman and Horowitz (1980), Geman et al. (1984), and Xiao (1997).
Let X (t) be a Borel vector 9eld on RN with values in Rd. For any Borel set B ⊆ RN ,

the occupation measure of X on B is de9ned as the following measure on Rd:

,B(•) = �N{t ∈B: X (t)∈•}:
If ,B is absolutely continuous with respect to �d, we say that X (t) has local times

on B and de9ne its local times, L(•; B), as the Radon–Nikod"ym derivative of ,B with
respect to �d, i.e.,

L(x; B) =
d,B

d�d
(x) ∀x∈Rd:

In the above, x is the so-called space variable, and B is the time variable. Sometimes,
we write L(x; t) in place of L(x; [0; t]).
By standard martingale and monotone class arguments, one can deduce that the local

times have a measurable modi9cation that satis9es the following occupation density
formula: for every Borel set B ⊆ RN , and for every measurable function f :Rd → R,∫

B
f(X (t)) dt =

∫
Rd

f(x)L(x; B) dx: (2.5)

Suppose we choose and 9x a rectangle T =
∏N

i=1 [ai; ai + hi] in A. Then, when-
ever we can choose a continuous modi9cation of Rd ×∏N

i=1 [0; hi] � (x; t1; : : : ; tN ) �→
L(x;

∏N
i=1 [ai; ai + ti]); X is said to have jointly continuous local times on T . When

these local times are jointly continuous, L(x; •) can be extended to be a 9nite Borel
measure supported on the level set

X−1
T (x) = {t ∈T : X (t) = x}: (2.6)

In fact, the null set in question can be chosen to be independent of x; see Adler (1981)
for further details. In other words, local times often act as a Frostman measure on the
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level sets of X . As such, they are useful in studying the various fractal properties of
the vector 9eld X . In this regard, see Berman (1972), Ehm (1981), Monrad and Pitt
(1987), Rosen (1984), LeGall et al. (1989), and Xiao (1997).
With the aid of some Fourier analysis, one can easily 9nd the suPciency portion

of the following theorem. Proving necessity is more diPcult, and is the subject of
Khoshnevisan et al. (2002). When N = 1, the following is due to Hawkes (1986).

Theorem 2.1 (Khoshnevisan et al. (2002)). Let X=X1⊕· · ·⊕XN , where X1; : : : ; XN are
independent L6evy processes in Rd whose L6evy exponents are �1; : : : ; �N , respectively.
If ∫

Rd

N∏
j=1

Re
(

1
1 +�j(u)

)
du¡+∞; (2.7)

then X admits square integrable local times on every interval I ∈A.
If, in addition, there exists a positive constant C1 such that

Re

 N∏
j=1

1
1 +�j(�)

¿C1

N∏
j=1

Re
(

1
1 +�j(�)

)
; (2.8)

then Condition (2.7) is also necessary for the existence of local times.

In particular, whenever X1 ⊕ · · · ⊕ XN has square integrable local times, so does the
additive L"evy process X1⊕· · ·⊕XN ⊕Y1⊕· · ·⊕YM , where Y1; : : : ; YM are independent
L"evy processes in Rd, that are also totally independent of X1; : : : ; XN .

Remark 2.2. Examples of additive L"evy processes which satisfy Condition (2.8) are
given in Khoshnevisan et al. (2002). Here we just mention that under the condition

At least N − 1 of the L "evy processes X1; : : : ; XN are symmetric; (2.9)

we always have

Re

 N∏
j=1

1
1 +�j(�)

=
N∏

j=1

Re
(

1
1 +�j(�)

)
; (2.10)

which can be veri9ed by using induction. Hence, in this case, Condition (2.8) is
satis9ed with C1 = 1.

It is easy to prove the suPciency half of Theorem 2.1, which we do next for the
sake of completeness.

Proof of su�ciency. Throughout, we assume
∏N

j=1 Re{1 +�j}−1 ∈L1(Rd) and adapt
the argument of Hawkes (1986, Theorem 1.1) to the present, multiparameter setting.
De9ne a Borel measure 4 on Rd by

4(•) =
∫
RN
+

e−
∑N

j=1 sj5•(X (s)) ds:
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Then, 4 is a random probability measure on the closure of X (RN
+). It is easy to see

that 4(A) = 0 if and only if ,I (A) = 0 for every interval I ∈A. We prove that both 4
and ,I are absolutely continuous with respective to �d and their densities are square
integrable.
Denote the Fourier transform of 4 by 4̂, so that

4̂(u) =
∫
RN
+

e−
∑N

j=1 sj ei〈X (s); u〉 ds ∀u∈Rd:

By Fubini’s theorem, and by the independence of the Xj’s,

E
{∫

Rd
|4̂(u)|2 du

}

=
∫
Rd

∫ ∫
RN
+×RN

+

E{ei〈u;X (s)−X (t)〉}e
−∑N

j=1 sj−
N∑

j=1
tj
ds dt du

=
∫
Rd

∫ ∫
RN
+×RN

+

e−
∑N

‘=1 |s‘−t‘|�‘([sgn(s‘−t‘)]u)−
∑N

j=1 sj−
∑N

j=1 tj ds dt du

=
∫
Rd

N∏
j=1

[∫ ∞

0

∫ ∞

0
e−s−t−|s−t|�j([sgn(s−t)]u) ds dt

]
du:

We now do the natural thing and break up the double integral into two regions: one
where s¿ t, and one where s6 t, and use the fact that for all z ∈C, {1 + z}−1 +
{1 + Wz}−1 = 2Re{1 + z}−1. Namely,

E
{∫

Rd
|4̂(u)|2 du

}

=
∫
Rd

N∏
j=1

[∫ ∞

0
dt
∫ ∞

t
(· · ·) ds

]
du+

∫
Rd

N∏
j=1

[∫ ∞

0
ds
∫ ∞

s
(· · ·) dt

]
du

=
∫
Rd

N∏
j=1

1
2

[
1

1 +�j(u)
+

1
1 +�j(u)

]
du

=
∫
Rd

N∏
j=1

Re
(

1
1 +�j(u)

)
du¡∞:

By the Riesz–Fisher theorem and/or Plancherel’s theorem, 4 is, almost surely, absolutely
continuous with respect to Lebesgue’s measure �d, and its density is, almost surely, in
L2(Rd).
To prove that for every I ∈A, X almost surely has square integrable local times

L(•; I) on I , we 9rst note that there exists a positive and 9nite constant K—it depends
on I—such that

E(|,̂I (u)|2)6K E(|4̂(u)|2) ∀u∈Rd:
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Hence, we almost surely have ,̂I ∈L2(Rd), which implies that X has a square integrable
local time on I .

We present two useful corollaries of this theorem that are stated in terms of easy-to-
check conditions; one in terms of lower indices and the other in terms of the gauge
function, when it exists.

Corollary 2.3. Suppose X = X1 ⊕ · · · ⊕ XN , where X1; : : : ; XN are independent L6evy
processes in Rd with lower indices 'low1 ; : : : ; 'lowN , respectively. Then, X has square
integrable local times on every ?nite interval I ∈A, as long as

∑N
‘=1 '

low
‘ ¿d.

Proof. By the de9nition of the lower indices (Eq. (2.2)), for all 6¿ 0, there exists
n¿ 0, such that whenever ‖u‖¿n, Re�‘(u)¿ ‖u‖'low‘ −6, for all ‘= 1; : : : ; N . Conse-
quently, for all u∈Rd,

N∏
‘=1

Re
(

1
1 +�‘(u)

)
6

N∏
‘=1

1
1 + Re�‘(u)

6 ‖u‖N6−∑N
‘=1 'low‘ ∧ 1:

This integrates [du], if we choose 0¡6¡ (1=N )[
∑N

‘=1 '
low
‘ − d]. Theorem 2.1 does

the rest.

Corollary 2.4. Let X = X1 ⊕ · · · ⊕ XN be an additive L6evy process in Rd satisfying
Condition (2.8). We assume that X is absolutely continuous with gauge function *.
Then, X has square integrable local times on every interval I ∈A if and only if
*∈L1loc(RN ).

Proof. A calculation similar to the one made in the suPciency proof of Theorem 2.1
reveals that as long as * exists,∫

RN
e−

∑N
j=1 |sj|*(s) ds= (2#)−d

∫
Rd

N∏
j=1

Re
(

1
1 +�j(u)

)
du:

Hence, thanks to Theorem 2.1, the existence of square integrable local times implies
that the left-hand side of the above display is 9nite. This, in turn, implies that *∈L1loc.
Conversely, given *∈L1loc, it suPces to show that for all I ∈A; ,̂I ∈L2(Rd) a.s.,
keeping in mind that ,I is the occupation measure over I (cf. Section 2.4). For then,
by Plancherel’s theorem, ,I is absolutely continuous with respect to �d, and its Radon–
Nykod"ym derivative is in L2(Rd). However,

E
{∫

Rd
|,̂I (u)|2 du

}
=
∫
Rd

∫ ∫
I×I
E{ei〈u;X (s)−X (t)〉} ds dt du

=
∫
Rd

∫ ∫
I×I

e−
∑N

j=1 |sj−tj|�j([sgn(sj−tj)] u) ds dt du
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=
∫ ∫

I×I
*(s− t) ds dt

6 �N (I)
∫
I�I

*(s) ds;

where I � I = {a− b: a; b∈ I}. This completes our proof.

3. Joint continuity

Now, we turn to the problem of studying the existence of jointly continuous local
times of additive L"evy processes. Throughout, we assume the following regularity
condition. In the light of Corollary 2.3, this condition, a priori, implies the existence
of square integrable local times:

(C) If 'low‘ denotes the lower index of �‘ for ‘ = 1; : : : ; N , then
∑N

‘=1 '
low
‘ ¿d.

Remark 3.1. An equivalent formulation of Condition (C) is that there exists constants
K ¿ 0, r0 ¿ 0 and '1; : : : ; 'N ¿ 0, such that

∑N
‘=1 '‘ ¿d, and Re�‘(�)¿K‖�‖'‘ for

all ‖�‖¿r0. In particular, thanks to Eq. (2.1), all additive stable processes with index
	 and N	¿d satisfy Condition (C).

