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Summary. We show that for any α ∈ (1, 2], the (stochastic) codimension of the
zeros of an α-stable process in random scenery is identically 1 − (2α)−1. As an
immediate consequence, we deduce that the Hausdorff dimension of the zeros of
the latter process is almost surely equal to (2α)−1. This solves Conjecture 5.2 of
[6], thereby refining a computation of [10].
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1 Introduction

A stable process in random scenery is the continuum limit of a class of ran-
dom walks in random scenery that is described as follows. A random scenery
on Z is a collection, {y(0), y(±1), y(±2), . . .}, of i.i.d. mean-zero variance-one
random variables. Given a collection x = {x1, x2, . . . } of i.i.d. random vari-
ables, we consider the usual random walk n 7→ sn = x1 + · · ·+xn which leads
to the following random walk in random scenery :

wn = y(s1) + · · ·+ y(sn), n = 1, 2, · · · (1)

In words, w is obtained by summing up the values of the scenery that are
encountered by the ordinary random walk s.

Consider the local times {lan; a ∈ Z, n = 1, 2, . . .} of the ordinary random
walk s:

lan =
n∑

j=1

1{a}(sj), a ∈ Z, n = 1, 2, . . .

Then, one readily sees from (1) that

wn =
∑
a∈Z

lany(a), n = 1, 2, . . .
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As soon as s is in the domain of attraction of a stable process of index
α ∈ (1, 2], one might expect its local times to approximate those of the
limiting stable process. Thus, one may surmise an explicit weak limit for a
renormalization of w. Reference [4] has shown that this is the case. Indeed,
let S = {S(t); t ≥ 0} denote a stable Lévy process with Lévy exponent

E[exp{iξS(1)}] = exp
(
−|ξ|α 1 + iνsgn(ξ) tan(απ/2)

χ

)
, ξ ∈ R, (2)

where ν ∈ [−1, 1] and χ > 0. If α ∈ (1, 2], then it is well known ([1]) that S has
continuous local times; i.e., there exists a continuous process (x, t) 7→ Lt(x)
such that for all Borel measurable functions f : R → R, and all t ≥ 0,∫ t

0

f(S(u)) du =
∫ ∞

−∞
f(a)Lt(a) da. (3)

Then, according to [4], as long as s is in the domain of attraction of S, the
random walk in random scenery w can be normalized to converge weakly to
the stable process in random scenery W defined by

W (t) =
∫ ∞

−∞
Lt(x) B(dx). (4)

Here B = {B(t); −∞ < t < +∞} is a two-sided Brownian motion that is
totally independent of the process S, and the stochastic integral above is
defined in the sense of N. Wiener or, more generally, K. Itô.

References [5, 6] have established a weak notion of duality between iter-
ated Brownian motion (i.e., B ◦ B′, where B′ is an independent Brownian
motion) and Brownian motion in random scenery (i.e., the process W when
α = 2). Since the level sets of iterated Brownian motion have Hausdorff di-
mension 3

4 ([2]), this duality suggests that when α = 2 the level sets of W
ought to have Hausdorff dimension 1

4 ; cf. [6, Conjecture 5.2]. Reference [10]
has shown that a randomized version of this assertion is true: For the α = 2
case, and for any t > 0,

P
{

dim(W−1{W (t)}) = 1
4

}
= 1,

where W−1A = {s ≥ 0 : W (s) ∈ A} for any Borel set A ⊂ R. In particular,
Lebesgue-almost all level sets of W have Hausdorff dimension 1

4 when α = 2.
In this note, we propose to show that the preceeding conjecture is true

for all level sets, and has an extension for all α ∈ (1, 2]. Indeed, we offer the
following stronger theorem whose terminology will be explained shortly.
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Theorem 1. For any x ∈ R,

codim
(
W−1{x}

)
= 1− 1

2α
. (5)

Consequently, if dim represents Hausdorff dimension, then

dim
(
W−1{x}

)
=

1
2α

, almost surely. (6)

To conclude the introduction, we will define stochastic codimension, fol-
lowing the treatment of [8].

