Chapter 4

section 4.1 (page 290)

Vocabulary Check (page 290)

1. Trigonometry
2. angle
3. coterminal
4. radian
5. acute; obtuse
6. complementary; supplementary
7. degree
8. linear
9. angular
10. $A=\frac{1}{2} r^{2} \theta$
11. 2 radians
12. 5.5 radians
13. -3 radians
14. -4 radians
15. 1 radian
16. 6.5 radians
17. (a) Quadrant I
(b) Quadrant III
18. (a) Quadrant III
19. (a) Quadrant IV
(b) Quadrant III
20. (a) Quadrant IV
(b) Quadrant III
I. (a) Quadrant III
(b) Quadrant II
21. (a) Quadrant IV
(b) Quadrant II
(a) Quadrant IV
22. (a)
(b)

23. (a)

(b)

24. (a)

(b)

25. (a)

(b)

26. (a) $\frac{13 \pi}{6},-\frac{11 \pi}{6}$
(b) $\frac{17 \pi}{6},-\frac{7 \pi}{6}$
27. (a) $\frac{19 \pi}{6},-\frac{5 \pi}{6}$
(b) $\frac{\pi}{6},-\frac{23 \pi}{6}$
28. (a) $\frac{8 \pi}{3},-\frac{4 \pi}{3}$
(b) $\frac{25 \pi}{12},-\frac{23 \pi}{12}$
29. (a) $\frac{7 \pi}{4},-\frac{\pi}{4}$
(b) $\frac{28 \pi}{15},-\frac{32 \pi}{15}$
30. (a) Complement: $\frac{\pi}{6}$; Supplement: $\frac{2 \pi}{3}$
(b) Complement: none; Supplement: $\frac{\pi}{4}$
31. (a) Complement: $\frac{5 \pi}{12}$; Supplement: $\frac{11 \pi}{12}$
(b) Complement: none; Supplement: $\frac{\pi}{12}$
32. (a) Complement: $\frac{\pi}{2}-1 \approx 0.57$;

Supplement: $\pi-1 \approx 2.14$
(b) Complement: none; Supplement: $\pi-2 \approx 1.14$
24. (a) Complement: none; Supplement: $\pi-3 \approx 0.14$
(b) Complement: $\frac{\pi}{2}-1.5 \approx 0.07$;

Supplement: $\pi-1.5 \approx 1.64$
28. -330°
25. 210°
26. 120°
27. -60°
29. 165°
30. 10°
31. (a) Quadrant II
(b) Quadrant IV
32. (a) Quadrant I
(b) Quadrant III
33. (a) Quadrant III
(b) Quadrant I
34. (a) Quadrant II
(b) Quadrant IV
35. (a)

36. (a)

37. (a)

38. (a)

(b)

39. (a) $405^{\circ},-315^{\circ}$
(b) $324^{\circ},-396^{\circ}$
40. (a) $480^{\circ},-240^{\circ}$
(b) $300^{\circ},-60^{\circ}$
41. (a) $600^{\circ},-120^{\circ}$
(b) $180^{\circ},-540^{\circ}$
42. (a) $300^{\circ},-60^{\circ}$
(b) $590^{\circ},-130^{\circ}$
43. (a) Complement: 72°; Supplement: 162°
(b) Complement: none; Supplement: 65°
44. (a) Complement: 87°; Supplement: 177°
(b) Complement: 26°; Supplement: 116°
45. (a) Complement: 11°; Supplement: 101°
(b) Complement: none; Supplement: 30°
46. (a) Complement: none; Supplement: 50°
(b) Complement: none; Supplement: 10°
47. (a) $\frac{\pi}{6}$
(b) $\frac{5 \pi}{6}$
48. (a) $\frac{7 \pi}{4} \quad$ (b) $\frac{2 \pi}{3}$
49. (a) $-\frac{\pi}{9}$
(b) $-\frac{4 \pi}{3}$
50. (a) $-\frac{3 \pi}{2}$
(b) $\frac{4 \pi}{5}$
51. (a) 270°
(b) 210°
52. (a) -105°
(b) 20°
53. (a) 420°
(b) -66°
54. (a) 330°
(b) 408°
55. 2.007
56. 1.525
57. -3.776
58. -0.842
59. 9.285
60. 6.021
61. -0.014
62. 0.009
63. 25.714°
66. 1170.000°
64. 81.818°
65. 337.500°
69. -114.592°
67. -756.000°
68. 864.000°
71. (a) 54.75°
(b) -128.5°
72. (a) 245.167°
(b) -128.5°
73. (a) 85.308°
(b) 2.2°
74. (a) -135.01°
(b) 330.007°
75. (a) $240^{\circ} 36^{\prime}$
(b) -408.272°
76. (a) $-345^{\circ} 7^{\prime} 12^{\prime \prime}$ (b) $0^{\circ} 27^{\prime}$
77. (a) $2^{\circ} 30^{\prime} \quad$ (b) $-3^{\circ} 34^{\prime} 48^{\prime \prime}$
78. (a) $-0^{\circ} 21^{\prime} 18^{\prime \prime} \quad$ (b) $0^{\circ} 47^{\prime} 11.4^{\prime \prime}$
79. $\frac{6}{5}$ radians
80. $\frac{29}{10}$ radians
81. $\frac{32}{7}$ radians
82. $-\frac{4}{5}$ radian
83. $\frac{2}{9}$ radian
84. $\frac{4}{7}$ radian
85. ${ }_{29}$ radians
86. 2 radians
87. 15π inches ≈ 47.12 inches 88. 3π feet ≈ 9.42 feet
89. 3 meters
90. 5π centimeters ≈ 15.71 centimeters
91. $\frac{8 \pi}{3}$ square inches ≈ 8.38 square inches
92. 18π square millimeters ≈ 56.55 square millimeters
93. 12.27 square feet
94. 5.64 square miles
95. 591.3 miles
96. 686.2 miles
97. 0.071 radian $\approx 4.04^{\circ}$
98. 0.063 radian $\approx 3.59^{\circ}$
99. $\frac{5}{12}$ radian 100. 275°
101. (a) 728.3 revolutions per minute
(b) 4576 radians per minute
102. (a) 3400π radians per minute; 1700π radians per minute
(b) 850 revolutions per minute
103. (a) $10,400 \pi$ radians per minute

$$
\approx 32,672.56 \text { radians per minute }
$$

(b) $9425 \pi / 3$ feet per minute ≈ 9869.84 feet per minute
113. Ir
114. R
115. T
116.
119. 2
104. (a) 8π radians per minute ≈ 25.13 radians per minute
(b) 200π feet per minute ≈ 628.3 feet per minute
105. (a) $[400 \pi, 1000 \pi]$ radians per minute
(b) $[2400 \pi, 6000 \pi]$ centimeters per minute
106. $A=175 \pi$ square inches ≈ 549.8 square inches
107.