Our main general result is the following:

Theorem 3.2. Let X =X1⊕· · ·⊕XN , where X1; : : : ; XN are independent L6evy processes
in Rd. If Condition (C) holds, then for any I = [a; a + h]∈A, almost surely X has
jointly continuous local times, L= {L(x; [a; a+ t]); (x; t)∈Rd × [0; h]}.

Proof. Throughout, we will assume and use the notation of Remark 3.1 regarding
Condition (C). It follows from Geman and Horowitz (1980, Eqs. (25.2) and (25.7))
that for any x; y∈Rd; I =

∏N
‘=1 [a‘; a‘ + h‘]∈A and any integer k¿ 1, we have

E{[L(x; I)]k}= (2#)−kd
∫
I k

∫
Rkd

e−i
∑k

j=1〈uj ;x〉E{ei
∑k

j=1〈uj ;X (tj)〉} d Wu dWt (3.1)

and for any even integer k¿ 2,

E{[L(x; I)− L(y; I)]k}

=(2#)−kd
∫
I k

∫
Rkd

k∏
j=1

[e−i〈uj ;x〉 − e−i〈uj ;y〉]E{ei
∑k

j=1〈uj ;X (tj)〉} d Wu dWt; (3.2)

where Wu=(u1; : : : ; uk)∈Rkd and Wt=(t1; : : : ; tk)∈ I k (see also Geman et al., 1984). [N.B.
Written coordinatewise, tj = (tj1; : : : ; t

j
N ).]

In order to prove the joint continuity of L, we 9rst establish appropriate upper bounds
for (3.1) and (3.2), and then apply the continuity lemma of Garsia (1972).
By the elementary inequality

|eiu − 1|6 21−(|u|( for any u∈R; 0¡(¡ 1;
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we see that for any even integer k¿ 2 and any 0¡(¡ 1, (3.2) is bounded above by

(2#)−kd2(1−()k‖x − y‖k(
∫
I k

∫
Rkd

k∏
j=1

‖uj‖(|E{e−i
∑k

j=1〈uj ;X (tj)〉}| d Wu dWt: (3.3)

For convenience, we introduce the following quantity:

J(I; k; () =
∫
I k

∫
Rkd

k∏
j=1

‖uj‖(|E{ei
∑k

j=1〈uj ;X (tj)〉}| d Wu dWt; (3.4)

where I ∈A; (∈ [0; 1), and k¿ 1 is an integer. We note that

E{[L(x; I)]k}6 (2#)−kdJ(I; k; 0): (3.5)

For each 9xed Wt ∈ I k ,∫
Rkd

k∏
j=1

‖uj‖(|E{ei
∑k

j=1〈uj ;X (tj)〉}| d Wu

=
∫
Rkd

k∏
j=1

‖uj‖(
N∏

‘=1

|E{ei
∑k

j=1〈uj ;X‘(t
j
‘)〉}| d Wu: (3.6)

By Eq. (3.6), we may, and will, assume with no loss of generality, that '‘ ¿ 0 for
all ‘ = 1; : : : ; N . Since

∑N
‘=1 '‘ ¿d, by induction, we see that there exist N positive

numbers p1; : : : ; pN such that
N∑

‘=1

1
p‘

= 1 and p‘'‘ ¿d ∀‘ = 1; : : : ; N: (3.7)

It follows from the independence of X1; : : : ; XN and the generalized HBolder inequality
(Hardy, 1934, p. 140) that J(I; k; () is bounded above by∫

I k

N∏
‘=1

∫
Rkd

k∏
j=1

‖uj‖(|E{ei
∑k

j=1〈uj ;X‘(t
j
‘)〉}|p‘d Wu

1=p‘

dWt: (3.8)

Fix ‘ for the moment, and let rj‘ (16 j6 k) denote the jth order statistic of the
k-tuple (t1‘ ; : : : ; t

k
‘). That is, (r

1
‘ ; : : : ; r

k
‘) is a permutation of (t1‘ ; : : : ; t

k
‘) that satis9es

r1‘6 · · ·6 rk‘ . To keep the notation from getting overbearing, we continue to write
(u1; : : : ; uk) for the corresponding permutation of Wu.
Since the L"evy process X‘ has stationary and independent increments,∫

Rkd

k∏
j=1

‖uj‖(|E{ei
∑k

j=1〈uj ;X‘(t
j
‘)〉}|p‘ d Wu

6
∫
Rkd

k∏
j=1

‖uj‖(
∣∣∣∣∣∣E
exp

i k∑
j=1

〈
k∑

m=j

um; X‘(r
j
‘)− X‘(r

j−1
‘ )

〉
∣∣∣∣∣∣
p‘

d Wu
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=
∫
Rkd

k∏
j=1

‖uj‖(
k∏

j=1

∣∣∣∣∣E
{
exp

(
i

〈
k∑

m=j

um; X‘(r
j
‘)− X‘(r

j−1
‘ )

)〉}∣∣∣∣∣
p‘

d Wu

=
∫
Rkd

k∏
j=1

[‖uj‖( exp
(
−p‘(r

j
‘ − rj−1

‘ )Re�‘

(
k∑

m=j

um)

)]
d Wu:

In the above we have written r0‘ = a‘. By letting

vj =
k∑

m=j

um ∀16 j6 k;

we see that the above integral is equal to∫
Rkd

k∏
j=1

‖vj‘ − vj+1
‘ ‖( exp(−p‘(r

j
‘ − rj−1

‘ )Re�‘(vj)) d Wv; (3.9)

where vk+1 = 0. On the other hand, for any 0¡(¡ 1, |a+ b|(6 |a|( + |b|(, we have
k∏

j=1

‖vj − vj+1‖(6
′∑ k∏

j=1

‖vj‖qj(;

where
∑′ denotes summation over all (q1; : : : ; qk)∈{0; 1; 2}k such that

∑k
j=1 qj = k.

