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1 Introduction

We define N0 =
{
0, 1, . . .

}
and say that a stochastic process X =

{
X(n);

n ∈ NN0
}

is an N -parameter, Zd-valued, additive random walk, if there are
N independent random walks X1, . . . ,XN on Zd, such that

X(n) = X1(n1) + · · · + XN (nN ), n ∈ NN0 .

Here, nj denotes the jth coordinate of n ∈ NN0 and we are following the
standard convention of starting our (ordinary) random walks at the origin.
That is, Xj(0) = 0 for all j = 1, . . . , N . From now on, N will always
denote the temporal dimension and d the spatial one, in accordance with
the conventional language of stochastic processes.

The continuous time analogue of such random walks plays an important rôle
in the analysis of Lévy sheets and, in particular, Brownian sheet; cf. Ref.’s
[4, 5, 6, 7, 12, 13, 14, 17, 18] to cite only some of the references. These
additive random walks also occur naturally in the theory of intersections of
Lévy processes; cf. [9, 10, 16] and in the applications of probability theory
in constructing exceptional sets and in harmonic analysis; cf. [11] and its
extensive list of references.

In this article, we study the distributional properties of the the level sets
of X by analyzing the ‘size’ of the random image X(E) where E ⊂ NN0 is
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any nonrandom set. We will also show how such general results characterize
‘recurrence’ and ‘transience’ of X. As such, the results of the present paper
are closely related to the companion paper [15]. In order to present the main
result of this paper, we define the function Φ : NN0 × NN0 7→ [0, 1] as

Φ(n,m) = P
{
X(n) = X(m)

}
, n,m ∈ NN0 , (1.1)

and refer to this Φ as the gauge function of the additive random walk X.
For all probability measures µ on NN0 , we can define the Φ-energy of µ as

EΦ(µ) =
∫∫

Φ(x, y) µ(dx) µ(dy). (1.2)

Then, the Φ-capacity CΦ(E) of any E ⊂ NN0 can be defined by the principle
of minimum energy:

CΦ(E) =

[
inf

{
EΦ(µ) : µ ∈ P(E) and EΦ(µ) > 0

}]−1

, (1.3)

where P(E) denotes the collection of all probability measures on E, inf? =
+∞ and 1/∞ = 0.

The first main result of this article is the following theorem that estimates
the size of the image of E under the random map X.

Theorem 1.1. Let X be an N -parameter, d-dimensional additive random
walk with gauge function Φ. For all E ⊂ NN0 ,

CΦ(E)6 E
{
#X(E)

}
6 16NCΦ(E), (1.4)

where #X(E) denotes the cardinality of X(E).

Remark 1.1. When N = 1 and X is an ordinary random walk on Zd,
constant 16 in (1.4) can be replaced by 2. cf. Remark 4.1 in §4.

Next, we illustrate the power of such a general estimate by studying the
level sets of a large class of additive random walks.

We say that our additive random walk X is symmetric, if for each n ∈ NN0 ,
−X(n) has the distribution as X(n). Clearly the symmetry of the additive
random walk X implies that for each j = 1, . . . , N , the classical random
walk Xj is also symmetric.
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Note that in case X is symmetric, Φ(n,m) is a function of n − m ∈ ZN.
That is, we can define Ψ : ZN 7→ [0, 1] in a unique and well-defined manner
by

Ψ(n−m) = Φ(n,m), (1.5)

where n,m ∈ NN0 . Let n denote the point in NN0 whose jth coordinate is
|nj |. Then, we point out that for all n,m ∈ NN0 ,

Φ(n,m) = Ψ(n−m) = P{X(n −m) = 0}.

We also write CΨ(E) and EΨ(µ) for CΦ(E) and EΦ(µ), in the symmetric
case, and also refer to Ψ as the (symmetrized) gauge function of X.

In order to describe a natural partial order on ZN, we define the partial
order ‘4’ on ZN by: for all m,n ∈ ZN, m 4 n if and only if mj 6nj for
all j = 1, . . . , N . This partial order induces a minimum (maximum, resp.)
operator f (g, resp.): for all m,n ∈ ZN, mf n (m g n, resp.) denotes the
point in ZN whose jth coordinate is min{mj , nj} (max{nj ,mj}, resp.) for
all j = 1, . . . , N .

