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1 Introduction

Let B denote the standard Brownian sheet. That is, B is a centered Gaussian
process indexed by ]R%r with continuous trajectories and covariance structure

E{BSBt} = min{sy, t1} X min{ss,t2}, s =(s1,82), t = (t1,t2) € ]Rﬁ_.

In a canonical way, one can think of B as “two-parameter Brownian motion”.
In this article, we address the following question: “Given a measurable func-
tion v : R — Ry, what can be said about the distribution of f[0,1]2 v(Bs) ds?”
The one-parameter variant of this question is both easy-to-state and well under-
stood. Indeed, if b designates standard Brownian motion, the Laplace transform
of fol v(bs+a) ds often solves a Dirichlet eigenvalue problem (in z), as prescribed
by the Feynman—Kac formula; cf. Revuz and Yor [6], for example. While ana-
logues of Feynman-Kac for B are not yet known to hold, the following highlights
some of the unusual behavior of f[0_1]2 v(Bs) ds in case v = 1[g o) and, anecdo-
tally, implies that finding explicit formuleae may present a challenging task.

Theorem 1.1
There exists a co € (0,1), such that for all 0 < ¢ < §,

1
exp{ T 10g2(1/5)} QP{I[O71]21{BS>O} ds < e} <eXP{ - 6010g2(1/5)}.
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Remark 1.2
By the arcsine law, the one-parameter version of the above has the following
simple form: given a linear Brownian motion b,

lim ¢ 1/2P{f01{b sop ds < e} = z

e—0*t

see [6, Theorem 2.7, Ch. 6]. O

Remark 1.3
R. Pyke (personal communication) has asked whether f 0.1]2 1{B; > 0} ds has

an arcsine-type law; see [5, Section 4.3.2] for a variant of thls question in discrete
time. According to Theorem 1.1, as ¢ — 0, the cumulative distribution function
of f[071]2 1(p,>0} ds goes to zero faster than any power of . In particular, the
distribution of time (in [0, 1]?) spent positive does not have any simple extension
of the arsine law. O

Theorem 1.4
Let v(z) := 1j_11j(x), or v(z) := 1(_so,1)(x). Then, there exists a c; € (0,1),
such that for all e € (0, %),

exp{ - b{%} <P{ [ 2 0(Bs) ds < ¢} gexp{ _ 01%}.

For a refinement, see Theorem 2.2 below.

Remark 1.5
The one- parameter version of Theorem 1.4 is quite simple. For example, let
I'= fo —1,11(bs) ds, where b is linear Brownian motion. In principle, one can

compute the Laplace transform of I' by means of Kac’s formula and invert it to
calculate its distribution function. However, direct arguments suffice to show
that the two-parameter Theorem 1.4 is more subtle than its one-parameter
counterpart:

—00 <hm(l)nfeln]P{I‘<6}<11msupz-:ln]P{I‘< e} <0, (1.1)
e—0+t
where In denotes the natural logarithm function. We will verify this later on in
the Appendix. O
Remark 1.6

The arguments used to demonstrate Theorem 1.4 can be used to also estimate
the distribution function of additive functionals of form, e.g., f[0.1}2 v(Bs) ds,
as long as al{_,,) <v<PBLl_g g, where 0 < r<R and 0 < dgﬂ. Other
formulations are also possible. For instance, when al(_ ) Sv< L r)- O
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2 Proof of Theorems 1.1 and 1.4

Our proof of Theorem 1.1 rests on a lemma that is close in spirit to a Feynman—
Kac formula of the theory of one-parameter Markov processes.

Proposition 2.1
There exists a finite and positive constant cq, such that for all measurable D C R
and all 0 < n,e < .

P{f[o,1]21{3.s€D} ds <e}<P{Vs€[0,1]°: B, € DE%,Q,,} + exp{—coe™ "},
where Ds denotes the d-enlargement of D for any 6 > 0. That is,
Ds:={z € R: dist(z; D) <4},

where ‘dist’ denotes Hausdorfl distance.

Proof  Forallt € [0,1]?, let |¢| := max{t1,t2}. Then, it is clear that for any
g,6 > 0, whenever there exists some sg € [0, 1] for which By, & Dy, either

L. supj,_g <172 | By — Bs| > 0, where the supremum is taken over all such
choices of s and ¢ in [0, 1]%; or

2. forallt € [0,1]? with |t—s0| <e'/?, B; € D, in which case, we can certainly
deduce that f[o 12 1po(By) dt > e.

Thus,
]P{HSO S [07 1]2 : Bso g D(S} < ]P){ Sup‘t_s‘ <el/2 |Bt _ Bg| > 5} +
+P{I[O,1]21D“(Bt) dt > e}.