Hence, the integral in (3.9) is bounded above by∫
Rkd

′∑ k∏
j=1

‖vj‖qj( exp(−p‘(r
j
‘ − rj−1

‘ )Re�‘(vj)) d Wv

=
′∑ k∏

j=1

[∫
Rd

‖vj‖qj( exp
(
−p‘(r

j
‘ − rj−1

‘ )Re�‘(vj)
)
dvj

]

6
′∑

Kk
k∏

j=1

(rj‘ − rj−1
‘ )−(qj(+d)='‘ ; (3.10)

where we have used Condition (C) in deriving the last inequality, and K ¿ 0 is a
9nite constant depending on �‘; p‘ and d only (cf. also Remark 3.1). Combining
Eqs. (3.4)–(3.10), and noting the k! permutations of {1; : : : ; k}, we obtain

J(I; k; ()6
′∑

Kk
N∏

‘=1

k!
∫
a‘=r0‘6r1‘ ···6rk‘6a‘+h‘

×
k∏

j=1

(rj‘ − rj−1
‘ )−(qj(+d)='‘p‘ dt1‘ · · · dtk‘ : (3.11)

We take (∈ [0; 1) such that (2( + d)=('‘p‘)¡ 1, which is legitimate, thanks
to (3.7). We also need the following elementary calculation: for all k¿ 1; h¿ 0
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and bj ¡ 1,∫
06s16···6sk6h

k∏
j=1

(sj − sj−1)−bj ds1 · · · dsk = hk−∑k
j=1 bj

∏k
j=1 =(1− bj)

=(1 + k −∑k
j=1 bj)

;

where s0 = 0. [It follows from induction on k.] Thus, we obtain

J(I; k; ()6
′∑

Kk
N∏

‘=1

[
k!h

k−∑k
j=1(qj(+d)=('‘p‘)

‘

×
∏k

j=1 =(1− (qj(+ d)=('‘p‘))

=(1 + k −∑k
j=1(qj(+ d)=('‘p‘))

]

6Kk(k!)N
N∏

‘=1

hk(1−((+d)=('‘p‘))
‘

=(1 + k(1− ((+ d)=('‘p‘)))
: (3.12)

It follows from Eqs. (3.1)–(3.3), (3.5) and (3.12) that

E{[L(x; I)]k}6Kk(k!)N
N∏

‘=1

hk(1−d=('‘p‘))
‘

=(1 + k(1− d=('‘p‘)))
; (3.13)

while

E{[L(x; I)− L(y; I)]k}6Kk(k!)N‖x − y‖k(
N∏

‘=1

× hk(1−((+d)=('‘p‘))
‘

=(1 + k(1− ((+ d)=('‘p‘)))
: (3.14)

By Eqs. (3.13) and (3.14), and by the triangle inequality, for all even integers k¿ 2,

E{[L(x; [a; a+ s])− L(y; [a; a+ t)]k}6Kk
1 (k!)

N |(x; s)− (y; t)|k(: (3.15)

The asserted joint continuity of (x; t) �→ L(x; [a; a + t]) follows immediately from
Eq. (3.15), and the continuity lemma of Garsia (1972). This completes our proof of
Theorem 3.2.

The following is an immediate corollary of Theorem 3.2.

Corollary 3.3. Suppose X = X1 ⊕ · · · ⊕ XN , where X1; : : : ; XN are independent, strictly
stable processes in Rd with indices 	1; : : : ; 	N ∈ (0; 2], respectively. If

∑N
‘=1 	‘ ¿d,

then for each I = [a; a+ h], local times, L= {L(x; [a; a+ t]); (x; t)∈Rd × [0; h]}, exist
that are jointly continuous in (x; t).

Remark 3.4. Ehm (1981, Theorem 1.1) states that the stable sheets have jointly con-
tinuous local times. Moreover, under the same conditions, upper bounds are given for
the moduli of continuity of these local times. The arguments of Ehm (1981) rely on
decomposing an N -parameter stable sheet of index 	 as a sum of an N -parameter addi-
tive stable process, and a negligible remainder (see Ehm, 1981, Eq. (1.9)). Viewed as
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such, Ehm (1981, Theorem 1.1) is, in fact, a theorem on N -parameter additive stable
processes of index 	, and is re9ned in Theorem 3.2 above.