We say that a Zd–valued random variable Y is κ-weakly unimodal for a
positive constant κ> 1, when

sup
a∈Zd

P{Y = a}6 κP{Y = 0}.

Throughout the remainder of the Introduction, we will assume the existence
of a fixed constant κ> 1 such that whenever m,n ∈ NN0 with P{X(m) =
0,X(n) = 0} > 0, X(m f n) is κ-weakly unimodal. When this is so, we
say that the N -parameter random walk X := {X(n);n ∈ NN0 } is weakly
unimodal. We observe that the above definition of weak unimodality of X
implies that whenever m ∈ NN0 with P{X(m) = 0} > 0, X(m) is weakly
unimodal.

For all E ⊂ NN0 , we write δE (∆E , resp.) for any choice of n ∈ NN0 with
the following property: P{X(n) = 0} > 0 and n 4 m (n < m, resp.) for all
m ∈ E. We note that δE always exists in NN0 , and ∆E also exists as long
as E is bounded and X symmetric. If P{X(n) = 0} = 0 for all n < E (i.e.
n < m for all m ∈ E) or E is infinite, we define ∆E = ∞. Of course, it is
not necessarily true that δE or ∆E are themselves in E.
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Theorem 1.2. Let X be a symmetric, weakly unimodal, N -parameter addi-
tive random walk with symmetrized gauge function Ψ. Then, for all E ⊂ NN0 ,

Ψ2(∆E)
κ3Ψ(δE)

· CΨ(E) 6 P
{
0 ∈ X(E)

}
6 sup
a∈Zd

P
{
a ∈ X(E)

}
6κ16NΨ(δE) · CΨ(E),

where Ψ(∞) = 0 and 0/0 = 0.

Amongst other things, the above estimates the probability that the zero set
of X intersects a given set E and this estimate is essentially sharp, as long
as Ψ(δE) and Ψ(∆E) are of the same order of magnitude.

Next, let us denote the level set of X (at 0) by L. That is,

L =
{

n ∈ NN0 : X(n) = 0
}

. (1.6)

When N = 1, a classical problem of probability has been to establish when
L is an infinite set. Equivalently, the question is: “when is 0 recurrent?”
We shall continue using this notation for all N > 1. Our next theorem gives
a necessary and sufficient condition for 0 to be recurrent for the additive
random walk X. Needless to say, one needs to better understand the notion
of recurrence in order to work in the multiparameter setting. For instance,
the reader is reminded that notions of ‘stopping times’, ‘first time to · · · ’,
etc. no longer even make sense. As such, other ideas are needed to prove
the following.

Theorem 1.3. Suppose X is a symmetric, weakly unimodal, N -parameter
additive random walk on Zd and X(0) = 0, the following are equivalent:

1. 0 is recurrent with positive probability;

2. 0 is recurrent with probability one; and

3.
∑

n∈NN
0
P
{
X(n) = 0

}
= ∞.

It follows from Theorem 1.3 that if
∑

n∈NN
0
P
{
X(n) = 0

}
= ∞, then

limn→∞#(L ∩ [0, n]N ) = ∞, almost surely, where # denotes cardinality.
Due to its close connections to the various fractal dimensions of L, the rate
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at which #(L ∩ [0, n]N ) →∞ is a matter of some importance; see [1, 2] for
results about discrete fractals determined by classical random walks. Here,
we define the following two indices:

γ = inf
{

β > 0 : lim sup
n→∞

n−β
∑

k∈[0,n]N

Ψ(k) < ∞
}
, and

γ = sup
{
β > 0 : lim inf

n→∞ n−β
∑

k∈[0,n]N

Ψ(k) > 0
}

.

It is easy to verify that 06 γ6 γ6N . Whenever γ = γ, we write their
common value as γ. Later on, we will use the following elementary fact: for
any ε > 0, there exists a positive and finite constant K such that

K−1nγ−ε6
∑

k∈[0,n]N

Ψ(k)6Knγ+ε, (1.7)

for all n large enough.

In the following, we denote L(n) = #(L ∩ [0, n]N ).