$A=476.39 \pi$ square meters ≈ 1496.62 square meters
108. (a) $\frac{14 \pi}{3}$ feet per second; ≈ 10 miles per hour
(b) $d=\frac{7 \pi}{7920} n$
(c) $d=\frac{7 \pi}{7920} t$
(d) The functions are both linear.
109. False. A measurement of 4π radians corresponds to two complete revolutions from the initial to the terminal side of an angle.
110. Tr
110. True. Let α and β represent coterminal angles, and let n represent an integer.

$$
\begin{aligned}
& \alpha=\beta+n\left(360^{\circ}\right) \\
& \alpha-\beta=n\left(360^{\circ}\right)
\end{aligned}
$$

111. False. The terminal side of the angle lies on the x-axis.
112. (a) The vertex is at the origin and the initial side is on the positive x-axis.
(b) Clockwise rotation of the terminal side
(c) Two angles in standard position where the terminal sides coincide
(d) The magnitude of the angle is between 90° and 180°.
113. Increases. The linear velocity is proportional to the radius.
114. Radian. 1 radian $\approx 57.3^{\circ}$
115. The arc length is increasing. If θ is constant, the length of the arc is proportional to the radius $(s=r \theta)$.
116. Answers will vary.

$$
\text { 117. } \frac{\sqrt{2}}{2} \quad \text { 118. } \frac{5 \sqrt{2}}{4}
$$

119. $2 \sqrt{10}$
120. $4 \sqrt{13}$
121.

123.

122.

124.

Section 4.2 (page 299)

Vocabulary Check (page 299)

1. unit circle
2. periodic
3. period
4. odd; even
5. $\sin \theta=\frac{15}{17}$
$\cos \theta=-\frac{8}{17}$
$\tan \theta=-\frac{15}{8}$
$\csc \theta=\frac{17}{15}$
6. $\sin \theta=\frac{5}{13}$
$\cos \theta=\frac{12}{13}$ $\tan \theta=\frac{5}{12}$
7. $\sin \theta=-\frac{5}{13}$ $\cos \theta=\frac{12}{13}$ $\tan \theta=-\frac{5}{12}$
8. $\begin{aligned} \tan \theta & =-\frac{3}{5}\end{aligned}$
$\cos \theta=-\frac{4}{5}$
$\tan \theta=\frac{3}{4}$
9. $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
10. $\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ $\sec \theta=-\frac{17}{8}$ $\cot \theta=-\frac{8}{15}$
$\csc \theta=\frac{13}{5}$
$\csc \theta=-\frac{13}{5}$
$\sec \theta=\frac{13}{12}$
$\cot \theta=-\frac{12}{5}$ $\csc \theta=-\frac{5}{3}$
$\cot \theta=\frac{4}{3}$
11. $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
12. $\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$
13. $\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$
14. $\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$
15. $(0,-1)$
16. $(-1,0)$
17. $\sin \frac{\pi}{4}=\frac{\sqrt{2}}{2}$

$$
\begin{array}{ll}
\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2} & \cos \frac{\pi}{3}=\frac{1}{2} \\
\tan \frac{\pi}{4}=1 & \tan \frac{\pi}{3}=\sqrt{3}
\end{array}
$$

14. $\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$
15. $\sin \left(-\frac{\pi}{6}\right)=-\frac{1}{2}$
$\cos \left(-\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$
$\tan \left(-\frac{\pi}{6}\right)=-\frac{\sqrt{3}}{3}$
16. $\sin \left(-\frac{7 \pi}{4}\right)=\frac{\sqrt{2}}{2}$
$\cos \left(-\frac{7 \pi}{4}\right)=\frac{\sqrt{2}}{2}$
$\tan \left(-\frac{7 \pi}{4}\right)=1$
17. $\sin \frac{11 \pi}{6}=-\frac{1}{2}$
$\cos \frac{11 \pi}{6}=\frac{\sqrt{3}}{2}$
$\tan \frac{11 \pi}{6}=-\frac{\sqrt{3}}{3}$
18. $\sin \left(-\frac{3 \pi}{2}\right)=1$

$$
\begin{aligned}
& \cos \left(-\frac{3 \pi}{2}\right)=0 \\
& \tan \left(-\frac{3 \pi}{2}\right) \text { is undefined. }
\end{aligned}
$$