Remark 3.5. Thanks to Theorem 2.1, the condition
∑N

‘=1 	‘ ¿d in Corollary 3.3 is
best possible in the sense that whenever

∑N
‘=1 	‘6 d, square integrable local times do

not exist. Moreover, under Condition (2.8), the condition
∑N

‘=1 	‘6d implies that for
every point x∈Rd, X−1(x) = ∅ a.s., that is, X does not hit points in Rd; this follows
from Theorem 1.5 in Khoshnevisan et al. (2002). In the special case that X1; : : : ; XN

are symmetric stable L"evy processes in Rd, this was proved directly in Khoshnevisan
and Xiao (2002, Theorems 1.1 and 2.9).

If X1; : : : ; XN are strictly stable processes with the same index 	, then our proof of
Theorem 3.2 yields the following estimates for the even moments of the local time
that will be used in Section 4: If N	¿d, then for any (∈ (0; 1 ∧ 1

2 (N	 − d)), there
are 9nite constants K2; K3 such that for any I = [a; a+ h]∈A, all x; y∈Rd, and even
number k

E
{[

L(X (t) + x; I)

[�N (I)]1−d=(N	)

]k
}
6Kk

2

[
k!

=[1 + k(1− d=(N	))]

]N

(3.16)

and

E
{[

(L(X (t) + x; I)− L(X (t) + y; I)

[�N (I)]1−(d+()=(N	)

]k
}

6Kk
3 ‖x − y‖k(

[
k!

=[1 + k(1− (d+ ()=(N	))]

]N

: (3.17)

Here, t may be either of the time points t = 0 or a. In case t = 0, Eqs. (3.16) and
(3.17) follow from Eqs. (3.13) and (3.14) with p‘ = N (‘= 1; 2; : : : ; N ), respectively.
On the other hand, it is clear that the inequality in (3.12) remains valid if we replace
the random variables X (tj) in de9nition (3.4) of J(I; k; () by X (tj) − X (a). Hence,
Eqs. (3.16) and (3.17) also hold for t = a.

4. H"older laws: upper bounds

In this section, we are interested in deriving HBolder-type estimates for the moduli of
continuity for the local times of additive stable processes. In the context of classical
one-parameter processes, such works can be found, for example, in (Donsker and
Varadhan (1977) and Kesten (1965), while in Ehm (1981) upper bounds for the moduli
of continuity of the local times of (multi-parameter) stable sheets can be found. Further
limit laws for two-parameter, real Brownian sheet are found in Lacey (1990).
In this section, we continue along the lines of the aforementioned works by estab-

lishing upper bounds for the local, as well as uniform, moduli of continuity of the
local times of additive stable processes. We will see later in Section 5 that these upper
bounds are, in fact, sharp up to multiplicative constants. Throughout Sections 4 and 5,
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we assume that the strictly stable processes X1; : : : ; XN are of Type A. For brevity, we
will say that X is of Type A.

Lemma 4.1. Let X be a Type A additive stable process in Rd with index 	∈ (0; 2].
Then, there exists a positive and ?nite constant K such that for all I =[0; a]∈A and
�¿ 0,

P
{
sup
t∈I

‖X (t)‖¿ �
}
6K |a|�−	: (4.1)

Proof. Inequality (4.1) follows easily from ‖X (t)‖6∑N
‘=1 |X‘(t‘)| and a well known

fact about ordinary stable processes of index 	 (see Bertoin, 1996, p. 221).

The following lemma is a consequence of (3.16), (3.17) and Chebyshev’s inequality.
The proof is standard, and hence omitted.

Lemma 4.2. Let X be a Type A additive L6evy process in Rd with index 	∈ (0; 2]. For
any number (∈ (0; 1 ∧ 1

2 (N	− d)), there are constants b1; b2 ¿ 0, and 0¡K4; K5 ¡
+∞, such that for all I = [a; a+ h]∈A; x; y∈Rd, and all u¿ 0,

P{L(X (t) + x; I)¿ [�N (I)]1−d=(N	)ud=	}6K4e−b1u (4.2)

and

P{|L(X (t) + x; I)− L(X (t) + y; I)|¿ [�N (I)]1−(d+()=(N	)‖x − y‖(u(d+()=	}
6K5e−b2u; (4.3)

where either t = 0 or a.

Theorem 4.3. Let X be a Type A additive stable process in Rd with index 	∈ (0; 2]
and N	¿d. Let L be its jointly continuous local time, and for I ∈A, write L∗(I) =
supx∈Rd L(x; I). Then, there are ?nite constants K6; K7, such that for every >∈ (0;∞)N

and every T ∈A,

lim sup
r→0

L∗([>− 〈r〉; >+ 〈r〉])
rN−d=	(log log r−1)d=	

6K6; a:s: (4.4)

and

lim sup
r→0

sup
I∈A;I⊂T
�N (I)¡r

L∗(I)
[�N (I)]1−d=(N	)|log �N (I)|d=	

6K7; a:s: (4.5)

Proof. Our proof is based on Lemmas 4.1 and 4.2, together with a chaining argument
similar to that employed in Ehm (1981) and Xiao (1997). In the following, we only
verify Eq. (4.4). Eq. (4.5) follows along similar lines; see Ehm (1981) and Xiao (1997)
for further details.
For brevity, we write g(r) = rN−d=	(log log r−1)d=	 for small r ¿ 0. Since for any

>∈RN
+ and r ¿ 0, the cube [>− 〈r〉; >+ 〈r〉] can be covered by at most 2N subcubes
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of sides r in A, we see that (4.4) will follow from a standard monotonicity argument,
once we prove that for any s∈RN