By the general theory of Gaussian processes, there exists a universal positive
and finite constant co such that

P{ sup [B,—B|>d}<exp{-— 02525*1/2}. (2.1)

|t—s| <1/

Although it is well known, we include a brief derivation of this inequality for com-
pleteness. Indeed, we recall C. Borell’s inequality from Adler [1, Theorem 2.1]: if
{g¢; t € T'} is a centered Gaussian process such that || g||7 = E{sup,cp [g¢|} < o0
and whenever T is totally bounded in the metric d(s,t) = +/E{(g: — gs)?}

(s,t €T),
2

A
P{suplgel > A + lgllr} <2exp{ - =5 .
teT O'T

where 02 = sup,cr E{g7}. Eq. (2.1) follows from this by letting T = {(s,t) €
(0,1)2 x (0,1)? : |s — t|<e?}, g1.s = By — By and by making a few lines of
standard calculations. Having derived (2.1), we can let ¢ := €377 to obtain the
proposition. (|
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Proof of Theorem 1.1 Let D = (—00,0) and use Proposition 2.1 to see that

P{f[o,l]Nl{Bs>0} <ef <P S[up]z B; <5i—2’l} + exp{—coe "}
s€(0,1

Thus, the upper bound of Theorem 1.1 follows from Li and Shao [4], which
states that

lim sup loglP{ sup Bs<e} < —o0.
c—o+ log?(1/e) {35[0,1]2 <)

(An earlier, less refined version, of this estimate can be found in Cséki et al.
[2].) To prove the lower bound, we note that

]P{f[o,1]21{35>0} ds < 2 — 62}

2]?{ sup B <0}
s€le,1]?

= P{¥(u,v) € [0,In(1)]2: e(TV)/2 B(e7¥ e7¥) < 0},

and observe that the stochastic process (u,v) — B(e™",e~?)/e~(“t")/2 is the
2-parameter Ornstein—Uhlenbeck sheet. All that we need to know about the
latter process is that it is a stationary, positively correlated Gaussian process
whose law is supported on the space of continuous functions on [0, 1]2. We define
c3 > 0 via the equation

B —Uu —v
e = P{V(u,v) €0,1)?2: % < 0}.

By the support theorem, 0 < ¢3 < oo; this is a consequence of the Cameron-
Martin theorem on Gauss space; cf. Janson [3, Theorem 14.1]. Moreover, by
stationarity and by Slepian’s inequality (cf. [1, Corollary 2.4]),

P{f[o,1]21{35<0} ds <e}

. o B(e7™,e™"
2 11 ]P{V(U,’U)G[M‘H]X[JJJFHI W<O}
0<ij <In(1/e)+1

= eXp{ —c3 lnz(ez/g)}.
This proves the theorem. a

Next, we prove Theorem 1.4.

Proof of Theorem 1.4 Let D. denote the collection of all points (s, t) € [0, 1],
such that st <e. Note that

1. Lebesgue’s measure of D, is at least €In(1/e); and

2. if sup,cp_ |Bs| <1, then f[o 12 L-1,1)(Bs) ds > eln(1/e).
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Thus,
]P’{/ 1_1,1)(Bs) ds < 5111(1/5)} g]P{ sup |Bs| > 1}.
[0,1)2

s€D,
A basic feature of the set D, is that whenever s € D, then E{B?} <e. Since
E{supep, |Bs|} <E{sup,cjo1y2 [Bs|} < oo, we can apply Borell’s inequality to
deduce the existence of a finite, positive constant ¢4 < 1, such that for all € > 0,
P{sup,ep, [Bs| > 1/ca} <exp{—cs/c}. We apply Brownian scaling and possibly
adjust ¢4 to conclude that

]P’{ sup |Bs| > 1} e /e,
s€D.

Consequently, we can find a positive, finite constant c5, such that for all ¢ €
0,5,
In(1
P{T < E}gexp{ —C5M}. (2.2)
€
This implies the upper bound in the conclusion of Theorem 1.4. For the lower

bound, we note that for all ¢ € (0, %), Lebesgue’s measure of D, is bounded
above by cge log(1/¢). Thus,

> i .
]P’{ /[0’1]2 1(_oo,1)(Bs) ds < cee log(l/a)} > ]P{ se[ol,{l]g\pa Bs > 1}

On the other hand, whenever s € [0,1]?\ D,, s1s2 >¢. Thus,

WV

]P’{ inf B > i}
s€[0,12\D. /S182 /e
P{ inf = Ou,>e 2},

u,v > 0:
utv < In(1/e)

]P’{/ 1oy (Bs) ds < cﬁelog(l/s)}
[0.1]2

where O, , := B(e™*,e~")/e~(“+)/2 is an Ornstein-Uhlenbeck sheet. Conse-
quently,

p{ 1 oo (By) ds < coclog(1/e) | 2P inf O > 72,
/[0,1]2 (oo (Bs) ds < coelog(1/¢) ogu,vngllnu/g) ’ ¢

By appealing to Slepian’s inequality and to the stationarity of O, we can deduce
that

]P’{/ ooy (Ba) ds < exzlog(1/2)}
0.2

> H ]P’{ inf inf Oy, > 671/2}

i<u<itl j<v<<j+1
0<ij<In(1/e) NSRS

oy, vl

In?(e/e)
= []P’{ inf Oy, > 6_1/2}:| .
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On the other hand, recalling the construction of O, we have