Theorem 1.4. Suppose X is a symmetric, weakly unimodal, N -parameter
additive random walk on Zd. Then, almost surely,

γ6 lim sup
n→∞

logL(n)
log n

6 γ. (1.8)

In particular, under the conditions of Theorem 1.4, whenever γ = γ,

lim sup
n→∞

logL(n)
log n

= γ,

almost surely.

The outline of the remainder of this article is as follows. In Section 2,
we establish a series of Markov properties for additive random walks; this
is an important step in our proof of Theorem 1.1. In Section 3, we prove
some technical lemmas and give some examples of weakly unimodal additive
random walks. Theorems 1.1 and 1.2 are proved in Sections 4 Section 5,
respectively. Finally, in Section 6, we prove Theorems 1.3 and 1.4.
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2 Markov Properties

The additive random walks of §1 satisfy 2N ‘Markov properties’ that are
immediately relevant to the results of this paper. However, to get these
Markov properties. we will need to use non-probability measures. To do
this concisely, we work on the canonical probability space (Ω,F), where
Ω = (Zd)N0 ⊕ · · · ⊕ (Zd)N0 is the collection of all functions ω : NN0 7→ Zd of
form ω(n) = ω1(n1)+· · ·+ωN(nN ), where ωj ∈ (Zd)N0 . Moreover, F denotes
the Borel field based on the product topology. The processes X,X1, . . . ,XN

are then described in the usual way as follows: for all ω ∈ Ω, all n ∈ NN0
and all j = 1, . . . , N , X(n)(ω) = ω(n), Xj(nj) = ωj(nj). Let P denote the
probability measure—derived from Kolmogorov’s existence theorem—that
makes this coordinatewise definition of X a version of the additive random
walk we need, and define for all A ∈ F,

Q(A) =
∑
a∈Zd

P{ω ∈ Ω : ω + a ∈ A}, (2.1)

where, as usual, (ω + a)(n) = ω(n)+ a (n ∈ NN0 ). The measure Q is σ-finite
but not finite. In fact, for all n ∈ NN0 and b ∈ Zd, Q{X(n) = b} = 1. We
denote by EQ the abstract integral (or ‘expectation’) with respect to the
infinite measure Q . That is, for all Z : Ω 7→ R+ , EQ {Z} =

∫
Ω Z(ω) Q(dω),

and this uniquely defines EQ {Z}, at least whenever EQ {|Z|} < ∞. There
are 2N standard partial orders on NN0 , all of which we will need. A good
way to keep track of them is as follows: let Π denote the collection of all
subsets of {1, . . . , N}. For all A ∈ Π, we then define a partial order 4(A)

on NN0 by declaring n 4(A) m whenever for all j ∈ A, nj 6mj and for all
j 6∈ A, nj >mj. We will not distinguish between n 4(A) m and m <(A) n.
It is important to notice that the partial order “4({1,...,N})” is the same as
“4” of the Introduction.

For each A ∈ Π and for all n ∈ NN0 , we define FA(n) to be the σ-field
generated by the collection {X(m); m 4(A) n}. Clearly, FA is a filtration
in the partial order 4(A). That is, whenever n 4(A) m, FA(n) ⊂ FA(m).
We will also need a kind of ‘reversed filtration’ GA for each A ∈ Π: for all
n ∈ NN0 , GA(n) denotes the σ-field generated by {X(m); m <(A) n}.
Proposition 2.1 (Markov Properties). For every A ∈ Π and all n ∈ NN0 ,
GA(n) is conditionally independent of FA(n), given X(n), under the measure
Q .

Remark 2.1. When N ≥ 2, this is not true under P.
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In order to explain Proposition 2.1, let us fix A ∈ Π and suppose p, q ∈ N0

and k−p, . . . , kq ∈ NN0 satisfy the following: for all 16 i6 p and 16 j6 q,
k−i 4(A) k0 4(A) kj . Then, Proposition 2.1 states that for all f` : Zd 7→ R+

(−p6 `6 q),

EQ

{ q∏
`=−p

f`
(
X(k`)

) ∣∣∣ X(k0)
}

= f0

(
X(k0)

)× EQ

{ −1∏
`=−p

f`
(
X(k`)

) ∣∣∣ X(k0)
}

× EQ

{ q∏
`=1

f`
(
X(k`)

) ∣∣∣ X(k0)
}

,

(2.2)

Q-almost surely.