+,

lim sup
n→∞

L∗(Cn)
g(2−n)

6K6; a:s:; (4.6)

where Cn = [s; s+ 〈2−n〉]; n¿ 1.
Having dispensed with the requisite preliminaries, we divide our proof of (4.6) into

four parts.
(a) Lemma 4.1 implies for any '¿ 0,

P
{
sup
t∈Cn

‖X (t)− X (s)‖¿ 2−n=	n'
}
6Kn−	' ∀n¿ 1:

We select '¿ 1=	 and appeal to the Borel–Cantelli lemma, to deduce that with prob-
ability one,

sup
t∈Cn

‖X (t)− X (s)‖¡ 2−n=	n' ∀n large enough: (4.7)

(b) Let @n = (2n log n)−1=	; n¿ 1, and de9ne

Gn = {x∈Rd: ‖x‖6 2−n=	n' and ∃p∈Zd: x = @np; }:
It follows from (4.2) that

P
{
max
x∈Gn

L(X (s) + x; Cn)¿ ad=	
1 g(2−n)

}
6K (2−n=	n'=@n)de−b1a1 log log 2n

6K (log n)d=	 n−(b1a1−d'):

Choose a1 ¿ (1 + d')=b1 and apply the Borel–Cantelli lemma, once more, to obtain
the following: with probability one,

max
x∈Gn

L(X (s) + x; Cn)¡ad=	
1 g(2−n) ∀n large enough: (4.8)

(c) For any two integers n; k¿ 1, and any x∈Gn, let

F(n; k; x) =

y∈Rd: y = x + @n

k∑
j=1

6j2−j; 6∈{0; 1}d; 16 j6 k

 :

We select number (¿ 0 9rst, and then, we choose 
¿ 0 such that it satis9es



	
(d+ ()¡(¡ 1 ∧ 1

2
(N	− d):

Consider the event Bn that is de9ned as⋃
x∈Gn

∞⋃
k=1

⋃
y1 ;y2

{|L(X (s) + y1; Cn)− L(X (s) + y2; Cn)|

¿C‖y1 − y2‖((a22
k log n)(d+()=	};
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where C = [�N (Cn)]1−(d+()=(N	), and “
⋃

y1 ;y2”, signi9es the union over all y1; y2 ∈
F(n; k; x), such that y1 − y2 = @n62−k for some 6∈{0; 1}d.
From (4.3), we see that for any constant a2 ¿ 0,

P{Bn}6K(2−n=	n'=@n)d
∞∑
k=1

2(d+1)ke−b2a22
k log n

= K(log n)d=	n−(b2a2=2−d'):

We have used the elementary fact that for x¿ 0 large enough,

∞∑
k=1

2(d+1)k exp(−x2
k)6 e−x=2:

Hence, we can choose a2 ¿ 0 large so that
∑

n P{Bn}¡∞. The Borel–Cantelli lemma
implies that almost surely, Bn occurs only 9nitely often.
(d) Fix an integer n, together with some y∈Rd that satis9es ‖y‖¡ 2−n=	n'. We

can represent y in the form y = limk→∞ yk , with yk = x + @n
∑k

j=1 6j2
−j; x∈Gn and

6j ∈{0; 1}d. As local times are continuous in the space variable, we see from this
expansion, and the triangle inequality, that, on the event B–n ,

|L(X (s) + y; Cn)− L(X (s) + x; Cn)|

6
∞∑
k=1

|L(X (s) + yk ; Cn)− L(X (s) + yk−1; Cn)|

6
∞∑
k=1

[�N (Cn)]1−(d+()=(N	)‖yk − yk−1‖((a22
k log n)(d+()=	

6 2−n(N−(d+()=	)(a2 log n)(d+()=	
∞∑
k=1

[
√
d(2n log n)−1=	](2−k((−
(d+()=	)

6Kg(2−n) (y0 = x); (4.9)

where the 9nite constant K is independent of s and n.
When n is large enough, we combine (4.8) and (4.9) to get

sup
‖x‖62−n=	n'

L(X (s) + x; Cn)6K g(2−n):

That is,

sup
‖x−X (s)‖62−n=	 n'

L(x; Cn)6Kg(2−n):
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Therefore,

L∗(Cn) = sup{L(x; Cn); x∈X (Cn)}6Kg(2−n):

This proves Eq. (4.6), and (4.4) follows readily thereafter.

5. H"older laws: lower bounds

Our purpose, in this section, is to derive lower bounds for the moduli of continuity
of the local times of additive stable processes. We achieve this by 9rst establishing the
following lim inf result about the oscillations of additive stable processes.

Theorem 5.1. Let X be a Type A additive stable process of index 	. Let >∈RN
+ and

T ∈A be ?xed. Then, there exist ?nite constants K8; K9 ¿ 1, such that, a.s.,

K−1
8 6 lim inf

r→0
sup

t∈[>;>+〈r〉]

|X (t)− X (>)|
(r=log log r−1)1=	

6K8; a:s (5.1)

and

K−1
9 6 lim inf

r→0
inf
>∈T

sup
t∈[>;>+〈r〉]

|X (t)− X (>)|
(r=log r−1)1=	

6 lim sup
r→0

inf
>∈T

sup
t∈[>;>+〈r〉]

|X (t)− X (>)|
(r=log r−1)1=	

6K9; a:s: (5.2)

Our proof of Eq. (5.1) is based on the arguments of Taylor (1967). However, the
multi-parameter nature of the process X introduces new and interesting diPculties that
need to be overcome. First, we need a small ball estimate.