23. $\sin \frac{3 \pi}{4}=\frac{\sqrt{2}}{2}$
$\cos \frac{3 \pi}{4}=-\frac{\sqrt{2}}{2}$
$\csc \frac{3 \pi}{4}=\sqrt{2}$
$\sec \frac{3 \pi}{4}=-\sqrt{2}$
$\tan \frac{3 \pi}{4}=-1$
$\cot \frac{3 \pi}{4}=-1$
24. $\sin \frac{5 \pi}{6}=\frac{1}{2}$
$\cos \frac{5 \pi}{6}=-\frac{\sqrt{3}}{2}$
$\csc \frac{5 \pi}{6}=2$
$\tan \frac{5 \pi}{6}=-\frac{\sqrt{3}}{3}$
25. $\sin \left(-\frac{\pi}{2}\right)=-1$
$\sec \frac{5 \pi}{6}=-\frac{2 \sqrt{3}}{3}$
$\cot \frac{5 \pi}{6}=-\sqrt{3}$
$\cos \left(-\frac{\pi}{2}\right)=0$
$\csc \left(-\frac{\pi}{2}\right)=-1$
$\tan \left(-\frac{\pi}{2}\right)$ is undefined.
26. $\sin \frac{3 \pi}{2}=-1$
$\cos \frac{3 \pi}{2}=0$
$\tan \frac{3 \pi}{2}$ is undefined.
27. $\sin \left(\frac{4 \pi}{3}\right)=-\frac{\sqrt{3}}{2}$
$\cos \left(\frac{4 \pi}{3}\right)=-\frac{1}{2}$
$\tan \left(\frac{4 \pi}{3}\right)=\sqrt{3}$
28. $\sin \frac{7 \pi}{4}=-\frac{\sqrt{2}}{2}$
$\cos \frac{7 \pi}{4}=\frac{\sqrt{2}}{2}$
$\tan \frac{7 \pi}{4}=-1$
29. $\sin 5 \pi=\sin \pi=0$
30. $\cos 5 \pi=\cos \pi=-1$
31. $\cos \frac{8 \pi}{3}=\cos \frac{2 \pi}{3}=-\frac{1}{2}$
32. $\sin \frac{9 \pi}{4}=\sin \frac{\pi}{4}=\frac{\sqrt{2}}{2}$
33. $\cos \left(-\frac{15 \pi}{2}\right)=\cos \frac{\pi}{2}=0$
34. $\sin \frac{19 \pi}{6}=\sin \frac{7 \pi}{6}=-\frac{1}{2}$
35. $\sin \left(-\frac{9 \pi}{4}\right)=\sin \frac{7 \pi}{4}=-\frac{\sqrt{2}}{2}$
36. $\cos \left(-\frac{8 \pi}{3}\right)=\cos \frac{4 \pi}{3}=-\frac{1}{2}$
37. (a) $-\frac{1}{3}$
(b) -3
38. (a) $-\frac{3}{8}$
(b) $-\frac{8}{3}$
39. (a) $-\frac{1}{5}$
(b) -5
40. (a) $-\frac{3}{4}$
(b) $-\frac{4}{3}$
41. (a) $\frac{4}{5}$
(b) $-\frac{4}{5}$
42. (a) $-\frac{4}{5}$
(b) $-\frac{4}{5}$
43. 0.7071
44. 1.7321
45. 1.0378
46. 0.6421
47. -0.1288
48. -0.8011
49. 1.3940
50. -4.4014
51. -1.4486
52. -0.7833
53. (a) -1
(b) -0.4
54. (a) 0.7
(b) -0.8
55. (a) 0.25 or 2.89
(b) 1.82 or 4.46
56. (a) 4.0 or 5.4
(b) 0.72 or 5.56
57. (a)

t	0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{3}{4}$	1
y	0.25	0.0138	-0.1501	-0.0249	0.0883

(b) $t \approx 5.5$
(c) The displacement decreases.
58. (a) 0.25 foot
(b) 0.02 foot
(c) -0.25 foot
59. False. $\sin (-t)=-\sin t$ means that the function is odd, not that the sine of a negative angle is a negative number.
60. True. The tangent function has a period of π.
61. (a) y-axis symmetry
(b) $\sin t_{1}=\sin \left(\pi-t_{1}\right)$
(c) $\cos \left(\pi-t_{1}\right)=-\cos t_{1}$
62. Answers will vary.
63. $f^{-1}(x)=\frac{2}{3}(x+1)$
64. $f^{-1}(x)=\sqrt[3]{4(x-1)}$
65. $f^{-1}(x)=\sqrt{x^{2}+4}, \quad x \geq 0$
66. $f^{-1}(x)=\frac{2(2 x+1)}{x-1}$
67.

69.

68.

70.

Section 4.3 (page 308)

Vocabulary Check (page 308)

1. (a) v
(b) iv
(c) vi
(d) iii
(e) i
(f) ii
2. opposite; adjacent; hypotenuse
3. elevation; depression
4. $\sin \theta=\frac{3}{5}$
$\cos \theta=\frac{4}{5}$
$\tan \theta=\frac{3}{4}$
5. $\sin \theta=\frac{5}{13}$
$\cos \theta=\frac{12}{13}$
$\tan \theta=\frac{5}{12}$
6. $\sin \theta=\frac{9}{41}$
$\cos \theta=\frac{40}{41}$
$\tan \theta=\frac{9}{40}$
7. $\sin \theta=\frac{\sqrt{2}}{2}$
$\csc \theta=\sqrt{2}$
$\cos \theta=\frac{\sqrt{2}}{2}$
$\sec \theta=\sqrt{2}$
$\tan \theta=1$
$\cot \theta=1$
8. $\sin \theta=\frac{1}{3}$

$$
\csc \theta=3
$$

$$
\begin{array}{ll}
\cos \theta=\frac{2 \sqrt{2}}{3} & \sec \theta=\frac{3 \sqrt{2}}{4} \\
\tan \theta=\frac{\sqrt{2}}{4} & \cot \theta=2 \sqrt{2}
\end{array}
$$

9.

10.

11.

12.

13.

14.

$\cos \theta=\frac{\sqrt{7}}{4}$
$\sec \theta=\frac{4 \sqrt{7}}{7}$
$\tan \theta=\frac{3 \sqrt{7}}{7}$
$\cot \theta=\frac{\sqrt{7}}{3}$
$\csc \theta=\frac{4}{3}$
$\sin \theta=\frac{2 \sqrt{6}}{7} \quad \sec \theta=\frac{7}{5}$
$\tan \theta=\frac{2 \sqrt{6}}{5} \quad \cot \theta=\frac{5 \sqrt{6}}{12}$
$\csc \theta=\frac{7 \sqrt{6}}{12}$

The triangles are similar, and corresponding sides are proportional.
6. $\sin \theta=\frac{8}{17}$
$\cos \theta=\frac{15}{17}$ $\csc \theta=\frac{17}{8}$
$\cos \theta=\frac{17}{17}$
$\tan \theta=\frac{8}{15}$
$\sec \theta=\frac{17}{15}$
The triangles are similar, and corresponding sides are proportional.
7. $\sin \theta=\frac{3}{5}$
$\csc \theta=\frac{5}{3}$
$\cos \theta=\frac{4}{5}$
$\sec \theta=\frac{5}{4}$
$\tan \theta=\frac{3}{4}$
$\cot \theta=\frac{4}{3}$
The triangles are similar, and corresponding sides are proportional.
8. $\sin \theta=\frac{\sqrt{5}}{5} \quad \csc \theta=\sqrt{5}$
$\cos \theta=\frac{2 \sqrt{5}}{5} \quad \sec \theta=\frac{\sqrt{5}}{2}$
$\tan \theta=\frac{1}{2}$
$\cot \theta=2$
The triangles are similar, and corresponding sides are proportional.
15.

$$
\sin \theta=\frac{2 \sqrt{13}}{13} \quad \csc \theta=\frac{\sqrt{13}}{2}
$$

$$
\cos \theta=\frac{3 \sqrt{13}}{13} \quad \sec \theta=\frac{\sqrt{13}}{3}
$$

$$
\tan \theta=\frac{2}{3}
$$

16.