Proof. Using the notation used in Eq. (2.2),

EQ

{ q∏
`=−p

f`
(
X(k`)

)}

=
∑
a∈Zd

E
{ q∏
`=−p

f`
(
X(k`) + a

)}

=
∑
a∈Zd

f0(a) · E
{ ∏
−p6 `6 q

` 6=0

f`
(
X(k`)−X(k0) + a)

)}
,

as long as any the latter sum is finite. We now use the easily verifiable fact
that the following collections of random variables are independent from one
another:

(i) {X(k−p)−X(k0), . . . ,X(k−1)−X(k0)}; and

(ii) {X(k1)−X(k0), . . . ,X(kq)−X(k0)}.
By the monotone convergence theorem, Eq. (2.2) holds for all f−p, . . . , fq
and the proposition follows.

Indeed, the above argument has the following immediate but important
consequence.
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Corollary 2.1. For all A ∈ Π, every n,m ∈ NN0 with n 4(A) m, and for all
f : Zd 7→ R+ ,

EQ

{
f ◦X(m)

∣∣∣ FA(n)
}

= E
{

f
[
X(m)−X(n) + β

]}
,

Q-almost surely on {X(n) = β}.

3 Preliminaries on Unimodal Walks

In this section, we present a sufficient condition for an additive random walk
to be weakly unimodal. We also prove a technical result that will be useful
in our proof of Theorem 1.2.

It is easy to verify directly that for N = 1, any simple (nearest neighbor
with equal probabilities) random walk on Zd is weakly unimodal with κ = 1.
This can also be derived from the following lemma.

Lemma 3.1. Let Y be a random variable on Zd. If E{eiξ·Y }> 0,

sup
a∈Zd

P{Y = a}6P{Y = 0}.

Proof. By Fourier’s inversion formula, for all g ∈ Zd,

P
{
Y = g

}
= (2π)−d

∫
[−π,π]d

e−ig·ξ E
{
eiξ·Y

}
dξ,

and the result follows immediately.

Example. There are many random variables in Z that have a positive
characteristic function. Here is one construction: consider a sequence {pk}
of non-negative numbers such that p0 +

∑∞
k=1 pk = 1 and

∑∞
k=1 pk6 p0 and

define Y be a random variable with

P{Y = 0} = p0, P{Y = k} = P{Y = −k} = pk/2 (k> 1).

Then, it is clear that E{eiξ·Y }> 0. Now, consider X1, · · · ,XN—N inde-
pendent random walks on Zd—and denote the characteristic function of
Xj(1) by Ψj (j = 1, · · · , N), respectively. Then, for any n ∈ NN0 , E [exp{iξ ·
X(n)}] =

∏N
j=1[Ψj(ξ)]nj . There are many possible choices for N and Ψj (j =

1, . . . , N) such that the above characteristic function is non-negative for
all n ∈ NN0 , or more generally E [exp{iξ · X(n)}]> 0 for all n ∈ NN0 with
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P{X(n) = 0} > 0. It follows from Lemma 3.1 that for such choices the
corresponding additive random walks are weakly unimodal with κ = 1. In
particular, this is the case for the simple random walk in Zd.

Next, we use the order structure on NN0 described in the Introduction: for
all m,n ∈ NN0 , m 4 n if and only if m`6n`, for all ` = 1, . . . , N . We also
recall the definitions of mf n and Ψ.

Lemma 3.2 (Weak Monotonicity). Let X be a weakly unimodal N -
parameter additive random walk. For m,n ∈ NN0 , if m 4 n and P{X(m) =
0} > 0, then Ψ(n)6κΨ(m).

Proof. Since m 4 n, X(m) and X(n)−X(m) are independent. Hence,

Ψ(n) = P{X(m) + (X(n)−X(m)) = 0}
6 sup

a∈Zd

P
{
X(m) + a = 0

}
6κΨ(m),

by weak unimodality. This proves the lemma.

Lemma 3.3. Let X be a symmetric and weakly unimodal N -parameter ad-
ditive random walk. For all m,n ∈ NN0 ,

P{X(m) = 0,X(n) = 0}6 κΨ(mf n)Ψ(m− n).

