ON THE ADJUNCTION FORMULA ON 3-FOLDS IN CHARACTERISTIC p

OMPROKASH DAS AND CHRISTOPHER HACON

Abstract. In this article we prove a relative Kawamata-Viehweg vanishing-type theorem for plt 3-folds in characteristic $p > 5$. We use this to prove the normality of minimal log canonical centers and the adjunction formula for codimension 2 subvarieties on \mathbb{Q}-factorial 3-folds in characteristic $p > 5$.

1. Introduction

Let (X, Δ) be a log canonical pair and W a minimal log canonical center, then (under mild technical assumptions) by Kawamata’s celebrated subadjunction theorem, it is known that W is normal and we can write $(K_X + \Delta)|_W = K_W + \Delta_W$ where (W, Δ_W) is Kawamata log terminal [Kaw98] (see also [Kaw97], [Kaw97] and the references therein). The proof of this result is based on the Kawamata-Viehweg vanishing theorem and Hodge theory. These results are known to fail in characteristic $p > 0$ and therefore one may expect that Kawamata’s subadjunction also fails in this context. It should however be noted that related results have been obtained in the closely related context of F-singularities (see for example [Sch09], [HX13] and [Das13]) and that the minimal model program has been established for 3-folds in characteristic $p > 5$ (see [HX13] and [Bir13]). In particular [HX13] exploits the fact that plt singularities in dimension 3 and characteristic $p > 5$ are closely related to the analogous notion of F-plt singularities. In this paper, using the results from [HX13] and [Bir13], we show that in dimension 3 and characteristic $p > 5$ a relative version of the Kawamata-Viehweg vanishing theorem holds and we use this to establish that (under some mild technical conditions) the analog of Kawamata’s subadjunction result holds.

Theorem (Theorem 2.5). Let $(X, \Delta \geq 0)$ be a \mathbb{Q}-factorial 3-fold log canonical pair with isolated center W, $\text{codim}_X W = 2$ and S, a unique exceptional divisor E dominating W with $a(E, X, \Delta) = -1$. Also assume that X has KLT singularities. Let $f : (Y, S + B) \rightarrow (X, W)$ be the corresponding divisorial extraction such that $K_Y + S + B = f^*(K_X + \Delta)$. Then $R^1 f_* \mathcal{O}_Y(-S) = 0$.

This result allows us to prove the normality of the minimal LC centers for 3-folds.
Theorem (Theorem 2.6). Let \((X, \Delta)\) be a \(\mathbb{Q}\)-factorial 3-fold log canonical pair such that \(X\) has Kawamata log terminal singularities. If \(W\) is a minimal log canonical center of \((X, \Delta)\), then \(W\) is normal. If moreover the coefficients of \(D\) belong to a DCC set \(I \subseteq [0, 1]\) and \(\text{Char}(k) > 2 \delta\), where \(\delta > 0\) is the minimum of the set \(D(I) \cap (0, 1]\) (where \(D(I)\) is defined in 3.1). Then the following hold:

1. There exists effective \(\mathbb{Q}\)-divisors \(\Delta_W\) and \(M_W\) on \(W\) such that \((K_X + \Delta)|_W \sim \mathbb{Q} K_W + \Delta_W + M_W\). Moreover, if \(\Delta = \Delta' + \Delta''\) with \(\Delta'\) (resp. \(\Delta''\)) the sum of all irreducible components which contain (resp. do not contain) \(W\), then \(M_W\) is determined only by the pair \((X, \Delta')\).
2. There exists an effective \(\mathbb{Q}\)-divisor \(M'_W\) such that \(M'_W \sim \mathbb{Q} M_W\) and the pair \((W, \Delta_W + M'_W)\) is KLT.

All of the results in this article hold in characteristic \(p > 5\) unless stated otherwise. We will use the standard terminologies and notations from [KM98]. We also use the abbreviations: LC for log canonical, KLT for Kawamata log terminal, PLT for purely log terminal, DLT for divisorially log terminal, NLC for non-log canonical centers, and NKLT centers for non-Kawamata log terminal centers. If \((X, \Delta)\) is LC, then the NKLT centers are also known as log canonical centers or LC centers.

2. Relative Vanishing Theorem and Minimal Log Canonical Centers

In this section we will prove a relative vanishing theorem and then use it to prove the normality of minimal log canonical centers.

Lemma 2.1. Let \(X\) be a \(\mathbb{Q}\)-factorial KLT 3-fold and \((X, \Delta \geq 0)\), a log canonical pair. Let \(W_1\) and \(W_2\) be two log canonical centers of \((X, \Delta)\). Then every irreducible component of \(W_1 \cap W_2\) is a log canonical center of \((X, \Delta)\).

Proof. There are three cases depending on the codimension of \(W_1\) and \(W_2\).

Case I: \(\text{codim}_X W_1 = \text{codim}_X W_2 = 1\). In this case \(W_1\) and \(W_2\) are components of \(\Delta\). Let \(\Delta = W_1 + W_2 + \Delta\). Then by adjunction we have

\[(K_X + W_1 + W_2 + \Delta)|_{W_1^n} = K_{W_1^n} + \text{Diff}_{W_1}(\Delta) + W_2|_{W_1^n},\]

where \(W_1^n \to W_1\) is the normalization. By localizing at the generic point of an irreducible component of \(W_1 \cap W_2\) we reduce it to a surface problem. Now, on a surface in characteristic \(p > 0\), the relative Kawamata-Viehweg vanishing and Kollar’s connectedness theorem hold (see [Kol13, 10.13] and [Das13, 3.1]). Thus on a surface the intersection of two LC centers is a LC center and we are
done.

Case II: codim\(_X W_1 = 1\) and codim\(_X W_2 = 2\). Since \(X\) is \(\mathbb{Q}\)-factorial, \((X, (1-\epsilon)\Delta)\) is KLT for any \(0 < \epsilon < 1\). Thus by [Bir13] there exists a \(\mathbb{Q}\)-factorial model \(f' : X' \to (X, \Delta)\) of relative Picard number \(\rho(X'/X) = 1\) such that \(\text{Ex}(f')\) is a unique exceptional divisor \(E'\) over \(W_2\) and

\[
(2.1) \quad K_{X'} + E' + W'_1 + \Delta' = f'^*(K_X + \Delta)
\]

where \(\Delta' \geq 0\), and \(W'_1\) is the strict transform of \(W_1\) under \(f'\).