$\sin \theta=\frac{4}{17}$
$\cos \theta=\frac{\sqrt{273}}{17}$
$\sec \theta=\frac{17 \sqrt{273}}{273}$
$\tan \theta=\frac{4 \sqrt{273}}{273}$
17. $\frac{\pi}{6} ; \frac{1}{2}$
18. $\frac{\pi}{4} ; \frac{\sqrt{2}}{2}$
19. $60^{\circ} ; \sqrt{3}$
20. $45^{\circ} ; \sqrt{2}$
21. $60^{\circ} ; \frac{\pi}{3}$
22. $45^{\circ} ; \frac{\pi}{4}$
23. $30^{\circ} ; \frac{\sqrt{3}}{2}$
24. $45^{\circ} ; \frac{\sqrt{2}}{2}$
25. $45^{\circ} ; \frac{\pi}{4}$
26. $30^{\circ} ; \frac{\pi}{6}$
27. (a) $\sqrt{3}$
$\begin{array}{ll}\text { (b) } \frac{1}{2} & \text { (c) } \frac{\sqrt{3}}{2}\end{array}$
(d) $\frac{\sqrt{3}}{3}$
28. (a) 2
(b) $\frac{\sqrt{3}}{3}$
(c) $\frac{\sqrt{3}}{2}$
(d) $\sqrt{3}$
29. (a) $\frac{2 \sqrt{13}}{13}$
(b) $\frac{3 \sqrt{13}}{13}$
(c) $\frac{2}{3}$
(d) $\frac{\sqrt{13}}{2}$
30. (a) $\frac{1}{5}$
(b) $\frac{\sqrt{6}}{12}$
(c) $2 \sqrt{6}$
(d) $\frac{2 \sqrt{6}}{5}$
31. (a) 3
(b) $\frac{2 \sqrt{2}}{3}$
(c) $\frac{\sqrt{2}}{4}$
(d) $\frac{1}{3}$
32. (a) $\frac{1}{5}$
(b) $\frac{\sqrt{26}}{26}$
(c) $\frac{1}{5}$
(d) $\frac{\sqrt{26}}{5}$

33-42. Answers will vary.
43. (a) 0.1736
(b) 0.1736
44. (a) 0.4348
(b) 0.4348
45. (a) 0.2815
(b) 3.5523
46. (a) 0.9598
(b) 0.9609
47. (a) 1.3499
(b) 1.3432
48. (a) 0.9964
(b) 1.0036
49. (a) 5.0273
(b) 0.1989
50. (a) 1.7946
(b) 0.5572
51. (a) 1.8527
(b) 0.9817
52. (a) 2.6695
(b) 0.0699
53. (a) $30^{\circ}=\frac{\pi}{6}$
(b) $30^{\circ}=\frac{\pi}{6}$
54. (a) $45^{\circ}=\frac{\pi}{4}$
(b) $45^{\circ}=\frac{\pi}{4}$
55. (a) $60^{\circ}=\frac{\pi}{3}$
(b) $45^{\circ}=\frac{\pi}{4}$
56. (a) $60^{\circ}=\frac{\pi}{3} \quad$ (b) $60^{\circ}=\frac{\pi}{3}$
57. (a) $60^{\circ}=\frac{\pi}{3}$
(b) $45^{\circ}=\frac{\pi}{4}$
58. (a) $60^{\circ}=\frac{\pi}{3}$
(b) $45^{\circ}=\frac{\pi}{4}$
59. $30 \sqrt{3}$
60. $9 \sqrt{3}$
61. $\frac{32 \sqrt{3}}{3}$
62. $20 \sqrt{2}$
63. 443.2 meters; 323.3 meters
64. (a)

(b) $\tan \theta=\frac{6}{3}=\frac{h}{135}$
(c) 270 feet
75.
76.
77.
78.
79.
80.
81.
65. $30^{\circ}=\frac{\pi}{6}$
66. 137.6 feet
67. (a) 371.1 feet
(b) 341.6 feet
(c) Moving down line at 61.8 feet per second Dropping vertically at 24.2 feet per second
68. 1.3 miles
69. $\left(x_{1}, y_{1}\right)=(28 \sqrt{3}, 28)$ $\left(x_{2}, y_{2}\right)=(28,28 \sqrt{3})$
70. 6.57 centimeters
71. (a)

(b) $\sin 85^{\circ}=\frac{h}{20}$
(c) 19.9 meters
(d) The side of the triangle labeled h will become shorter.
(e)

Angle, θ	80°	70°	60°	50°
Height	19.7	18.8	17.3	15.3

Angle, θ	40°	30°	20°	10°
Height	12.9	10.0	6.8	3.5

(f) As $\theta \rightarrow 0^{\circ}, h \rightarrow 0$.