Proof. If P{X(m) = 0,X(n) = 0} = 0, then there is nothing to prove. So,
we may assume that this probability is positive. Recall that nfm denotes
the point in NN0 whose jth coordinate is nj ∧ mj (the minimum). For all
n,m ∈ NN0 , let Z1 = X(n)−X(nfm) and Z2 = X(m)−X(nfm). Then,

P
{
X(n) = 0 , X(m) = 0

}
= P

{
X(nfm) + Z1 = 0 , X(nfm) + Z2 = 0

}
6P

{
X(n fm) + Z2 = 0 , X(n)−X(m) = 0

}
.

(3.1)

Since X(nfm), Z1 and Z2 are mutually independent, the above is bounded
above by

sup
a∈Zd

P
{
X(nfm) = a

} · P{
X(n)−X(m) = 0

}
6κP

{
X(nfm) = 0

} · P{
X(n)−X(m) = 0

}
= κΨ(nfm) · P{

X(n)−X(m) = 0
}
.

We have used weak unimodality in the above. By symmetry and indepen-
dence, one can also directly check that P

{
X(n)−X(m) = 0

}
= Ψ(n−m),

and our proof is complete.
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4 Proof of Theorem 1.1

We begin by stating a multiparameter martingale inequality. When the
underlying measure is a probability measure, this is due to R. Cairoli; cf.
[3, 18]. When the underlying measure is our infinite but σ-finite measure
Q , a proof can be set forth by following through the standard proof of the
probability case carefully. In a one-parameter, discrete setting, the details
can be found in [8, Eq. (40.2), p. 34]. One generalizes this development to
our present multiparameter setting by applying one-parameter arguments
one parameter at a time; this idea is due to R. Cairoli and is well explained
in [18].

Lemma 4.1 (Cairoli’s (2,2) Maximal Inequality). For A ∈ Π and
for any bounded random variable Y , define the N -parameter FA–martingale
M(m) = EQ {Y | FA(m)}, (m ∈ NN0 ). Then,

EQ

{
sup
m∈NN

0

M(m)2
}
6 4NEQ {Y 2}.

Define

Jµ(a) =
∑
n

1{X(n)=a} µ({n}), a ∈ Zd, µ ∈ P(NN0 ). (4.1)

As an immediate consequence of Corollary 2.1, we obtain

Lemma 4.2. For all a ∈ Zd and µ ∈ P(NN0 ),

EQ
{
Jµ(a)

}
= 1

EQ
{|Jµ(a)|2} = EΦ(µ).

We are ready to verify the easier half of Theorem 1.1.

Proof of Theorem 1.1: Lower Bound. By the Paley–Zygmund inequal-
ity, for all a ∈ Zd and all µ ∈ P(E),

Q{Jµ(a) > 0}>
[
EQ

{
Jµ(a)

}]2

EQ
{|Jµ(a)|2} ;

see [11] for a proof in the probability case. The standard argument for this
works to prove the above formulation for Q , as well. Applying Lemma 4.2
and optimizing over µ ∈ P(E), we can deduce that

Q
{∃n ∈ E : X(n) = a

}
>CΦ(E).
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On the other hand,

Q
{∃n ∈ E : X(n) = a

}
=

∑
x∈Zd

P
{∃n ∈ E : X(n) + x = a

}
= E

{
#X(E)

}
.

(4.2)

This completes our proof of the lower bound in Theorem 1.1.

In order to prove the upper bound, we need one technical estimate that
involves martingale estimates. Recalling Eq. (4.1), we define for all µ ∈
P(E), A ∈ Π and for every a ∈ Zd,

Ma,A
µ (n) = EQ

{
Jµ(a)

∣∣ FA(n)
}
, n ∈ NN0 . (4.3)

Lemma 4.3. For all µ ∈ P(E), A ∈ Π, a ∈ Zd and for all n ∈ NN0 ,

Ma,A
µ (n)>

∑
`<(A)n

Φ(`, n) µ({`}) · 1{X(n)=a},

Q-almost surely.

Proof. Combining Eq.’s (4.1) and (4.3), we see that

Ma,A
µ (n)>

∑
`<(A)n

Q
{
X(`) = a

∣∣ FA(n)
}

µ({`}) · 1{X(n)=a},

Q-almost surely. By Corollary 2.1, Q-almost surely on {X(n) = a},

Q
{
X(`) = a

∣∣ FA(n)
}

= Φ(`, n).