Since \(W'_1\) and \(E'\) are \(\mathbb{Q}\)-Cartier, they intersect along a curve (possibly reducible). Let \(C'\) be an irreducible component of \(W'_1 \cap E'\). Then by Case I, \(C'\) is a LC center of \((X', E' + W'_1 + \Delta' \geq 0)\). Since every irreducible component of \(W'_1 \cap W_2\) is dominated by an irreducible component of \(W'_1 \cap E'\), we are done by relation \((2.1)\).

Case III: codim\(_X W_1 = \text{codim}_X W_2 = 2\). Again since \(X\) is \(\mathbb{Q}\)-factorial, \((X, (1-\epsilon)D)\) is KLT for any \(0 < \epsilon < 1\). Thus by [Bir13] there exists a \(\mathbb{Q}\)-factorial model \(f' : X' \to (X, \Delta)\) such that \(\text{Ex}(f') = E'_1 \cup E'_2\), where \(f'(E'_1) = W_1\) and \(f'(E'_2) = W_2\), and

\[
(2.2) \quad K_{X'} + E'_1 + E'_2 + \Delta' = f'^*(K_X + \Delta).
\]

Since \(E'_1\) and \(E'_2\) are \(\mathbb{Q}\)-Cartier, they intersect along a curve (possibly reducible). Let \(C'\) be an irreducible component of \(E'_1 \cap E'_2\). Then by Case I, \(C'\) is a LC center of \((X', E'_1 + E'_2 + \Delta' \geq 0)\). Since every irreducible component of \(W'_1 \cap W_2\) is dominated by an irreducible component of \(E'_1 \cap E'_2\), we are done by relation \((2.2)\).

The following proposition is a characteristic \(p > 5\) version of Fujino’s adjunction theorem for DLT pairs (see [Cor07, 3.9.2] and [Kol13, 4.16]) on a \(\mathbb{Q}\)-factorial 3-fold.

Proposition 2.2 (DLT Adjunction). Let \((X, \Delta \geq 0)\) be a \(\mathbb{Q}\)-factorial DLT \(n\)-fold with \(n \leq 3\) such that \(\Delta = D_1 + D_2 + \cdots + D_r + B\) and \(|\Delta| = D_1 + D_2 + \cdots + D_r\). Assume that \(X\) has KLT singularities. Then following hold:

1. The \(s\)-codimensional log canonical centers of \((X, \Delta)\) are exactly the irreducible components of the various intersections \(D_{i_1} \cap \cdots \cap D_{i_s}\) for some \(\{i_1, \ldots, i_s\} \subset \{1, \ldots, r\}\).
2. Every irreducible component of \(D_{i_1} \cap \cdots \cap D_{i_s}\) is normal and of pure codimension \(s\).
(3) Let \(W \) be a log canonical center of \((X, \Delta)\), then there exists an effective \(\mathbb{Q} \)-divisor \(\Delta_W \geq 0 \) on \(W \) such that \((K_X + \Delta)|_W \sim_{\mathbb{Q}} K_W + \Delta_W \) and \((W, \Delta_W)\) is DLT.

(4) If \(D_i \cap D_j = \emptyset \) for all \(i \neq j \), then \((X, \Delta)\) is in fact PLT.

Proof. The result is well known in dimension \(\leq 2 \). (1) follows from the proof in [Kol13, Theorem 4.16].

Since \(X \) is \(\mathbb{Q} \)-factorial, \((X, D_i)\) is also PLT and then by adjunction \((D_i, \text{Diff}_{D_i})\) is KLT. Since \(\text{Diff}_{D_i} \) has standard coefficients, by [Har98] and [HX13, 3.1], \((D_i, \text{Diff}_{D_i})\) is strongly F-regular in characteristic \(p > 5 \). Then by [HX13, 4.1] and [Das13, 4.1, 5.4], \(D_i \) is normal. This proves that every irreducible component of \(\lfloor \Delta \rfloor \) is normal and hence (2) holds for \(s = 1 \).

It is easy to see that \((D, \text{Diff}_D(\Delta - D)) \) is DLT, and so \(D_i \) is a \(\mathbb{Q} \)-factorial surface by [FT12, 6.3]. (2) and (3) now follow from the result in dimension 2. (4) is immediate. \(\square \)

Definition 2.3 (Divisorial Extraction). Let \((X, \Delta \geq 0)\) be a \(\mathbb{Q} \)-factorial 3-fold log canonical pair with a unique exceptional divisor \(E \) over \(X \) of discrepancy \(a(E, X, \Delta) = -1 \). A divisorial extraction is a \(\mathbb{Q} \)-factorial PLT model \(f : (Y, E + \Delta') \rightarrow (X, \Delta) \) of relative Picard number \(\rho(Y/X) = 1 \), such that \(K_Y + E + \Delta' = f^*(K_X + \Delta) \).

Remark 2.4. Divisorial extractions exist in any dimension in characteristic 0 by [BCHM10] and [KK10, 3.1], and in dimension 3 and in characteristic \(p > 5 \) by [HX13] and [Bir13].

Theorem 2.5 (Relative Vanishing Theorem). Let \((X, \Delta \geq 0)\) be a \(\mathbb{Q} \)-factorial 3-fold log canonical pair with isolated center \(W \), \(\text{codim}_X W = 2 \) and \(S \), a unique exceptional divisor dominating \(W \) with \(a(S, X, \Delta) = -1 \). Also assume that \(X \) has KLT singularities. Let \(f : (Y, S + B) \rightarrow (X, W) \) be the corresponding divisorial extraction such that \(K_Y + S + B = f^*(K_X + \Delta) \). Then \(R^1f_*\mathcal{O}_Y(-S) = 0 \).

Proof. Note that \(-S \) is \(\mathbb{Q} \)-Cartier \(f \)-ample divisor and since \(X \) is klt, \(W \) is contained in the support of \(\delta \) and hence \(B \cap S \neq \emptyset \).