72. $\sin 20^{\circ} \approx 0.34$
$\cos 20^{\circ} \approx 0.94$
$\tan 20^{\circ} \approx 0.36$
$\csc 20^{\circ} \approx 2.92$
$\sec 20^{\circ} \approx 1.06$
$\cot 20^{\circ} \approx 2.75$
73. True, $\csc x=\frac{1}{\sin x}$.
74. True, $\sec x=\csc \left(90^{\circ}-x\right)$
75. False, $\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} \neq 1$.
76. True, $\cot ^{2} \theta-\csc ^{2} \theta=-1$ for all θ.
77. False, $1.7321 \neq 0.0349$.
78. False, $\tan 25^{\circ} \neq\left(\tan 5^{\circ}\right)\left(\tan 5^{\circ}\right)$.
79. Corresponding sides of similar triangles are proportional
80. Yes, $\tan \theta$ is equal to opp/adj. You can find the value of the hypotenuse by the Pythagorean Theorem, then you can find $\sec \theta$, which is equal to hyp/adj.
81. (a)

θ	0.1	0.2	0.3	0.4	0.5
$\sin \theta$	0.0998	0.1987	0.2955	0.3894	0.4794

(b) θ
(c) As θ approaches $0, \sin \theta$ approaches 0 .
82. (a)

θ	0°	18°	36°	54°	72°	90°
$\sin \theta$	0	0.3090	0.5878	0.8090	0.9511	1
$\cos \theta$	1	0.9511	0.8090	0.5878	0.3090	0

(b) Increasing function
(c) Decreasing function
(d) As the angle increases, the length of the side opposite the angle increases relative to the length of the hypotenuse and the length of the side adjacent to the angle decreases relative to the length of the hypotenuse. Thus, the sine increases and the cosine decreases.
83. $\frac{x}{x-2}, x \neq \pm 6$
84. $\frac{2 t+3}{4-t}, t \neq \pm \frac{3}{2},-4$
85. $\frac{2\left(x^{2}-5 x-10\right)}{(x-2)(x+2)^{2}}$
86. $\frac{1}{4}, x \neq 0,12$

Section 4.4 (page 318)

Vocabulary Check (page 318)

1. $\frac{y}{r}$
2. $\csc \theta$
3. $\frac{y}{x}$
4. $\frac{r}{x}$
5. $\cos \theta$
6. $\cot \theta$ 7. reference
7. (a) $\sin \theta=\frac{3}{5}$
$\cos \theta=\frac{4}{5}$
$\tan \theta=\frac{3}{4}$
$\csc \theta=\frac{5}{3}$
$\sec \theta=\frac{5}{4}$
$\cot \theta=\frac{4}{3}$
8. (a) $\sin \theta=-\frac{5}{13}$
$\cos \theta=-\frac{12}{13}$
$\tan \theta=\frac{5}{12}$
$\csc \theta=-\frac{13}{5}$
$\sec \theta=-\frac{13}{12}$
$\cot \theta=\frac{12}{5}$
9. (a) $\sin \theta=-\frac{1}{2}$
$\cos \theta=-\frac{\sqrt{3}}{2}$
$\tan \theta=\frac{\sqrt{3}}{3}$
$\csc \theta=-2$
$\sec \theta=-\frac{2 \sqrt{3}}{3}$
$\cot \theta=\sqrt{3}$
10. (a) $\sin \theta=\frac{\sqrt{10}}{10}$
$\cos \theta=\frac{3 \sqrt{10}}{10}$
$\tan \theta=\frac{1}{3}$
$\csc \theta=\sqrt{10}$
$\sec \theta=\frac{\sqrt{10}}{3}$
$\cot \theta=3$
(b) $\sin \theta=\frac{\sqrt{17}}{17}$
$\cos \theta=-\frac{4 \sqrt{17}}{17}$
$\tan \theta=-\frac{1}{4}$
$\csc \theta=\sqrt{17}$
$\sec \theta=-\frac{\sqrt{17}}{4}$
$\cot \theta=-4$
(b) $\sin \theta=-\frac{\sqrt{2}}{2}$
$\cos \theta=\frac{\sqrt{2}}{2}$
$\tan \theta=-1$
$\csc \theta=-\sqrt{2}$
$\sec \theta=\sqrt{2}$
$\cot \theta=-1$
11. $\sin \theta=\frac{24}{25}$ $\cos \theta=\frac{7}{25}$ $\tan \theta=\frac{24}{7}$
12. $\sin \theta=\frac{15}{17}$
$\cos \theta=\frac{8}{17}$
$\tan \theta=\frac{15}{8}$ $\csc \theta=\frac{25}{24}$
13. $\sin \theta=\frac{5 \sqrt{29}}{29}$
$\csc \theta=\frac{\sqrt{29}}{5}$
$\cos \theta=-\frac{2 \sqrt{29}}{29}$
$\sec \theta=-\frac{\sqrt{29}}{2}$
$\tan \theta=-\frac{5}{2}$
$\cot \theta=-\frac{2}{5}$
14. $\sin \theta=-\frac{2 \sqrt{29}}{29}$
$\csc \theta=-\frac{\sqrt{29}}{2}$
$\cos \theta=-\frac{5 \sqrt{29}}{29}$
$\sec \theta=-\frac{\sqrt{29}}{5}$
$\tan \theta=\frac{2}{5}$
15. $\sin \theta=\frac{68 \sqrt{5849}}{5849}$
$\cot \theta=\frac{5}{2}$
$\cos \theta=-\frac{35 \sqrt{5849}}{5849}$
$\csc \theta=\frac{\sqrt{5849}}{68}$
$\sec \theta=-\frac{\sqrt{5849}}{35}$
$\tan \theta=-\frac{68}{35}$
$\cot \theta=-\frac{35}{68}$
16. $\sin \theta=-\frac{31 \sqrt{1157}}{1157}$
$\csc \theta=-\frac{\sqrt{1157}}{31}$
$\cos \theta=\frac{14 \sqrt{1157}}{1157}$
$\sec \theta=\frac{\sqrt{1157}}{14}$
$\tan \theta=-\frac{31}{14}$
$\cot \theta=-\frac{14}{31}$
17. Quadrant III
18. Quadrant I
19. Quadrant II
20. $\sin \theta=\frac{3}{5}$
$\cos \theta=-\frac{4}{5}$
$\tan \theta=-\frac{3}{4}$
21. $\sin \theta=-\frac{3}{5}$
$\cos \theta=-\frac{4}{5}$
$\tan \theta=\frac{3}{4}$
22. $\sin \theta=-\frac{15}{17}$ $\cos \theta=\frac{8}{17}$ $\tan \theta=-\frac{15}{8}$
23. $\sin \theta=-\frac{15}{17}$ $\cos \theta=\frac{8}{17}$ $\tan \theta=-\frac{15}{8}$
24. $\sin \theta=-\frac{\sqrt{10}}{10}$
$\cos \theta=\frac{3 \sqrt{10}}{10}$
$\tan \theta=-\frac{1}{3}$
25. $\sin \theta=\frac{1}{4}$
$\cos \theta=-\frac{\sqrt{15}}{4}$
$\tan \theta=-\frac{\sqrt{15}}{15}$
26. Quadrant IV
$\csc \theta=\frac{5}{3}$
$\sec \theta=-\frac{5}{4}$
$\cot \theta=-\frac{4}{3}$
$\csc \theta=-\frac{5}{3}$
$\sec \theta=-\frac{5}{4}$
$\cot \theta=\frac{4}{3}$
$\csc \theta=-\frac{17}{15}$
$\sec \theta=\frac{17}{8}$
$\cot \theta=-\frac{8}{15}$
$\csc \theta=-\frac{17}{15}$
$\sec \theta=\frac{17}{8}$
$\cot \theta=-\frac{8}{15}$