Lemma 5.2. Under the conditions of Theorem 5.1, there exists a constant K10 ¿ 1
such that

exp(−K10r−	)6P
{

sup
t∈[0;1]N

|X (t)|6 r

}
6 exp(−K−1

10 r−	):

Proof. Clearly,
N⋂

j=1

{
sup

tj∈[0;1]
|Xj(tj)|6 rN−1=2

}
⊆
{

sup
t∈[0;1]N

‖X (t)‖6 r

}

⊆
N⋂

j=1

{
sup

tj∈[0;1]
|Xj(tj)|6 r

}
:

Therefore, Lemma 5.2 follows from the corresponding result of Taylor (1967, p. 1240)
for ordinary stable processes of Type A.
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Proof of Theorem 5.1. The lower bound in (5.1) follows from (4.4) of Theorem 4.3
and the inequality

�N (I) =
∫
Rd

L(x; I) dx

6 L∗(I)sup
s; t∈I

‖X (s)− X (t)‖d

6 2dL∗(I) sup
s∈I

‖X (s)− X (>)‖d (5.3)

with I=[>; >+〈r〉]. The lower bound in (5.2) follows from (5.3) and (4.5) in a similar
way. Both lower bounds can also be obtained by using Lemma 5.2 and the 9rst part
of the Borel–Cantelli lemma, with possibly diZerent constants.
To prove the upper bound in (5.1), we assume, without loss of generality, that >=0.

For r ¿ 0, denote

M(r) = sup
t∈[0;r]N

‖X (t)‖; and D1(r) = (r=log log r−1)1=	:

Given

Ek = e−k2 ; k = 1; 2; : : : ;

it suPces to show that there exists a 9nite constant K8 ¿ 0 such that

P{M(Ek)6K8D1(Ek) in9nitely often}= 1: (5.4)

In order to create independence, we will 9rst replace M(Ek) by a sum of two random
variables. Recall that � = {1; 2; : : : ; N}, and for every A ⊆ � \?, de9ne

MA(Ek) = sup
〈Ek+1〉4

(A)
t4〈Ek〉

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j∈A

[Xj(tj)− Xj(Ek+1)]

∣∣∣∣∣∣
∣∣∣∣∣∣

and

M?(Ek) = sup
t4〈Ek+1〉

‖X (t)‖=M(Ek+1):

We note that

M�(Ek) = sup
〈Ek+1〉4s4〈Ek〉

‖X (s)− X (〈Ek+1〉)‖;

and thanks to the triangle inequality,

M(Ek)6M(Ek+1) + max
A⊆�; A �=?

MA(Ek): (5.5)

Let (¿ 0 be a constant whose value will be determined later, and consider the
following events:

Dk = {M(Ek)¿ 2(D1(Ek)};
Gk = { max

A⊆�; A �=?
MA(Ek)¿(D1(Ek)};

Hk = {M(Ek+1)¿(D1(Ek)}:
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Then, Eq. (5.5) implies that for all k¿ 1 Dk ⊆ Gk ∪ Hk , and for all m¿ 1
2m⋂
k=m

Dk ⊆
(

2m⋂
k=m

Gk

)
∪
(

2m⋃
k=m

Hk

)
:

The point is that Gm; : : : ; G2m are independent events.
Let us write pk = P{G–k } for brevity. By our proof of Lemma 5.2, we have

pk = P
{

max
A⊆�; A �=?

MA(Ek)6 (D1(Ek)
}

¿P
{

sup
Ek+16tj6Ek

|Xj(t)− Xj(Ek+1)|6 (√
N

D1(Ek); ∀16 j6N

}

=
N∏

j=1

P
{
sup

06t61
|Xj(t)|6 (D1(Ek)√

N (Ek − Ek+1)1=	

}

¿ exp(−K(−	 log log E−1
k );

where the second inequality follows from the self-similarity and the stationarity of the
increments of the processes X1; : : : ; XN , and the last inequality follows from the result
of Taylor (1967, p. 1240). We now take (¿ 0 so large that

pk ¿ k−1=2: (5.6)

On the other hand, Lemma 4.1 implies that

P{Hk}6K
Ek+1

Ek
log log E−1

k 6 e−k (5.7)

for all k large enough. It follows from (5.6), (5.7) and the aforementioned independence
of Gm; : : : ; G2m that for all m large,

P
{

2m⋂
k=m

Dk

}
6

2m∏
k=m

(1− pk) +
2m∑
k=m

e−k

6 e−
∑2m

k=m pk +
1

1− e−1 e
−m

6 exp(−m1=4):

By the Borel–Cantelli lemma, we see that Eq. (5.4) holds with K8 = 2(, which proves
the upper bound in Eq. (5.1).
Now, we prove the upper bound in (5.2). Without loss of generality, we assume