Claim: The following sequence is exact at all codimension 2 points of \(Y \nolabel{add ref}

\begin{align*}
0 \rightarrow \mathcal{B}_e \longrightarrow F^e_*\mathcal{O}_Y((1 - p^e)K_Y - p^e S) \longrightarrow \mathcal{O}_Y(-S) \longrightarrow 0
\end{align*}

for all \(e \gg 0 \) and sufficiently divisible, where \(\phi_e \) is defined as in \(^1 \) and \(\mathcal{B}_e \) is the kernel of \(\phi_e \).
Granting Claim (2.3) for the time being, we will show that \(R^1 f_* \mathcal{O}_Y(-S) = 0. \)

The exact sequence (2.3) can be split into the following two exact sequences

\[
\begin{align*}
(2.4) & \quad 0 \to \mathcal{B}_e \to F_*^e \mathcal{O}_Y((1 - p^e)K_Y - p^e S) \xrightarrow{\phi_e} \text{Im}(\phi_e) \to 0 \\
(2.5) & \quad 0 \to \text{Im}(\phi_e) \to \mathcal{O}_Y(-S) \to \mathcal{Q}_e \to 0
\end{align*}
\]

where \(\mathcal{Q}_e \) is the corresponding quotient.

Pushing forward the exact sequence (2.4) by \(f \) we get

\[
(2.6) \quad R^1 f_* (F_*^e \mathcal{O}_Y((1 - p^e)K_Y - p^e S)) \to R^1 f_* \text{Im}(\phi_e) \to R^2 f_* \mathcal{B}_e.
\]

Now \(R^2 f_* \mathcal{B}_e = 0 \), since the maximum dimension of the fibers of \(f \) is 1.

Let \(r \) be the index of \(K_Y + S \) and \(H = -(K_Y + S) \). By the division algorithm there exist integers \(k > 0 \) and \(0 \leq b < r \) such that \((p^e - 1) = r \cdot k + b \). Then by Serre vanishing

\[
R^1 f_* (F_*^e \mathcal{O}_Y((1 - p^e)K_Y - p^e S)) = F_*^e (R^1 f_* \mathcal{O}_Y(k \cdot r H - b(K_Y + S) - S)) = 0
\]

for all \(e \gg 0 \) and sufficiently divisible, since \(H \) is \(f \)-ample (since \(B \cap S \neq \emptyset \)).

Thus from (2.6) we get

\[
(2.7) \quad R^1 f_* \text{Im}(\phi_e) = 0.
\]

Again, pushing forward the exact sequence (2.5) we get

\[
(2.8) \quad R^1 f_* \text{Im}(\phi_e) \to R^1 f_* \mathcal{O}_Y(-S) \to R^1 f_* \mathcal{Q}_e.
\]

\(R^1 f_* \mathcal{Q}_e = 0 \), since \(\mathcal{Q}_e \) is supported at finitely many points and \(R^1 f_* \text{Im}(\phi_e) = 0 \) by (2.7). Thus we have

\[
(2.9) \quad R^1 f_* \mathcal{O}_Y(-S) = 0.
\]

We will now prove Claim (2.3). By Proposition 2.2, \(S \) is normal and \((Y, S + B)\) is PLT. Since \(Y \) is \(\mathbb{Q} \)-factorial, \((Y, S)\) is also PLT.

Now, since the question is local on \(Y \), we may assume that \(Y \) is affine. Then by [HX13, 2.13] we can choose an effective \(\mathbb{Q} \)-Cartier divisor \(G \geq 0 \) not containing \(S \) and with sufficiently small coefficients such that \(K_Y + S + G \) is \(\mathbb{Q} \)-Cartier with index not divisible by \(p \).

Localizing \(Y \) at a codimension 2 point we may assume that \(Y \) is an excellent surface. Thus by adjunction we have \((K_Y + S + G)|_S = K_S + D_S + G|_S\), where \(D_S \) is the Different. Since \((Y, S)\) is PLT, \((S, D_S)\) is KLT by adjunction. Hence
(S, D_S) is strongly F-regular by [HX13, 2.2], since S is a smooth curve. Since the coefficients of G are sufficiently small, $(S, D_S + G|_S)$ is strongly F-regular. Therefore we get the following surjection

$$F^e_* \mathcal{O}_S((1 - p^e)(K_S + D_S + G|_S)) \twoheadrightarrow \mathcal{O}_S$$

for all $e \gg 0$ and sufficiently divisible.

We have the following commutative diagram

$$
\begin{array}{ccc}
F^e_* \mathcal{O}_Y((1 - p^e)(K_Y + S + G)) & \longrightarrow & F^e_* \mathcal{O}_S((1 - p^e)(K_S + D_S + G|_S)) \\
\downarrow & & \downarrow \\
\mathcal{O}_Y & \longrightarrow & \mathcal{O}_S
\end{array}
$$

To see the surjectivity of the top arrow note that since F^e_* is exact it suffices to show that $(1 - p^e)(K_Y + S + G)|_S = (1 - p^e)(K_S + D_S + G|_S)$, and since $(1 - p^e)(K_Y + S + G)$ and $(1 - p^e)(K_S + D_S + G|_S)$ are Cartier for $e \gg 0$, it suffices to show that this equality holds at codimension 1 points of S, but this is clear since $(K_Y + S + G) = K_S + D_S + G|_S$. Since the ring \mathcal{O}_Y is local, the surjectivity of the second vertical map (along with Nakayama’s lemma) implies the surjectivity of the first vertical map, i.e.,

$$
F^e_* \mathcal{O}_Y((1 - p^e)(K_Y + S + G)) \twoheadrightarrow \mathcal{O}_Y
$$

is surjective.