$$
\csc \theta=-\sqrt{10}
$$

$\sec \theta=\frac{\sqrt{10}}{3}$
$\cot \theta=-3$
$\csc \theta=4$
$\sec \theta=-\frac{4 \sqrt{15}}{15}$
$\cot \theta=-\sqrt{15}$
21. $\sin \theta=\frac{\sqrt{3}}{2}$ $\csc \theta=\frac{2 \sqrt{3}}{3}$
$\cos \theta=-\frac{1}{2}$
$\sec \theta=-2$
$\tan \theta=-\sqrt{3}$
$\cot \theta=-\frac{\sqrt{3}}{3}$
22. $\sin \theta=0$
$\cos \theta=-1$
$\tan \theta=0$
23. $\sin \theta=0$ $\csc \theta$ is undefined. $\sec \theta=-1$ $\cot \theta$ is undefined.
33. 1
$\cos \theta=-1$
$\tan \theta=0$
24. $\sin \theta=-1$ $\cos \theta=0$
$\tan \theta$ is undefined.
25. $\sin \theta=\frac{\sqrt{2}}{2}$
$\csc \theta=\sqrt{2}$
$\cos \theta=-\frac{\sqrt{2}}{2}$
$\sec \theta=-\sqrt{2}$
$\tan \theta=-1$
26. $\sin \theta=-\frac{\sqrt{10}}{10}$
$\cot \theta=-1$
$\csc \theta=-\sqrt{10}$
$\cos \theta=-\frac{3 \sqrt{10}}{10}$
$\sec \theta=-\frac{\sqrt{10}}{3}$
$\tan \theta=\frac{1}{3}$
27. $\sin \theta=-\frac{2 \sqrt{5}}{5}$
$\cot \theta=3$
$\cos \theta=-\frac{\sqrt{5}}{5}$
$\csc \theta=-\frac{\sqrt{5}}{2}$
$\tan \theta=2$
$\sec \theta=-\sqrt{5}$
8. $\sin \theta=-\frac{4}{5}$
$\csc \theta=-\frac{5}{4}$
$\cos \theta=\frac{3}{5}$
$\tan \theta=-\frac{4}{3}$
$\sec \theta=\frac{5}{3}$
$\cot \theta=-\frac{3}{4}$
29.
30. -1
31. Undefined
32. -1
34. Undefined
35. Undefined
36. 0
38. $\theta^{\prime}=51^{\circ}$
37. $\theta^{\prime}=23^{\circ}$
fos rex.
$\sec \theta=-1$
$\cot \theta$ is undefined.
$\csc \theta=-1$
$\sec \theta$ is undefined.
$\cot \theta=0$

39. $\theta^{\prime}=65^{\circ}$

41. $\theta^{\prime}=\frac{\pi}{3}$

43. $\theta^{\prime}=3.5-\pi$

45. $\sin 225^{\circ}=-\frac{\sqrt{2}}{2}$
$\cos 225^{\circ}=-\frac{\sqrt{2}}{2}$
$\tan 225^{\circ}=1$
47. $\sin 750^{\circ}=\frac{1}{2}$
$\cos 750^{\circ}=\frac{\sqrt{3}}{2}$
$\tan 750^{\circ}=\frac{\sqrt{3}}{3}$
49. $\sin \left(-150^{\circ}\right)=-\frac{1}{2}$
$\cos \left(-150^{\circ}\right)=-\frac{\sqrt{3}}{2}$
$\tan \left(-150^{\circ}\right)=\frac{\sqrt{3}}{3}$
40. $\theta^{\prime}=35^{\circ}$