Given a random subset, K, of R+, we can define the lower (upper) stochas-
tic codimension of K as the largest (smallest) number β such that for all com-
pact sets F ⊂ R+ whose Hausdorff dimension is strictly less (greater) than β,
K cannot (can) intersect F . We write codim (K) and codim (K) for the lower
and the upper stochastic codimensions of K, respectively. When they agree,
we write codim (K) for their common value, and call it the (stochastic) codi-
mension of K. Note that the upper and the lower stochastic codimensions of
K are not random, although K is a random set.

2 Supporting Lemmas

We recall from [8, Theorem 2.2] and its proof that when a random set X ⊆ R
has a stochastic codimension,

codim X + dim X = 1, P-a.s.

This shows that (5) implies (6). Thus, we will only verify (5). Throughout,
P (E) denote the conditional probability measure (expectation) P (E), given
the entire process S.

With the above notation in mind, it should be recognized that, under the
measure P , the process W is a centered Gaussian process with covariance

E{W (s)W (t)} = 〈Ls, Lt〉, s, t ≥ 0, (7)

where 〈•, •〉 denotes the usual L2(R)-inner product. Needless to say, the above
equality holds with P-probability one. In particular, P-a.s., the P -variance of
W (t) is ‖Lt‖2

2, where ‖•‖r denotes the usual Lr(R)-norm for any 1 ≤ r ≤ ∞.
By the Cauchy–Schwarz inequality, 〈f, g〉2 ≤ ‖f‖2

2 · ‖g‖2
2. We need the

following elementary estimate for the slack in this inequality. It will translate
to a P -correlation estimate for the process W .

Lemma 1. For all f, g ∈ L1(R) ∩ L∞(R),

‖f‖2
2‖g‖2

2 − 〈f, g〉2 ≥ ‖g‖2
2‖f − g‖2

2 − ‖g‖2
∞‖f − g‖2

1.
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Proof. One can check the following variant of the parallelogram law on L2(R):

‖f‖2
2‖g‖2

2 − 〈f, g〉2 = ‖f − g‖2
2‖g‖2

2 − 〈f − g, g〉2,

from which the lemma follows immediately.

Now, consider the random field

%s,t =
〈Ls, Lt〉
‖Ls‖2

2

, s, t ≥ 0. (8)

Under the measure P , {%s,t; s, t ≥ 0} can be thought of as a collection of
constants. Then, one has the following conditional regression bound:

Lemma 2 (Conditional Regression). Fix 1 ≤ s < t ≤ 2. Then, under the
measure P , W (s) is independent of W (t)− %s,tW (s). Moreover, P-a.s.,

E
{
|W (t)− %s,tW (s)|2

}
≥

(
‖Lt − Ls‖2

2 −
‖L2‖2

∞
‖L1‖2

2

|t− s|2
)

+

. (9)

Proof. The independence assertion is an elementary result in linear regres-
sion. Indeed, it follows from the conditional Gaussian distribution of the
process W , together with the following consequence of (7):

E {W (s) [W (t)− %s,tW (s)]} = 0, P-a.s.

Similarly, (conditional) regression shows that P-a.s.,

E
{

[W (t)− %s,tW (s)]2
}

=
‖Lt‖2

2‖Ls‖2
2 − 〈Ls, Lt〉2

‖Ls‖2
2

, (10)

P-a.s. Thanks to Lemma 1, the numerator is bounded below by

‖Ls‖2
2‖Lt − Ls‖2

2 − ‖Ls‖2
∞‖Lt − Ls‖2

1.

By the occupation density formula ( 3), with P-probability one, ‖Lt−Ls‖1 =
(t − s). Since r 7→ Lr(x) is non-increasing for any x ∈ R, the lemma follows
from (10).

Now, we work toward showing that the right hand side of (9) is essentially
equal to the much simpler expression ‖Lt − Ls‖2

2. This will be done in a few
steps.

Lemma 3. If 0 ≤ s < t are fixed, then the P-distribution of ‖Lt − Ls‖2
2 is

the same as that of (t− s)2−(1/α)‖L1‖2
2.