Since the map (2.11) factors through $F^e_* \mathcal{O}_Y((1 - p^e)K_Y)$, we get the following surjectivity

$$
F^e_* \mathcal{O}_Y((1 - p^e)K_Y) \xrightarrow{\psi_e} \mathcal{O}_Y.
$$

Let s be a pre-image of 1 under ψ_e. Then we get the following splitting of ψ_e

$$
\begin{array}{ccc}
\mathcal{O}_Y & \longrightarrow & F^e_* \mathcal{O}_Y((1 - p^e)K_Y) \\
\longrightarrow & \psi_e & \downarrow \\
& \mathcal{O}_Y
\end{array}
$$

Twisting (2.13) by $\mathcal{O}_Y(-S)$ and taking reflexive hull we get that the following splitting

$$
\begin{array}{ccc}
\mathcal{O}_Y(-S) & \longrightarrow & F^e_* \mathcal{O}_Y((1 - p^e)K_Y - p^eS) \\
\longrightarrow & \psi_e & \downarrow \\
& \mathcal{O}_Y(-S)
\end{array}
$$

In particular the morphism

$$F^e_* \mathcal{O}_Y((1 - p^e)K_Y - p^eS) \longrightarrow \mathcal{O}_Y(-S)$$

is surjective and Claim (2.3) follows.

\[\square \]

Theorem 2.6. Let (X, Δ) be a \mathbb{Q}-factorial 3-fold log canonical pair such that X has KLT singularities. If W is a minimal log canonical center of (X, Δ), then W is normal.
Proof. Since X is \mathbb{Q}-factorial and all log canonical centers of (X, Δ) are contained in Δ, $(X, (1-\epsilon)\Delta)$ is KLT for any $0 < \epsilon < 1$. Then by Reid’s Tie Breaking trick (see [Cor07, 8.7.1]) we may assume that W is the unique log canonical center of (X, Δ) with a unique exceptional divisor over X of discrepancy -1. There are two cases depending on the codimension of W.

Case I: $\text{codim}_X(W) = 1$. Since X is \mathbb{Q}-factorial, (X, W) is log canonical. By adjunction $(K_X + W)|_{W^n} = K_{W^n} + \text{Diff}_{W^n}$, where $W^n \to W$ is the normalization and (W^n, Diff_{W^n}) is KLT. Thus by [Har98] and [HX13, 3.1], (W^n, Diff_{W^n}) is strongly F-regular in characteristic $p > 5$. Then $W^n = W$, i.e., W is normal by [HX13, 4.1] or [Das13, 4.1].

Case II: $\text{codim}_X(W) = 2$. Let $f : (Y, S + B) \to (X, \Delta)$ be a divisorial extraction such that

$$K_Y + S + B = f^*(K_X + \Delta)$$

where S is the exceptional divisor over W.

$(Y, S + B)$ is PLT with S an irreducible PLT center. Since Y is \mathbb{Q}-factorial, (Y, S) is also PLT. By adjunction we have $(K_Y + S)|_{S^n} = K_{S^n} + \text{Diff}_{S^n}$, where $S^n \to S$ is the normalization. Then (S^n, Diff_{S^n}) is KLT. Hence by [HX13, 3.1], (S^n, Diff_{S^n}) is strongly F-regular in characteristic $p > 5$, and so $S^n = S$, i.e. S is normal by [HX13, 4.1] or [Das13, 4.1, 5.4].

Consider the following exact sequence

$$0 \to \mathcal{O}_Y(\mathcal{O}_Y(-S)) \to \mathcal{O}_Y \to \mathcal{O}_S \to 0$$

By Theorem 2.5 we have $R^1f_*\mathcal{O}_Y(-S) = 0$. Thus we get the following exact sequence

$$0 \to f_*\mathcal{O}_Y(-S) \to f_*\mathcal{O}_Y \to f_*\mathcal{O}_S \to 0.$$
where $\nu : W^m \to W$ is the normalization morphism.

Hence $O_W = \nu_* O_{W^m}$, i.e. W is normal. □

3. **Adjunction Formula on 3-folds**

In this section we will prove an adjunction formula on 3-folds and in characteristic $p > 5$. To start with we will need the following definitions and results.

3.1. DCC sets.

We say that a set I of real numbers satisfies the *descending chain condition* or DCC, if it does not contain any infinite strictly decreasing sequence. For example,

$$I = \{ \frac{r-1}{r} : r \in \mathbb{N} \}$$

satisfies the DCC.

Let $I \subseteq [0, 1]$. We define

$$I_+ := \{ j \in [0, 1] : j = \sum_{p=1}^{l} i_p \text{ for some } i_1, i_2, \ldots, i_l \in I \}$$

and

$$D(I) := \{ a \leq 1 : a = \frac{m-1+f}{m}, m \in \mathbb{N}, f \in I_+ \}.$$

Lemma 3.1. [MP04, 4.4] Let $I \subseteq [0, 1]$. Then

1. $D(D(I)) = D(I) \cup \{1\}$.
2. I satisfies DCC if and only if \bar{I} satisfies the DCC, where \bar{I} is the closure of I.
3. I satisfies DCC if and only if $D(I)$ satisfies the DCC.

Lemma 3.2. [CGS14, Lemma 2.3][MP04, Lemma 4.3][HMX14, Lemma 4.1] Let $(X, \Delta \geq 0)$ be a log canonical pair such that the coefficients of Δ belong to a set $I \subseteq [0, 1]$. Let S be a normal irreducible component of $[\Delta]$ and $\Theta \geq 0$ be the \mathbb{Q}-divisor on S defined by adjunction:

$$(K_X + \Delta)|_S = K_S + \Theta.$$
Then, the coefficients of Θ belong to $D(I)$.

3.2. **Divisorial parts and Moduli parts.** Let $f : X \to Z$ be a surjective proper morphism between two normal varieties and $K_X + D \sim_{Q} f^*L$, where D is a boundary divisor. Let (X, D) be LC near the generic fiber of f, i.e., $(f^{-1}U, D|_{f^{-1}U})$ is LC for some Zariski dense open subset $U \subseteq Z$. Then we define two divisors D_{div} and D_{mod} on Z in the following way:

$$D_{\text{div}} = \sum (1 - c_Q)Q,$$

where $Q \subseteq Z$ are prime Weil divisors of Z,

$$c_Q = \sup \{ c \in \mathbb{R} : (X, D + cf^*Q) \text{ is LC over the generic point } \eta_Q \text{ of } Q \}$$

and

$$D_{\text{mod}} = L - K_Z - D_{\text{div}},$$

so that $K_X + D \sim_{Q} f^*(K_Z + D_{\text{div}} + D_{\text{mod}})$.