42. $\theta^{\prime}=\frac{\pi}{4}$

44. $\theta^{\prime}=\frac{\pi}{3}$

46. $\sin 300^{\circ}=-\frac{\sqrt{3}}{2}$ $\cos 300^{\circ}=\frac{1}{2}$
$\tan 300^{\circ}=-\sqrt{3}$
48. $\sin \left(-405^{\circ}\right)=-\frac{\sqrt{2}}{2}$
$\cos \left(-405^{\circ}\right)=\frac{\sqrt{2}}{2}$
$\tan \left(-405^{\circ}\right)=-1$
50. $\sin \left(-840^{\circ}\right)=-\frac{\sqrt{3}}{2}$
$\cos \left(-840^{\circ}\right)=-\frac{1}{2}$
$\tan \left(-840^{\circ}\right)=\sqrt{3}$
51. $\sin \frac{4 \pi}{3}=-\frac{\sqrt{3}}{2}$
$\cos \frac{4 \pi}{3}=-\frac{1}{2}$
$\tan \frac{4 \pi}{3}=\sqrt{3}$
53. $\sin \left(-\frac{\pi}{6}\right)=-\frac{1}{2}$
$\cos \left(-\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$
$\tan \left(-\frac{\pi}{6}\right)=-\frac{\sqrt{3}}{3}$
55. $\sin \frac{11 \pi}{4}=\frac{\sqrt{2}}{2}$
$\cos \frac{11 \pi}{4}=-\frac{\sqrt{2}}{2}$
$\tan \frac{11 \pi}{4}=-1$
57. $\sin \left(-\frac{3 \pi}{2}\right)=1$
$\cos \left(-\frac{3 \pi}{2}\right)=0$
$\tan \left(-\frac{3 \pi}{2}\right)$ is undefined.
52. $\sin \frac{\pi}{4}=\frac{\sqrt{2}}{2}$
$\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}$
$\tan \frac{\pi}{4}=1$
54. $\sin \left(-\frac{\pi}{2}\right)=-1$
$\cos \left(-\frac{\pi}{2}\right)=0$
$\tan \left(-\frac{\pi}{2}\right)$ is undefined.
56. $\sin \frac{10 \pi}{3}=-\frac{\sqrt{3}}{2}$
$\cos \frac{10 \pi}{3}=-\frac{1}{2}$
$\tan \frac{10 \pi}{3}=\sqrt{3}$
58. $\sin \left(-\frac{25 \pi}{4}\right)=-\frac{\sqrt{2}}{2}$
$\cos \left(-\frac{25 \pi}{4}\right)=\frac{\sqrt{2}}{2}$
$\tan \left(-\frac{25 \pi}{4}\right)=-1$
59. $\frac{4}{5}$
60. $\frac{\sqrt{10}}{10}$
61. $-\frac{\sqrt{13}}{2}$
62. $-\sqrt{3}$
63. $\frac{8}{5}$
64. $\frac{\sqrt{65}}{4}$
65. 0.1736
66. -1.4142
67. -0.3420
68. 2.0000
69. -1.4826
70. -28.6363
71. 3.2361
72. -0.1405
75. 0.3640
76. -0.3640
73. 4.6373
74. 0.2245
78. 1.0436
79. -0.4142
77. -0.6052
81. (a) $30^{\circ}=\frac{\pi}{6}, 150^{\circ}=\frac{5 \pi}{6}$
(b) $210^{\circ}=\frac{7 \pi}{6}, 330^{\circ}=\frac{11 \pi}{6}$
82. (a) $45^{\circ}=\frac{\pi}{4}, 315^{\circ}=\frac{7 \pi}{4}$
(b) $135^{\circ}=\frac{3 \pi}{4}, 225^{\circ}=\frac{5 \pi}{4}$
83. (a) $60^{\circ}=\frac{\pi}{3}, 120^{\circ}=\frac{2 \pi}{3}$
(b) $135^{\circ}=\frac{3 \pi}{4}, 315^{\circ}=\frac{7 \pi}{4}$
84. (a) $60^{\circ}=\frac{\pi}{3}, 300^{\circ}=\frac{5 \pi}{3}$
(b) $120^{\circ}=\frac{2 \pi}{3}, 240^{\circ}=\frac{4 \pi}{3}$
85. (a) $45^{\circ}=\frac{\pi}{4}, 225^{\circ}=\frac{5 \pi}{4}$
(b) $150^{\circ}=\frac{5 \pi}{6}, 330^{\circ}=\frac{11 \pi}{6}$
86. (a) $60^{\circ}=\frac{\pi}{3}, 120^{\circ}=\frac{2 \pi}{3}$
(b) $240^{\circ}=\frac{4 \pi}{3}, 300^{\circ}=\frac{5 \pi}{3}$
87. (a) $N=22.099 \sin (0.522 t-2.219)+55.008$
$F=36.641 \sin (0.502 t-1.831)+25.610$
(b) February: $N=34.6^{\circ}, F=-1.4^{\circ}$

March: $N=41.6^{\circ}, F=13.9^{\circ}$
May: $N=63.4^{\circ}, F=48.6^{\circ}$
June: $N=72.5^{\circ}, F=59.5^{\circ}$
August: $N=75.5^{\circ}, F=55.6^{\circ}$
September: $N=68.6^{\circ}, F=41.7^{\circ}$
November: $N=46.8^{\circ}, F=6.5^{\circ}$
(c) Answers will vary
88. (a) 26,134 units
(b) 31,438 units
(c) 21,452 units
(d) 26,756 units
89. (a) 2 centimeters (b) 0.14 centimeter
(c) -1.98 centimeters
90. (a) 2 centimeters (b) 0.11 centimeter
(c) -1.2 centimeters
91. 0.79 ampere
92. (a) 12 miles
(b) 6 miles
(c) 6.9 miles
93. False. In each of the four quadrants, the signs of the secant function and cosine function will be the same, because these functions are reciprocals of each other.
94. False. For θ in Quadrant II, $\theta^{\prime}=180^{\circ}-\theta$. For θ in Quadrant III, $\theta^{\prime}=\theta-180^{\circ}$. For θ in Quadrant IV, $\theta^{\prime}=360^{\circ}-\theta$.
95. As θ increases from 0° to $90^{\circ}, x$ decreases from 12 cm to 0 cm and y increases from 0 cm to 12 cm . Therefore, $\sin \theta=y / 12$ increases from 0 to 1 and $\cos \theta=x / 12$ decreases from 1 to 0 . Thus, $\tan \theta=y / x$ and increases without bound. When $\theta=90^{\circ}$, the tangent is undefined.
96. Determine the trigonometric function of the reference angle and prefix the appropriate sign.
97.

98.

99.

100.

101.

102.

103.

x-intercept: $(-2,0)$
y-intercept: $(0,8)$
Domain: all real numbers x
x-intercepts:
$(1,0),(-1,0)$
y-intercept: $(0,-3)$
Domain: all real numbers x
x-intercept: $(7,0)$
y-intercept: $\left(0,-\frac{7}{4}\right)$
Vertical asymptote:

$$
x=-2
$$

Horizontal asymptote:

$$
y=0
$$

Domain: all real numbers
x except $x=-2$
x-intercepts:

$$
(1,0),(-1,0)
$$

y-intercept: $\left(0,-\frac{1}{5}\right)$
Vertical asymptote:

$$
x=-5
$$

Slant asymptote:

$$
y=x-5
$$

Domain: all real numbers x except $x=-5$
y-intercept: $\left(0, \frac{1}{2}\right)$
Horizontal asymptote:

$$
y=0
$$

Domain: all real numbers x
104.

105.