T = [0; 1]N . Let (¿ 0 be a parameter that will be determined later, and denote

D2(r) = r1=	|log r|−1=	:

For each integer n¿ 1, we divide [0; 1]N into nN subcubes, {Ci}, of sides n−1, where
i=(i1; : : : ; iN ) and 16 ij6 n, and denote the lower left vertex of the cube Ci by >i. In
order to create independence, we will only use the subcubes whose lower left vertex
lies on the diagonal {s= (s1; : : : ; sN )∈RN

+: s1 = · · ·= sN}.
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Letting = = {i: i1 = · · ·= iN}, we obtain the following from Lemma 5.2:

P
{
min
i∈=

sup
t∈[0;1=n]N

‖X (t + >i)− X (>i)‖¿ (D2(1=n)

}

=

[
P
{

sup
t∈[0;1=n]N

‖X (t)‖¿ (D2(1=n)

}]n

6 [1− exp(−K(−	 log n)]n

=[1− n−K(−	
]n

6 exp(−n1−K(−	
):

We can take (¿ 0 large enough so that 1 − K(−	 ¿ 0, and apply the Borel–Cantelli
lemma, to deduce that with probability one,

lim sup
n→∞

inf
>∈[0;1]N

sup
t∈[>;>+〈1=n〉]

|X (t)− X (>)|
D2(1=n)

6 (: (5.8)

The upper bound in Eq. (5.2) follows from Eq. (5.8) and monotonicity.

Combining Theorems 4.3 and 5.1 yields the following HBolder estimates on the
smoothness of the local times of additive stable processes.

Theorem 5.3. Let X denote a Type A additive stable process in Rd with index
	∈ (0; 2], where the number of parameters N	¿d. Then, jointly continuous local
times exist, and for every >∈ (0;∞)N and every T ∈A, there exist positive constants
K11 and K12 such that

K−1
11 6 lim sup

r→0

L∗([>− 〈r〉; >+ 〈r〉])
rN−d=	(log log r−1)d=	

6K11; a:s:; (5.9)

K−1
12 6 lim sup

r→0
sup

I∈A; I⊂T
�N (I)¡r

L∗(I)
[�N (I)]1−d=N	|log �N (I)|d=	

6K12; a:s: (5.10)

Proof. The upper bounds in Eqs. (5.9) and (5.10) are contained in Theorem 4.3,
whereas the lower bounds follow from Theorem 5.1 and Eq. (5.3).

6. Open problems

The results, and methods, of the present paper raise several open questions about the
local times of additive L"evy processes and L"evy sheets. We list some of them below
as concluding remarks.

Problem 6.1. Can Condition (C) be replaced by a more “geometric” condition in The-
orem 3.2? The Lk(P)-norm of the local time diZerence induces a psuedo-norm on
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Euclidean space. Thus, one might expect that there is a metric entropy improvement
on Condition (C). For classical one-parameter processes, some related results can be
found in Getoor and Kesten (1972), Barlow (1985, 1988), and Barlow and Hawkes
(1985).

Problem 6.2. Question 6.1 leads to the deeper, but also more diPcult, problem of
9nding a natural, necessary and suPcient condition for the joint continuity of the
local times of additive L"evy processes. This seems to be outside the reach of the
techniques that are known to us. When N =1, a necessary and suPcient condition for
joint continuity is found in Barlow (1988). While the methods of the latter reference
are unlikely to be of use in the present random 9elds setting, those of Marcus and
Rosen (1992) are quite robust, and likely to lead to interesting conclusions along these
directions.

Problem 6.3. Considering in conjunction with Xiao (1997, Proposition 4.1), our The-
orem 4.3, shows that for every x∈Rd, and for all T ∈A, the C-HausdorZ measure
of the level set, X−1

T (x), is positive, where C(r)= rN−d=	(log log r−1)d=	, and the level
sets X−1

T (x) are de9ned in Eq. (2.6). Furthermore, it is not hard to show that

dimH X−1
T (x) = N − d

	
; a:s:;

where dimH denotes HausdorZ dimension. Thus, we are led to conjecture that C is the
correct HausdorZ measure function for the level sets of X .

Problem 6.4. In its analysis of the local times of stable sheets, Ehm (1981) considers
time points that remain strictly away from the axes of RN

+. In fact, very little is known
about the behavior of local times of stable sheets, as we consider time points closer
and closer to the axes. Even in the simplest case of Brownian sheet, the subtle behavior
of the Brownian sheet near @RN

+ (cf. Talagrand, 1994) suggests the delicate behavior
of the local times on time sets that intersect, or are approaching, @RN

+. For some
related works in the special case of Brownian sheet (see Lacey, 1990, 2.21, p. 69;
Khoshnevisan et al., 2001).

Problem 6.5. In this paper, we have not considered regularity results for the local times
of additive stable processes of Type B. Although classical stable processes of Type B
do not have local times, N -parameter additive stable processes of Type B do, in many
instances where N ¿ 1; cf. Theorem 2.1 for precise conditions. In these cases, what
can be said about the HBolder regularity of such local times? Related questions about
the fractal measures of the sample paths of additive processes of Type B are also
open. Some results, in this direction, on the image of two-parameter additive stable
subordinators are given in Hu (1994).
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