Remark 3.3. Observe that D_{div} is a fixed divisor on Z, called the **Divisorial part** and D_{mod} is a \mathbb{Q}-linear equivalence class on Z, called the **Moduli part**. For other properties of D_{div} and D_{mod} see [PS09, Section 7] and [Amb99, Section 3].

Let $\mathcal{M}_{0,n}$ be the moduli space of n-pointed stable curves of genus 0, $f_{0,n} : \mathcal{U}_{0,n} \to \mathcal{M}_{0,n}$ the universal family, and $\mathcal{P}_1, \mathcal{P}_2, \cdots, \mathcal{P}_n$, the sections of $f_{0,n}$ which correspond to the marked points (see [Kee92] and [Knu83]). Let $d_j (j = 1, 2, \cdots, n)$ be rational numbers such that $0 < d_j \leq 1$ for all j, $\sum j d_j = 2$ and $\mathcal{D} = \sum j d_j \mathcal{P}_j$.

Lemma 3.4. (1) There exists a smooth projective variety $U^*_{0,n}$, a \mathbb{P}^1-bundle $g_{0,n} : U^*_{0,n} \to \mathcal{M}_{0,n}$, and a sequence of blowups with smooth centers

$$
\mathcal{U}_{0,n} = U^{(1)} \xrightarrow{\sigma_2} U^{(2)} \xrightarrow{\sigma_3} \cdots \xrightarrow{\sigma_{n-2}} U^{(n-2)} = U^*_{0,n}.
$$

(2) Let $\sigma : \mathcal{U}_{0,n} \to U^*_{0,n}$ and $g_{0,n} : U^*_{0,n} \to \mathcal{M}_{0,n}$ be the induced morphisms, and $\mathcal{D}^* = \sigma_* \mathcal{D}$. Then $K_{U_0,n} + \mathcal{D} - \sigma^*(K_{U^*_{0,n}} + \mathcal{D}^*)$ is effective.

(3) There exists a semi-ample \mathbb{Q}-divisor \mathcal{L} on $\mathcal{M}_{0,n}$ such that

$$K_{U^*_{0,n}} + \mathcal{D}^* \sim_{Q} g_{0,n}^*(K_{\mathcal{M}_{0,n}} + \mathcal{L}).$$

Proof. The proof in [Kaw97, Theorem 2] works in positive characteristic without any change (see also [CTX13, 6.7], [PS09, 8.5] and [KMM94, Section 3]).

Lemma 3.5 (Stable Reduction Lemma). Let B be a smooth curve and $f : X \to B$, a flat family of rational curves such that the general fiber is isomorphic to \mathbb{P}^1, and a unique singular fiber X_0 over $0 \in B$. Also assume that $f|_{X^*} : (X^* = X \setminus X_0; \mathcal{P}_1, \mathcal{P}_2, \cdots, \mathcal{P}_n) \to B^* = B \setminus \{0\}$ is a flat family of n-pointed
stable rational curves sitting in the following commutative diagram\(^2\)

\[
\begin{array}{ccc}
X^* = B^* \times_{\overline{\mathcal{M}}_{0,n}} \overline{U}_{0,n} & \xrightarrow{f} & \overline{U}_{0,n} \\
\downarrow & & \downarrow \\
B^* & \xrightarrow{id_B} & \overline{\mathcal{M}}_{0,n}
\end{array}
\]

Then there exists a unique flat family \(\hat{f}: \hat{X} \to B\) of \(n\)-pointed stable rational curves satisfying the following commutative diagram

\[
\begin{array}{ccc}
X \xrightarrow{f} \hat{X} = B \times_{\overline{\mathcal{M}}_{0,n}} \overline{U}_{0,n} & \xrightarrow{j} & \overline{U}_{0,n} \\
\downarrow & & \downarrow \\
B & \xleftarrow{id_B} & \overline{\mathcal{M}}_{0,n}
\end{array}
\]

where the broken horizontal map is a birational map such that \(f^{-1}B^* \cong \hat{f}^{-1}B^*\).

Proof. Since \(\overline{\mathcal{M}}_{0,n}\) is a proper scheme, by the valuative criterion of properness any morphism \(B^* \to \overline{\mathcal{M}}_{0,n}\) extends uniquely to a morphism \(B \to \overline{\mathcal{M}}_{0,n}\). Now since \(\overline{\mathcal{M}}_{0,n}\) has a universal family \(\overline{U}_{0,n}\), the existence of \(\hat{f}: \hat{X} \to B\) follows by taking the fiber product. \(\square\)

Theorem 3.6 (Canonical Bundle Formula). Let \(f: X \to Z\) be a proper surjective morphism, where \(X\) is a normal surface and \(Z\) is a smooth curve over an algebraically closed field \(k\) of \(\text{char}(k) > 0\). Also assume that \(Q = \sum_i Q_i\) is a divisor on \(Z\) such that \(f\) is smooth over \((Z - \text{Supp}(Q))\) with fibers isomorphic to \(\mathbb{P}^1\). Let \(D = \sum_j d_j P_j\) be a \(Q\)-divisor on \(X\), where \(d_j = 0\) is allowed, which satisfies the following conditions:

1. \((X, D \geq 0)\) is KLT.
2. \(D = D^h + D^v\), where \(D^h = \sum_{f(D_j) = Z} d_j D_j\) and \(D^v = \sum_{f(D_j) \neq Z} d_j D_j\).
 An irreducible component of \(D^h\) (resp. \(D^v\)) is called horizontal (resp. vertical) component.
3. \(\text{Char}(k) = p > \frac{2}{\delta}\), where \(\delta\) is the minimum non-zero coefficient of \(D^h\).
4. \(K_X + D \sim_{\mathbb{Q}} f^*(K_Z + M)\) for some \(\mathbb{Q}\)-Cartier divisor \(M\) on \(Z\).

Then there exist an effective \(\mathbb{Q}\)-divisor \(D_{\text{div}} \geq 0\) and a semi-ample \(\mathbb{Q}\)-divisor \(D_{\text{mod}} \geq 0\) on \(Z\) (as defined in 3.2) such that

\[
K_X + D \sim_{\mathbb{Q}} f^*(K_Z + D_{\text{div}} + D_{\text{mod}}).
\]

Proof. The sketch of the proof of this formula is given in [CTX13, 6.7]. We include a complete proof following the idea of the proof of [PS09, Theorem 8.1].