106.

x-intercept: $(-1,0)$
y-intercept: $(0,0.301)$
Vertical asymptote:

$$
x=-2
$$

Domain: all real numbers x such that $x>-2$
y-intercept: $(0,5)$
Horizontal asymptote:

$$
y=2
$$

Domain: all real numbers x
x-intercepts: $(\pm 1,0)$
Vertical asymptote: $x=0$
Domain: all real numbers x except $x=0$

Section 4.5 (page 328)

Vocabulary Check (page 328)

1. cycle
2. amplitude
3. $\frac{2 \pi}{b}$
4. phase shift 5. vertical shift
5. Period: π

Amplitude: 3
4. Period: 6π Amplitude: 3
7. Period: 2π

Amplitude: 3
10. Period: $\frac{\pi}{4}$ Amplitude: $\frac{1}{3}$
13. Period: 1

Amplitude: $\frac{1}{4}$
2. Period: $\frac{2 \pi}{3}$ Amplitude: 2
5. Period: 6

Amplitude: $\frac{1}{2}$
8. Period: 3π

Amplitude: 1
3. Period: 4π Amplitude: $\frac{5}{2}$
6. Period: 4 Amplitude: $\frac{3}{2}$
9. Period: $\frac{\pi}{5}$

Amplitude: 3
11. Period: 3π

Amplitude: $\frac{1}{2}$
12. Period: 8π Amplitude: $\frac{5}{2}$
14. Period: 20

Amplitude: $\frac{2}{3}$
15. g is a shift of $f \pi$ units to the right.
16. g is a shift of $f \pi$ units to the left.
17. g is a reflection of f in the x-axis.
18. g is a reflection of f in the x-axis.
19. The period of f is twice the period of g.
20. The period of g is one-third the period of f.
21. g is a shift of f three units upward.
22. g is a shift of f two units downward.
23. The graph of g has twice the amplitude of the graph of f.
24. The period of g is $\frac{1}{3}$ the period of f.
25. The graph of g is a horizontal shift of the graph of f π units to the right.
26. g is a shift of f two units upward.
27.

28.

29.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63. $a=2, d=1$
64. $a=2, d=-1$
65. $a=-4, d=4 \quad$ 66. $a=-1, d=-3$
67. $a=-3, b=2, c=0$
68. $a=2, b=\frac{1}{2}, c=0$
69. $a=2, b=1, c=-\frac{\pi}{4}$
70. $a=2, b=\frac{\pi}{2}, c=-\frac{\pi}{2}$
71.

72.

$x=-\frac{\pi}{6},-\frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
$x=\pi,-\pi$
73. (a) 6 seconds
(b) 10 cycles per minute
(c)

74. (a) 4 seconds
(b) 15 cycles per minute
(c)

75. (a) $C(t)=56.55+26.95 \cos \left(\frac{\pi}{6} t-3.67\right)$
(b)

The model is a good fit.
(c)

The model is a good fit.
(d) Tallahassee: 77.90°; Chicago: 56.55°

The constant term gives the annual average temperature.
(e) 12; yes; one full period is one year.
(f) Chicago; amplitude; the greater the amplitude, the greater the variability in temperature.
76. (a) $\frac{6}{5}$ seconds \quad (b) 50 heartbeats per minute
77. (a) $\frac{1}{440}$ second
(b) 440 cycles per second
78. (a)-(c)

(b) $y=\frac{1}{2}+\frac{1}{2} \sin (0.21 x+0.92)$

The model is a good fit.
(d) 29 days
(e) 0.44
79. (a) 365 ; answers will vary.
(b) 30.3 gallons; the constant term
(c)

80. (a) 20 seconds; it takes 20 seconds to complete one revolution on the Ferris wheel.
(b) 50 feet; the diameter of the Ferris wheel is 100 feet.
(c)

81. False. The graph of $f(x)=\sin (x+2 \pi)$ translates the graph of $f(x)=\sin x$ exactly one period to the left so that the two graphs look identical.
82. False. The function $y=\frac{1}{2} \cos 2 x$ has an amplitude that is one-half that of $y=\cos x$. For $y=a \cos b x$, the amplitude is $|a|$.
83. True. Because $\cos x=\sin \left(x+\frac{\pi}{2}\right), y=-\cos x$ is a reflection in the x-axis of $y=\sin \left(x+\frac{\pi}{2}\right)$.
84. Answers will vary.
85.

Conjecture:
$\sin x=\cos \left(x-\frac{\pi}{2}\right)$

86

Conjecture:
$\sin x=-\cos \left(x+\frac{\pi}{2}\right)$
87. (a)

The graphs appear to coincide from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$.
(b)

The graphs appear to coincide from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$.
(c) $-\frac{x^{7}}{7!},-\frac{x^{6}}{6!}$

The interval of accuracy increased.
88. (a) $0.4794,0.4794$
(b) $0.8417,0.8415$
(c) $0.5,0.5$
(d) $0.8776,0.8776$
(e) $0.5417,0.5403$
(f) $0.7074,0.7071$

The error increases as x moves farther away from 0 .
89. $\frac{1}{2} \log _{10}(x-2) \quad$ 90. $2 \log _{2} x+\log _{2}(x-3)$
91. $3 \ln t-\ln (t-1)$
92. $\frac{1}{2} \ln z-\frac{1}{2} \ln \left(z^{2}+1\right)$
93. $\log _{10} \sqrt{x y}$
94. $\log _{2}\left(x^{3} y\right)$
95. $\ln \frac{3 x}{y^{4}}$
96. $\ln \left(x^{2} \sqrt{2 x}\right)$
97. Answers will vary.

Section 4.6 (page 339)

Vocabulary Check (page 339)

$\begin{array}{lll}\text { 1. vertical } & \text { 2. reciprocal } & \text { 3. damping }\end{array}$
$\begin{array}{lll}\text { 4. } \pi & \text { 5. } x \neq n \pi & \text { 6. }(-\infty,-1] \cup[1, \infty)\end{array}$
7. 2π

1. e, π
2. $\mathrm{c}, 2 \pi$
3. $\mathrm{a}, 1$
4. $\mathrm{d}, 2 \pi$
5. f, 4
6. b, 4
7.

8.

9.

10.