Proof. Since the stable process S is Lévy, by applying the Markov property
at time t, we see that the process Lt(·)−Ls(·) has the same finite dimensional
distributions as Lt−s(·). The remainder of this lemma follows from scaling;
see [7, 5.4], for instance.
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Next, we introduce a somewhat rough estimate of the modulus of conti-
nuity of the infinite-dimensional process t 7→ Lt.

Lemma 4. For each η > 0, there exists a P-a.s. finite random variable V4

such that for all 0 ≤ s < t ≤ 2,

‖Lt − Ls‖2
2 ≤ V4|t− s|2−(1/α)−η.

Proof. Thanks to Lemma 3, for any ν > 1, and for all 0 ≤ s < t,

E
{
‖Lt − Ls‖2ν

2

}
= (t− s)2ν−(ν/α)E

{
‖L1‖2ν

2

}
.

On the other hand, by the occupation density formula ( 3),

‖L1‖2
2 ≤ ‖L1‖∞

∫ ∞

−∞
L1(x) dx = ‖L1‖∞.

According to [9, Theorem 1.4], there exists a finite c > 0 such that

P{‖L1‖∞ > λ} ≤ exp(−cλα), ∀λ > 1.

The result follows from the preceeding two displays, used in conjunction
with Kolmogorov’s continuity criterion applied to the L2(R)-valued process
t 7→ Lt.

Up to an infinitesimal in the exponent, the above is sharp, as the following
asserts.

Lemma 5. For each η > 0, there exists a P-a.s. finite random variable V5

such that for all 1 ≤ s < t ≤ 2,

‖Lt − Ls‖2
2 ≥ V5|t− s|2−(1/α)+η.

Proof. According to [7, proof of Lemma 5.4], there exists a finite constant
c > 0 such that for all λ ∈ (0, 1),

P{‖L1‖2
2 ≤ λ} ≤ exp(−cλ−α). (11)

Combined with Lemma (3), this yields

P
{
‖Ls+h − Ls‖2

2 ≤ h2−(1/α)+η
}
≤ exp(−ch−η), s ∈ [1, 2], h ∈ (0, 1).

Let
Fn = {k2−n; 0 ≤ k ≤ 2n+1}, n = 0, 1, . . .

Choose and fix some number p > η−1 to see that

P
{

min
s∈Fn

‖Ls+n−p − Ls‖2
2 ≤ n−pγ

}
≤ (2n+1 + 1) exp(−cnηp),
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where γ = 2− (1/α) + η. Since p > η−1, the above probability sums in n. By
the Borel–Cantelli lemma, P-almost surely,

min
s∈Fn

‖Ls+n−p − Ls‖2
2 ≥ n−pγ , eventually. (12)

On the other hand, any for any s ∈ [1, 2], there exists s′ ∈ Fn such that
|s− s′| ≤ 2−n. In particular,

inf
s∈[1,2]

‖Ls+n−p − Ls‖2
2 ≥ min

s∈Fn

‖Ls+n−p − Ls‖2
2 − 4 sup

0≤u,v≤2
|u−v|≤2−n

‖Lu − Lv‖2
2.

We have used the inequality |x+ y|2 ≤ 2(x2 + y2) to obtain the above. Thus,
by Lemma 4, and by (12), P-almost surely,

inf
s∈[1,2]

‖Ls+n−p − Ls‖2
2 ≥ (1 + o(1))n−pγ , eventually.

Since t 7→ Lt(x) is increasing, the preceeding display implies the lemma.

3 Proof of Theorem 1

Not surprisingly, we prove Theorem 1 in two steps: First, we obtain a lower
bound for codim (W−1{x}). Then, we establish a corresponding upper bound.

In order to simplify the notation, we only work with the case x = 0; the
general case follows by the very same methods.

3.1 The Lower Bound

The lower bound is quite simple, and follows readily from Lemma 4 and the
following general result.