\(^2\)don’t we need to base change so that the \(P_i\) are sections?
First we reduce the problem to the case where all components of D^h are sections. Let D_{i_0} be a horizontal component of D and $Z' \to D_{i_0}$ be the normalization of D_{i_0}. Then $\nu : Z' \to Z$ is a finite surjective morphism of smooth curves. Let X' be the normalization of the component of $X \times_Z Z'$ dominating Z.

\[
\begin{array}{ccc}
X & \xleftarrow{\nu'} & X' \\
f \downarrow & & f' \downarrow \\
Z & \xleftarrow{\nu} & Z'
\end{array}
\]

Let $k = \deg(\nu : Z' \to Z)$ and l be a general fiber of f. Then

\[
k = D_i \cdot l \leq \frac{1}{d_i}(D \cdot l) = \frac{1}{d_i}(-K_X \cdot l) = \frac{2}{d_i} \leq \frac{2}{\delta} < \text{Char } (k).
\]

Therefore $\nu : Z' \to Z$ is a separable morphism.

Let D' be the log pullback of D under ν', i.e.,

\[
K_{X'} + D' = \nu'*(K_X + D).
\]

More precisely we have (by [Kol92, 20.2])

\[
D' = \sum_{i,j} d'_{ij} D'_{ij}, \quad \nu'(D'_{ij}) = D_i, \quad d'_{ij} = 1 - (1 - d_i)e_{ij},
\]

where e_{ij}'s are the ramification indices along the D'_{ij}'s.

By construction X dominates Z. Also, since ν is etale over a dense open subset of Z, say, $\nu^{-1}U \to U$, and etale morphisms are stable under base change, $(f' \circ \nu)^{-1}U \to f^{-1}U$ is etale. Thus the ramification locus Λ of ν' does not contain any horizontal divisor of f', i.e., $f'(-\Lambda) \neq Z'$. Therefore D' is boundary near the generic fiber ($\cong \mathbb{P}^1$) of f', i.e., D'^h is effective. We observe that the coefficients of D'^h can be computed by intersecting with a general fiber of $f' : X' \to Z'$, hence they are equal to the coefficients of $D^h \subseteq X$. Thus the condition $p > \frac{2}{\delta}$ remains true for D' on X'.

After finitely many such base changes let $g : \tilde{X} \to \tilde{Z}$ be a family such that all of the horizontal components of $D_{\tilde{X}}$ are sections of g, where $D_{\tilde{X}}$ is the log pullback of D, i.e., $K_{\tilde{X}} + D_{\tilde{X}} = \psi^*(K_X + D)$.

\[
\begin{array}{ccc}
X & \xleftarrow{\psi} & \tilde{X} \\
f \downarrow & & g \downarrow \\
Z & \xleftarrow{\psi_0} & \tilde{Z}
\end{array}
\]
By Lemma 3.5, we get a family of \(n \)-pointed stable rational curves \(\tilde{X} = \tilde{Z} \times_{\mathcal{M}_{0,n}} \bar{U}_{0,n} \to \tilde{Z} \). Let \(X' \) be the common resolution of \(\tilde{X} \) and \(\hat{X} \). Let \(\hat{X} = \hat{Z} \times_{\mathcal{M}_{0,n}} \mathcal{U}_{0,n}^* \). By the universal property of fiber product there exists a morphism \(\mu : X' \to \hat{X} \). Since \(X', \tilde{X} \) and \(\hat{X} \) are all isomorphic \(\mathbb{P}^1 \)-bundles over a dense open subset \(U \subseteq \tilde{Z} \), \(\mu : X' \to \hat{X} \) is birational.

(3.7)

\[
\begin{align*}
X & \xrightarrow{\psi} \tilde{X} & \xrightarrow{\hat{f}} \hat{X} & \xrightarrow{\sigma} \mathcal{U}_{0,n}^* \\
\downarrow f & \downarrow \psi_0 & \downarrow \hat{f} & \downarrow f_0, n \\
Z & \xrightarrow{g_0, n} \mathcal{M}_{0,n}
\end{align*}
\]

Let \(D' \) and \(\hat{D} \) be \(\mathbb{Q} \)-divisors on \(\tilde{X} \) and \(\hat{X} \) respectively, defined by

(3.8)

\[
K_{X'} + D' = \pi^*(K_X + D).
\]

and

\[
K_{\tilde{X}} + \hat{D} = \mu^*(K_{\hat{X}} + \hat{D}).
\]

Since \(K_{X'} + D' \) is a pullback from the base \(\tilde{Z} \) (by (3.7)), by the Negativity lemma we get

(3.9)

\[
K_{X'} + D' = \mu^*(K_{\tilde{X}} + \hat{D}).
\]

Since the definition of the divisorial part of the adjunction does not depend on the birational modification of the family (see [PS09, Remark 7.3(ii)] or [Amb99, Remark 3.1]), we will define it with respect to \(\hat{f} : \hat{X} \to \tilde{Z} \). First we will show that the \(\mathbb{Q} \)-divisor \(\hat{D}_{\text{mod}} \) on \(\tilde{Z} \) is semi-ample.

Since \(\hat{\phi} \) is finite and \(\mathcal{D}^* \) is horizontal it follows that \(\hat{\phi}^*(\mathcal{D}^*) \) is horizontal too. Since \(\hat{D}^h \) is also horizontal one sees that

\[
\hat{D}^h = \hat{\phi}^*(\mathcal{D}^*).
\]

From the construction of \(\sigma : \mathcal{U}_{0,n} \to \mathcal{U}_{0,n}^* \) we see that \((F, \mathcal{D}^*|_F) \) is log canonical for any fiber \(F \) of \(g_{0,n} : \mathcal{U}_{0,n}^* \to \mathcal{M}_{0,n} \). Since the fibers of \(\hat{f} : \hat{X} \to \tilde{Z} \) are isomorphic to the fibers of \(g_{0,n} : \hat{U}_{0,n}^* \to \mathcal{M}_{0,n} \), \((\hat{F}, \hat{D}^h|_{\hat{F}}) \) is also log canonical, where \(\hat{F} \) is a fiber of \(\hat{f} \). Finally, since \(\hat{X} \) is a surface, by inversion of adjunction \((\hat{X}, \hat{F} + \hat{D}^h) \) is log canonical near \(\hat{F} \). Thus, since the fibers are reduced, we get