This completes our proof.

We can now proceed with our

Proof of Theorem 1.1: Upper Bound. By standard Choquet capacity
arguments, we can assume that E is a finite set. Let τ denote any measurable
selection of n ∈ E, such that X(τ) = a. If a 6∈ X(E), we define τ ≡ +∞.
Squaring the expression in Lemma 4.3 and taking suprema over all n ∈ N0 ,
we see that for all a ∈ Zd, A ∈ Π and for all µ ∈ P(E),

sup
n∈NN

0

∣∣Ma,A
µ (n)

∣∣2> [ ∑
`<(A)τ

Φ(`, τ) µ({`})
]2 · 1{∃n∈E:X(n)=a},
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Q-almost surely. Since
∑

A∈Π |xA|2> 2−N
∣∣∑

A∈Π xA
∣∣2 for every sequence

{xA;A ∈ Π}, we can add over all A ∈ Π and see that for any µ ∈ P(E),

∑
A∈Π

sup
n∈NN

0

∣∣Ma,A
µ (n)

∣∣2> 2−N
[∑

`

Φ(`, τ) µ({`})
]2 · 1{∃n∈E:X(n)=a}, (4.4)

Q-almost surely. Now, we choose a special µ by defining

µ({•}) = Q
{
τ = • ∣∣ τ 6= +∞}

.

Since E is assumed to be finite, by Eq. (4.2),

1 ≤ Q
{
τ 6= ∞} = E

{
#X(E)

}
6#E < ∞.

Thus, µ ∈ P(E) and by Eq. (4.4), applied to this specific choice of µ,
∑
A∈Π

EQ

{
sup
n∈NN

0

∣∣Ma,A
µ (n)

∣∣2}

> 2−N
∑
n

[∑
`

Φ(`, n) µ({`})
]2

µ({n}) · Q{∃n ∈ E : X(n) = a}

> 2−N
[
EΦ(µ)

]2
· E{

#X(E)
}
.

We have used Eq. (4.2) in the last step, together with the Cauchy–Schwarz
inequality. On the other hand, by Lemmas 4.1 and 4.2, the left hand side is
bounded above by

4N
∑
A∈Π

EΦ(µ) = 8NEΦ(µ).

We have shown the existence of some µ ∈ P(E), such that

E
{
#X(E)

} · [EΦ(µ)
]2
6 16NEΦ(µ). (4.5)

Since Φ(n, n) = 1, EΦ(µ)>
∑

n∈E
∣∣µ({n})∣∣2 > 0. Thus, we can deduce the

requisite upper bound by dividing each side of (4.5) by EΦ(µ). This com-
pletes our proof.

Remark 4.1. As mentioned after the statement of Theorem 1.1, in the
N = 1 case, constant 16 in (1.4) can be improved to 2. We now give
the requisite argument. The special feature of this 1-parameter setting is
that the parameter set N0 is totally ordered by the linear order 4 which
is now the same as the usual 6. Thus, we need only consider the latter
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partial order. We recall that for all m ∈ N0 , Fm is the σ–algebra generated
by X(n), for all 06n6m. For each µ ∈ P(N0), consider the martingale
M = {Ma

µ(n);n ∈ N0} defined by

Ma
µ(n) = EQ

{
Jµ(a)

∣∣∣ Fn}, n ∈ N0 .

Similar to Lemma 4.3, we obtain that for all µ ∈ P(N0),

Ma
µ(n)>

∑
`>n

Φ(`, n) µ({`}) · 1{X(n)=a}. (4.6)

This holds Q-almost surely for all n ∈ N0 . Define τ to be the first n ∈ N0

such that X(n) = a, with the usual stipulation that inf ? = +∞. Then, τ
is a stopping time with respect to the filtration F =

{
Fn; n ∈ N0

}
. By the

optional stopping theorem for EQ , which is standard to verify, we have

EQ
{
Ma
µ(τ)1(τ<+∞)

}
6 lim
k→∞

EQ
{
Ma
µ(τ ∧ k)

}
= EQ

{
Ma

0

}
= 1.