Lemma 6. If {Z(t); t ∈ [1, 2]} is almost surely Hölder continuous of some
nonrandom order γ > 0, and if Z(t) has a bounded density function uniformly
for every t ∈ [1, 2], then

codim (Z−1{0}) ≥ γ.

Proof. If F ⊂ R+ is a compact set whose Hausdorff dimension is < γ, then
we are to show that almost surely, Z−1{0} ∩ F = ∅.

By the definition of Hausdorff dimension, and since dim(F ) < γ, for any
δ > 0 we can find closed intervals F1, F2, . . . such that (i) F ⊆ ∪∞i=1Fi; and
(ii)

∑∞
i=1(diamFi)γ ≤ δ. Let si denote the left endpoint of Fi, and observe

that whenever Z−1{0} ∩ Fj 6= ∅, then with P-probability one,

|Z(sj)| ≤ sup
s,t∈Fj

|Z(s)− Z(t)| ≤ Kγ(diamFj)γ ,
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where Kγ is an almost surely finite random variable that signifies the Hölder
constant of Z. In particular, for any M > 0,

P
{
Z−1{0} ∩ F 6= ∅

}
≤

∞∑
j=1

P
{
|Z(sj)| ≤ M(diamFj)γ}+ P{Kγ > M}

≤ 2DM
∞∑

j=1

(diamFj)γ + P{Kγ > M},

where D is the uniform bound on the density function of Z(t), as t varies in
[1, 2]. Consequently,

P
{
Z−1{0} ∩ F 6= ∅

}
≤ 2DMδ + P{Kγ > M}.

Since δ is arbitrary,

P
{
Z−1{0} ∩ F 6= ∅

}
≤ P{Kγ > M},

which goes to zero as M →∞.

We can now turn to our

Proof (Theorem 1: Lower Bound). Since W is Gaussian under the measure
P , for any ν > 0, there exists a nonrandom and finite constant Cν > 0 such
that for all 0 ≤ s ≤ t ≤ 2,

E
{
|W (s)−W (t)|ν

}
= Cν

(
E

{
|W (s)−W (t)|2

})ν/2

= Cν‖Lt − Ls‖ν
2 .

Taking P-expectations and appealing to Lemma 3 leads to

E
{
|W (s)−W (t)|ν

}
= C ′

ν(t− s)ν−(ν/2α),

where C ′
ν = CνE{‖L1‖ν

2} is finite, thanks to [9, Theorem 1.4]. By Kol-
mogorov’s continuity theorem, with probability one, t 7→ W (t) is Hölder
continuous of any order γ < 1 − (2α)−1. We propose to show that the den-
sity function of W (t) is bounded uniformly for all t ∈ [1, 2]. Lemma 6 would
then show that codim (W−1{0} ∩ [1, 2]) ≥ γ for any γ < 1 − (2α)−1; i.e.,
codim (W−1{0}∩ [1, 2]) ≥ 1− (2α)−1. The argument to show this readily im-
plies that codim (W−1{0}) ≥ 1− (2α)−1, which is the desired lower bound.

To prove the uniform boundedness assertion on the density function, ft,
of W (t), we condition first on the entire process S to obtain

ft(x) =
1√
2π

E
[

1
‖Lt‖2

exp
(
− x2

2‖Lt‖2
2

)]
, t ∈ [1, 2], x ∈ R.

In particular,
sup

t∈[1,2]

sup
x∈R

ft(x) ≤ E{‖L1‖−1
2 },

which is finite, thanks to (11).
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3.2 The Upper Bound

We intend to show that for any x ∈ R, and for any compact set F ⊂ R+

whose Hausdorff dimension is > 1 − (2α)−1, P{W−1{x} ∩ F 6= ∅} > 0. It
suffices to show that for all such F ’s,

P{W−1{x} ∩ F 6= ∅} > 0, P-a.s.

As in our lower bound argument, we do this merely for x = 0 and F ⊆ [1, 2],
since the general case is not much different. Henceforth, we shall fix one such
compact set F without further mention.