(3.10)

\[
\hat{D}^v = f^* \hat{D}_{\text{div}}
\]
and, by definition of \hat{D}_{mod} we have
\begin{equation}
K_{\hat{X}} + \hat{D}^h \sim_Q \hat{f}^*(K_{\tilde{Z}} + \hat{D}_{mod}).
\end{equation}

By (3.11), Lemma 3.4 and [Liu02, Chapter 6, Theorem 4.9 (b) and Example 3.28] we get
\begin{equation}
K_{\hat{X}} + \hat{D}^h - \hat{f}^*(K_{\tilde{Z}} + \phi^*_0 L) = K_{\hat{X}} - \hat{f}^* \phi^*(\mathcal{D}) \sim_Q 0.
\end{equation}

Since \hat{f} has connected fibers, by (3.11) and (3.12) and the projection formula for locally free sheaves, we get
\begin{equation}
\hat{D}_{mod} \sim_Q \phi^*_0 L
\end{equation}
i.e., \hat{D}_{mod} is semi-ample.

Now, since $\psi_0 : \tilde{Z} \to Z$ is a composition of finite morphisms of degree strictly less than $\text{Char}(k)$, by [Kol13, Corollary 2.43] and [Amb99, Theorem 3.2] (also see [CTX13, 6.6]) we get
\begin{equation}
K_{\tilde{Z}} + \hat{D}_{div} \sim_Q \psi^*(K_Z + D_{div}).
\end{equation}
Therefore
\begin{equation}
\psi^* D_{mod} \sim_Q \hat{D}_{mod}
\end{equation}
Since Z and \tilde{Z} are both smooth curves, D_{mod} is semi-ample.

\begin{theorem}
Let $(X, D \geq 0)$ be a \mathbb{Q}-factorial 3-fold log canonical pair such that the coefficients of D are contained in a DCC set $I \subseteq [0, 1]$. Let W be a minimal log canonical center of (X, D), and codimension of W is 2. Also assume that X has KLT singularities and $\text{Char}(k) > \max\{5, \frac{2}{3}\}$, where δ is the non-zero minimum of the set $D(I)$ (defined in 3.1). Then the following hold:
\begin{enumerate}
\item W is normal.
\item There exists effective \mathbb{Q}-divisors D_W and M_W on W such that $(K_X + D)|_W \sim_Q K_W + D_W + M_W$. Moreover, if $D = D' + D''$ with D' (resp. D'') the sum of all irreducible components which contain (resp. do not contain) W, then M_W is determined only by the pair (X, D').
\item There exists an effective \mathbb{Q}-divisor M'_W such that $M'_W \sim_Q M_W$ and the pair $(W, D_W + M'_W)$ is KLT.
\end{enumerate}
\end{theorem}

\begin{proof}
Normality of W follows from Theorem 2.6.

Since X is \mathbb{Q}-Cartier, $(K_X + D)|_W = (K_X + D' + D'')|_W = (K_X + D')|_W + D''|_W$. Thus we may assume that all components of D contain W. Since W is a minimal log canonical center of (X, D) and $\text{codim}_X W = 2$, it does not
intersect any other LC center of codimension ≥ 2, by Lemma 2.1. Thus by shrinking X (removing closed subsets of codimension ≥ 2 which do not intersect W) if necessary we may assume that W is the unique log canonical center of codimension ≥ 2 of (X, D).

Let $f : (X', D') \to (X, D)$ be a \mathbb{Q}-factorial DLT model over (X, D) such that
\begin{equation}
K_{X'} + D' = f^*(K_X + D).
\end{equation}
Such f exists by [KK10, 3.1] and [Bir13].

Note that, since X is \mathbb{Q}-factorial, the exceptional locus of f supports an effective anti-ample divisor. In particular all positive dimensional fibers of f are contained in the support of $\lfloor D' \rfloor$.

Let E be an exceptional divisor dominating W. Then E is normal by Proposition 2.2. Write $D' = E + \sum d_i f_i^{-1} D_i$. By adjunction we have
\begin{equation}
K_E + D'_E = (K_{X'} + D')|_E = f^*((K_X + D)|_W)
\end{equation}
and (E, D'_E) is DLT, by Proposition 2.2 and the coefficients of D'_E are in the set $D(I)$ by Lemma 3.2.

By Theorem 3.6, there exist \mathbb{Q}-divisors $D_W \geq 0$ and $M_W \geq 0$ on W such that
\begin{equation}
K_E + D'_E \sim_{\mathbb{Q}} f|_E^*(K_W + D_W + M_W).
\end{equation}
Since $f|_E : E \to W$ has connected fibers, from (3.16), (3.17) and the projection formula for locally free sheaves, we get
\begin{equation}
(K_X + D)|_W \sim_{\mathbb{Q}} K_W + D_W + M_W.
\end{equation}
Lemma 3.8 given below shows that D_W is independent of the choice of the exceptional divisor f dominating W.

From the definition of D_W we see that $D_W \geq 0$, since $D'_E \geq 0$. Also, since D_W is independent of the birational modifications (by [PS09, Remark 7.3(ii)]) and W is a minimal LC center, by taking a log resolution of (X', D') and working on the strict transform of E, we see that the coefficients of D_W are strictly less than 1. Thus $\lfloor D_W \rfloor = 0$.

Since M_W is semi-ample and W is a smooth curve, either $M_W = 0$ or M_W is ample. In the later case by Bertini’s theorem there exists an effective \mathbb{Q}-divisor $M'_W \sim_{\mathbb{Q}} M_W$ such that $\lfloor M'_W \rfloor = 0$ and $\text{Supp}(M'_W) \cap \text{Supp}(D_W) = \emptyset$. Hence $(W, D_W + M'_W)$ is KLT.
Lemma 3.8. With the same hypothesis as in Theorem 3.7, the divisor $D_W = D_{\text{div}}$ on W is independent of the choice of the exceptional divisors dominating W.