]P{ inf Ou,v>€71/2}

0<u, vl

2]1"{ inf Bsi>e 571/2}

1<s,tLe

> ]P’{Bm >2e g=1/2 , sup }BS — B1,1| <e 671/2}

1<s1,52<e

:]P’{Bm >2e 5*1/2}-]?{ sup ‘BS—BM|<65*1/2}

1<s1,52<e

> C7P{Bl,1 >2e 5_1/2},

for some absolute constant c; that is chosen independently of all £ € (0, 3).
Therefore, by picking cg large enough, we can insure that for all € € (0, %),

]P’{ inf O >5_1/2}> —cge L.
ocf  Ouw >exp{ —cse '}

Plugging this in to Eq. (2.3), we obtain

]P’{ /[071]2 1(_oo1)(Bs) ds < cselog(l/e)} > exp{ - Cg%}. (2.4)

The lower bound of Theorem 1.4 follows from replacing € by ¢/ In(1/¢). O

The methods of this proof go through with few changes to derive the follow-
ing extension of Theorem 1.4.

Theorem 2.2
Suppose ¢ : Ry — Ry is a measurable function such that (a) asr | 0, o(r) 1
oo; and (b) there exists a finite constant v > 0, such that for all r € (0,3),
0(2r) = ~¢(r). Define J, = f[O,lP 1B, < sTsap(s1s2)} ds. Then, there exist a
finite constant cg > 1, such that for all € € (0, %),

€

2 1 €
exp{ - C9¢2(10g(1/€))10g (1/8)} <]}D{Jﬂp < 6} <exp{ - g¢2(10g(1/€))}

Appendix: On Remark 1.5

In this appendix, we include a brief verification of the exponential form of the
distribution function of T'; cf. Eq. (1.1). Given any A > % and for ¢ = (2)) /2,
we have

E{e '} < IE{ exp (— /\fgv(bs) ds)}
< e+ P{ sup |b] > 1} (2.5)
< e 4o 1/G0

2~ V2, (2.6)
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By Chebyshev’s inequality, ]P{f(l)v(bg) ds < e} <2infys1 e”VA2HA¢ Choose
A = 1272 to obtain the following for all € € (0, 3):

P{l < e} <27/ (2.7)
Conversely, we can choose § = (21)~'/2 and 7 € (0, t5) to see that
E{e '} > E{ exp (— )\fév(b ) ds); inf by > 1}
= 0 S I 5 g 5 g 1 S

> e M ]P’{|b5|>1—|-77, sup |bs—b5|<77}.
d<s<1+4

Thus, we can always find a positive, finite constant c;g that only depends on 7
and such that

E{e "} > cipexp { - \/é [1+ @ +n)(+vs)] |,

where lims_,g+ %5 = 0, uniformly in n € (0, ﬁ). In particular, after negotiating

the constants, we obtain

liminf A2 InEf{e '} > —21/2, (2.8)
A—00
Thus, for any ¢ € (0, Wlo)’

e~ V2A(1+01(1)) <E{eT} S]P’{I‘ < 6} e

where 01(1) — 0, as A — oo, uniformly in ¢ € (0, 1t5)- In particular, if we
choose € = (1 +1)4y/2/A, where n > 0, we obtain

P{T < (1+1)/2/A} > e~ V2A0H02(D)

where 02(1) — 0, as A — oo. This, Eq. (2.7) and a few lines of calculations,
together imply Eq. (1.1). O

References

[1] R.J. Adler (1990). An Introduction to Continuity, Extrema, and Related Topics
for General Gaussian Processes, Institute of Mathematical Statistics, Lecture
Notes—Monograph Series, Volume 12, Hayward, California.

[2] E. Csdki, D. Khoshnevisan and Z. Shi (2000). Boundary crossings and the
distribution function of the maximum of Brownian sheet. Stochastic Processes
and Their Applications (To appear).

[3] S. Janson (1997). Gaussian Hilbert Spaces, Cambridge Tracts in Mathematics,
Cambridge University Press, Cambridge, UK



PERIODICA MATH. HUNG., 41(1-2), 187-194 (2000) 8

[4] W. V. Liand Q.-M. Shao (2000) Lower tail probabilities of Gaussian processes.

Preprint.

[5] R.Pyke (1973). Partial sums of matrix arrays, and Brownian sheets. In Stochas-
tic Analysis, 331-348, John Wiley and Sons, London, D. G. Kendall and E. F.

Harding: Ed.’s.

[6] D. Revuz and M. Yor (1991). Continuous Martingales and Brownian Motion,
Second Edition, Springer-Verlag, Berlin.

DAvAR KHOSHNEVISAN

University of Utah

Department of Mathematics

155 S 1400 E JWB 233

Salt Lake City, UT 84112-0090
davar@math.utah.edu
http://www.math.utah.edu/ davar

ROBIN PEMANTLE

Ohio State University

Department of Mathematics

231 W. 18 Ave., Columbus, OH 43210
Columbus, OH 43210
pemantle@math.ohio-state.edu
http://www.math.ohio-state.edu/ pemantle