Let P(F ) denote the collection of probability measures on F , and for all
µ ∈ P(F ) and all ε > 0, define

Jε(µ) =
1
2ε

∫
1{|W (s)|≤ε} µ(ds). (13)

We proceed to estimate the first two moments of Jε(µ).

Lemma 7. There exists a P-a.s. finite and positive random variable V7 such
that P-almost surely,

lim inf
ε→0

E{Jε(µ)} ≥ V7,

for any µ ∈ P(F ).

Proof. Notice the explicit calculation:

E{Jε(µ)} =
1

2
√

2πε

∫
F

∫ +ε

−ε

‖Ls‖−1
2 exp

(
− x2

2‖Ls‖2
2

)
dxµ(ds),

valid for all ε > 0 and all µ ∈ P(F ). Since F ⊆ [1, 2], the monotonicity of
local times shows that

E{Jε(µ)} ≥ 1√
2π
‖L2‖−1

2 exp
(
− ε2

2‖L1‖2
2

)
.

The lemma follows with V7 = (2π)−
1
2 ‖L2‖−1

2 , which is P-almost surely
(strictly) positive, thanks to (11).

Lemma 8. For any η > 0, there exists a P-a.s. positive and finite random
variable V8 such that for all µ ∈ P(F ),

sup
ε∈(0,1)

E
{
|Jε(µ)|2

}
≤ V8

∫∫
|s− t|−1+(1/2α)−η µ(ds) µ(dt), P-a.s.

Proof. We recall %s,t from (8), and observe that for any 1 ≤ s < t ≤ 2, and
for all ε > 0,
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P{|W (s)| ≤ ε , |W (t)| ≤ ε} = P{|W (s)| ≤ ε , |W (t)− %s,tW (s) + %s,tW (s)| ≤ ε}
≤ P{|W (s)| ≤ ε} × sup

x∈R
P{|W (t)− %s,tW (s) + x| ≤ ε},

since W (s) and W (t) − %s,tW (s) are P -independent; cf. Lemma 2. On the
other hand, centered Gaussian laws are unimodal. Hence, the above supre-
mum is achieved at x = 0. That is,

P{|W (s)| ≤ ε , |W (t)| ≤ ε} ≤ P{|W (s)| ≤ ε} × P{|W (t)− %s,tW (s)| ≤ ε}.

Computing explicitly, we obtain

sup
s∈[1,2]

P{|W (s)| ≤ ε} ≤ ε‖L1‖−1
2 . (14)

Likewise,

P{|W (t)− %s,tW (s)| ≤ ε} ≤ ε√
E{|W (t)− %s,tW (s)|2}

, P-a.s.

We can combine (14) with conditional regression (Lemma 2) and Lemma 5,
after a few lines of elementary calculations.

Proof (Theorem 1: Upper Bound). Given a compact set F ⊂ [1, 2] with
dim(F ) > 1 − (2α)−1, we are to show that P{W−1{0} ∩ F 6= ∅} > 0,
P-almost surely. But, for any µ ∈ P(F ), the following holds P-a.s.:

P{W−1{0} ∩ F 6= ∅} ≥ lim inf
ε→0

P{Jε(µ) > 0}

≥ lim inf
ε→0

∣∣E{Jε(µ)}
∣∣2

E{|Jε(µ)|2}
,

thanks to the classical Paley–Zygmund inequality ([3, p. 8]). Lemmas 7 and
8, together imply that for any η > 0, P-almost surely,

P{W−1{0} ∩ F 6= ∅} ≥ V 2
7

V8 · inf
µ∈P(F )

∫∫
|s− t|−1+(1/2α)−η µ(ds)µ(dt)

.

Note that the random variable V8 depends on the value of η > 0. Now, choose
η such that dim(F ) > 1− (2α)−1 + η, and apply Frostman’s theorem ([3, p.
130]) to deduce that

inf
µ∈P(F )

∫∫
|s− t|−1+(1/2α)−η µ(ds) µ(dt) < +∞.

This concludes our proof.
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