Applying (4.6) to n = τ and taking expectations with respect to Q , we
obtain

1> EQ
{ ∑
n> τ

Φ(n, τ) µ({`}) · 1{τ<+∞}
}

.

As this holds for all µ ∈ P(N0 ), we can apply it to

µ(•) = Q
{
τ ∈ • ∣∣ τ < +∞}

and see that

Q
{
τ < +∞}

6

[ ∑
`>m

Φ(`,m) µ({`}) µ({m})
]−1

.

Since the above double sum is clearly bounded below by 1
2EΦ(µ), we obtain

the upper bound of Theorem 1.1 with the better constant of 2, in case N = 1.
This proves the assertion of Remark 1.1.

5 Proof of Theorem 1.2

We are ready to prove Theorem 1.2. In contrast to our presentation of §4,
this time, we begin with the harder half, since we have already done most
of the preliminary work.
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Proof of Theorem 1.2: Upper Bound. The upper bound follows readily
from the upper bound given in Theorem 1.1. Indeed, for any a ∈ Zd,

P
{∃n ∈ E : X(n) = a

}
=

∑
x∈Zd

P
{
X(δE) = x} · P{∃n ∈ E : X(n)−X(δE) = a− x

}
6Ψ(δE)κ ·

∑
x∈Zd

P
{∃n ∈ E : X(n)−X(δE) = a− x

}
.

We have used weak unimodality in the penultimate line. By Theorem 1.1,

P
{∃n ∈ E : X(n) = a

}
6 16NκΨ(δE) · CΨ(E 	 δE),

where E	x = {n−x : n ∈ E}. It is clear from Eq. (1.5), that F 7→ Cψ(F )
is translation invariant. Thus, CΨ(E 	 δE) = CΨ(E) and the upper bound
is proved.

The ‘lower bound version’ of the above argument is not sufficiently sharp.
Instead, we adapt the arguments that lead to the lower bound in Theorem
1.1.

Proof of Theorem 1.2: Lower Bound. If Ψ(∆E) = 0, there is nothing to
prove. Hence, we may assume, with no loss in generality, that Ψ(∆E) > 0.
Using the notation Eq. (4.1) with µ ∈ P(E), let Jµ = Jµ(0) for brevity.
Then, by weak unimodality, weak monotonicity (Lemma 3.2) and after a
few lines of calculations, we obtain the following.

E{Jµ} >
1
κ

Ψ(∆E)

E{|Jµ |2} 6 κΨ(δE) · EΨ(µ).

By the Paley–Zygmund inequality and after optimizing over all µ ∈ P(E),
we obtain

P
{∃n ∈ E : X(n) = 0

}
>

Ψ2(∆E)
κ3Ψ(δE)

· CΨ(E).

This completes our argument.

6 Proof of Theorems 1.3 and 1.4

In this section, we prove Theorem 1.3 and 1.4.
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Proof of Theorem 1.3. Since the event
{
ω : #L = +∞}

is a tail event
for all of X1, . . . ,XN . The first two assertions of Theorem 1.3 are equivalent.
By Fubini’s theorem, if assertion 3 does not hold, then E

{
#L}

< ∞, which
implies that 0 is a.s. not recurrent. It suffices to prove the converse. That
is,

E
{
#L}

= +∞ =⇒ P
{
#L = +∞}

> 0. (6.1)

In order to prove this, we first note that by Lemma 3.3,

E{|L(n)|2} 6
∑∑
i,j∈[0,n]N

P
{
X(i) = X(j) = 0

}

6 κ
∑ ∑
i,j∈[0,n]N

Ψ(if j) Ψ(i− j)

= κ
∑ ∑
i,j∈[0,n]N

Ψ(if j) Ψ(ig j − if j).

Thus, we can rearrange the sum to see that E{|L(n)|2} is bounded above by

κ
∑

p,q∈[0,n]N :
p<q

Ψ(q) Ψ(p− q) ·#{
i, j ∈ [0, n]N : p = ig j, q = if j

}

6 2Nκ
∑

p,q∈[0,n]N :
p<q

Ψ(q) Ψ(p− q)

6 2Nκ
{ ∑
p∈[0,n]N

Ψ(p)
}2

.