Proof. Let E_1 and E_2 be two exceptional divisors of f dominating W such that
\begin{equation}
K_{X'} + E_1 + E_2 + \Delta' = f^*(K_X + D),
\end{equation}
where $f : X' \to X$ is the DLT model as above and $D' = E_1 + E_2 + \Delta'$.

By adjunction on E_1 we get
\begin{equation}
K_{E_1} + C + \Delta'_{E_1} = f^*((K_X + D)|_W),
\end{equation}
where C is an irreducible component of $E_1 \cap E_2$.

Adjunction on C gives
\begin{equation}
K_C + \Delta'_C = f^*((K_W + D)|_W).
\end{equation}

Let Q be a point on W, and $t = \text{lct}(E_1, C + \Delta'_{E_1}; f^*Q)$ and $s = \text{lct}(C, \Delta'_C; f^*Q|_C)$. Since C is an irreducible component of $E_1 \cap E_2$ dominating W, it is enough to show that $t = s$. By adjunction, $t \leq s$. So by contradiction assume that $t < s$.

Since $(E_1, C + \Delta'_{E_1})$ DLT by Proposition 2.2, $(E_1, C + \Delta'_{E_1} + t'f^*Q)$ is LC outside of $f^{-1}Q$ for any $t' > t$. Thus all NLC centers of $(E_1, C + \Delta'_{E_1} + t'f^*Q)$ appear along $f^{-1}Q$.

The general fiber of $f|_{E_1} : E_1 \to W$ is isomorphic to \mathbb{P}^1. Thus degree($(C + \Delta'_{E_1})|_{\mathbb{P}^1}) = 2$ by (3.20). There are two cases depending on whether C intersects the general fiber with degree 1 or 2.

Case I: C intersects the general fiber with degree 1. Then there exists a horizontal component C' of Δ'_{E_1}. Let H be an ample divisor on E_1, and F_η, the generic fiber of $f|_{E_1} : E_1 \to W$. Choose $\lambda > 0$ such that
\[(H - \lambda C') \cdot F_\eta = 0.\]
Then $(H - \lambda C')|_{F_\eta} \sim 0$. Thus by [Cor07, 8.3.4], $H \sim \lambda C' - \sum \lambda_i F_i$, where the F_i's are irreducible components of some fibers of f. By adding pullback of some appropriate divisors from the base to $\lambda C' - \sum \lambda_i F_i$, we may assume that $\lambda_i > 0$ for all i and $\lambda C' - \sum \lambda_i F_i$ is f-ample.

Assume that there exists a point $P \in f^{-1}Q$ but $P \notin C$ such that $(E_1, C + \Delta'_{E_1} + (t + \epsilon)f^*Q)$ is not LC at P, where $0 < \epsilon \ll 1$ such that $t + \epsilon < s$. Then
by choosing $0 < \lambda, \lambda_i \ll 1$ we can assume that $(C + \Delta'_{E_1} - \lambda C' + \sum \lambda_i F_i) \geq 0$, $(E_1, C + \Delta'_{E_1} - \lambda C' + \sum \lambda_i F_i + (t + \epsilon)f^*Q)$ still not LC at P, and

$$
(3.22) \quad -\left(K_{E_1} + C + \Delta'_{E_1} - \lambda C' + \sum \lambda_i F_i\right) = -f^*((K_X + D)|_W) + \left(\lambda C' - \sum \lambda_i F_i\right)
$$

is f-ample.

Then by [Bir13, 8.3], NKLT$(E_1, C + \Delta'_{E_1} - \lambda C' + \sum \lambda_i F_i + (t + \epsilon)f^*Q) \cap f^{-1}Q$ is connected. Let $R \in C \cap f^{-1}Q$. Then there exists a chain of curves G_i's connecting R and P, and contained in NKLT$(E_1, C + \Delta'_{E_1} - \lambda C' + \sum \lambda_i F_i + (t + \epsilon)f^*Q) \cap f^{-1}Q$.

Now NKLT$(E_1, C + \Delta'_{E_1} - \lambda C' + \sum \lambda_i F_i + (t + \epsilon)f^*Q) \subseteq$ NKLT$(E_1, C + \Delta'_{E_1} + \sum \lambda_i F_i + (t + \epsilon)f^*Q)$. Since we are only concentrating on the NKLT centers along $f^{-1}Q$, we may assume that F_i's are all contained in $f^{-1}Q$. Then by choosing $0 < \lambda_i \ll 1$ for all i, such that $t + \epsilon = t + \epsilon + \max(\lambda_i) < s$, we see that NKLT$(E_1, C + \Delta'_{E_1} + \sum \lambda_i F_i + (t + \epsilon)f^*Q) \subseteq$ NKLT$(E_1, C + \Delta'_{E_1} + (t + \epsilon)f^*Q)$. Thus the curves G_i's are contained in the NKLT$(E_1, C + \Delta'_{E_1} + (t + \epsilon)f^*Q)$. Hence G_i's are contained in NLC$(E_1, C + \Delta'_{E_1} + sf^*Q)$. This implies that $(E_1, C + \Delta'_{E_1} + sf^*Q)$ is not LC at $R \in C$. Then by inversion of adjunction we get a contradiction to the fact that $(C, \Delta'_{E_1} + sf^*Q|_C)$ is LC.

Case II: C intersects the general fiber with degree 2. In this case $E_1 \cap E_2 = C$ and $\Delta'_{E_1} = \Delta'_{E_2} = 0$. Since $D \neq 0$ and every component of D contains W, one of the E_i's, say $E_2 = f_s^{-1}D_1$, where D_1 is an irreducible component of D. Thus in this case the exceptional divisors of f do not intersect each other. Since X is \mathbb{Q}-factorial, the exceptional locus Ex(f) of $f : X' \to X$ supports an effective anti-ample divisor and hence Ex$(f) \cap f^{-1}(w)$ is connected for all $w \in W$. Thus f has a unique exceptional divisor in this case and we are done.

□

References

ON THE ADJUNCTION FORMULA ON 3-FOLDS IN CHARACTERISTIC p

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, 155 S 1400 E, SALT LAKE CITY, UTAH 84112
E-mail address: das@math.utah.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, 155 S 1400 E, SALT LAKE CITY, UTAH 84112
E-mail address: hacon@math.utah.edu