This proves that E{|L(n)|2}6κ2N [E{L(n)}]2 . Consequently, it follows from
the Paley–Zygmund inequality that

P
{
L(n)>

1
2
E
[L(n)

]}
>

1
4

(E{L(n)})2
E
{|L(n)|2}

>
1

κ2N+3
;

(6.2)

see [11, p.8]. On the other hand, whenever E{#L} = +∞, limn E{L(n)} =
∞. Since L(n)6#L,

P{L = +∞}> lim inf
n→∞ P

{
L(n)>

1
2
E
[L(n)

]}
>κ−12−N−3.

We have verified Eq. (6.1).
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Proof of Theorem 1.4. We start with our proof of the upper bound in
(1.8). For any ε > 0, by Eq. (1.7),

E{L(n)} =
∑

k∈[0,n]N

Φ(k)6Kn−(γ+ε) for all n ∈ NN0 . (6.3)

For every integer `> 1, we take n` = 2`. Then, by (6.3) and the Chebyshev’s
inequality we obtain

P
{
L(n`) > 2−`(γ+2ε)

}
6 2−ε`. (6.4)

The Borel-Cantelli lemma implies that almost surely for all integers ` that
are large enough,

L(n`)6 2−`(γ+2ε). (6.5)

If n is large and if ` satisfies 2`6n < 2`+1, Eq. (6.5) implies that

L(n)6L(n`+1)6 2γ+2ε nγ+2ε.

Therefore,

lim sup
n→∞

logL(n)
log n

6 γ + 2ε. a.s.

Since ε > 0 is arbitrary, this proves the upper bound in (1.8). In order to
prove the corresponding lower bound, we note that by Eq. (6.2),

P
{
L(n)>

1
2
E
[L(n)

]
infinitely often

}
>

1
κ2N+3

. (6.6)

By Eq. (1.7), for any ε > 0 and all n> 1, there exists a finite and positive
constant K, such that E [L(n)]>K−1nγ−ε for all n large enough. This and
Eq. (6.6), together imply that

lim sup
n→∞

logL(n)
log n

> γ − ε,

with positive probability. We obtain the asserted lower bound in Theorem
1.4 by making an appeal to the 0-1 law of Hewitt and Savage.

Let us conclude this section by studying a class of additive random walks
that have nice, regular behavior. Namely, we assume that X1, . . . ,XN are
all independent random walks on Zd and they all have the same law. Fur-
thermore, we assume the existence of α > 0, such that for all n> 1,

P
{
X1(n) = 0

} � n−α, (6.7)
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where a(x) � b(x) means there exists a finite C > 1, such that for all x
under consideration,

C−1
6

a(x)
b(x)

6C.

We note that, in this case, for all n ∈ ZN,

Ψ(n) � {|n|+ 1}−α, (6.8)

where | • | denotes any of the Euclidean norms on RN . It is easy to verify
that, in the present setting, γ = γ = (N−α)+. It follows from Theorems 1.3
and 1.4 that X is recurrent if and only if N > α. Moreover, with probability
one,

lim sup
n→∞

logL(n)
log n

= (N − α)+.

References

[1] M. Barlow and S. J. Taylor (1989), Fractal dimensions of sets in dis-
crete spaces, J. Phys. A 22, 2621–2626.

[2] M. Barlow and S. J. Taylor (1992), Defining fractal subsets of Zd, Proc.
London Math. Soc. 64(3), 125–152.

[3] R. Cairoli (1968), Une inegalité pour martingales à indices multiples
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25(3), 325–350.

[11] J.-P. Kahane (1985), Some Random Series of Functions, Cambridge
Studies in Advanced Mathematics, Cambridge, U.K.

[12] W. S. Kendall (1980), Contours of Brownian process with several–
dimensional times, Z. Wahr. Verw. Geb., 52, 267–276.

[13] D. Khoshnevisan (1999), Brownian sheet images and Bessel-Riesz ca-
pacity, Trans. Amer. Math. Soc., 351(7), 2607–2622.

[14] D. Khoshnevisan and Z. Shi (1999), Brownian sheet and capacity, Ann.
of Probab., 27(3), 1135–1159.

[15] D. Khoshnevisan and Y. Xiao (1999), Level sets of additive Lévy pro-
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