
Math 2250-03Newton's law of cooling application - Maple Project 1Notes and assignmentFriday September 5Our �rst Maple project is from section 1.5, First Order Linear Di�erentialEquations, speci�cally from 1.5 Application: Indoor Temperature Oscillations,pages 56-58. This project is the same as Professor Korevaar's project, which isan adaptation from Professor Gustafson's Math 2250 project. I recommend youwork on this project with your text open. You may also want to consult theMaple hints on Professor Gustafson's page. (Even though our questions maynot look exactly the same as his, they are related.) Links to all this material aswell as some Maple introductory material can be found on Professor Korevaar'spage, which can be found at: http://math.utah.edu/~korevaar/2250fall08...................................................................... .........................................Project Directions: You will be handing in a single Maple document con-taining the answers to the bolded, underlined exercises below. At the top ofthis document you should have a text �eld with an appropriate title, the date,your name and uid. Format this information in a pleasing way. Below the ti-tle/name/date header you should answer the exercises in order. The exerciseswhich call for hand work (e.g. #1), can be done by leaving enough text space inyour document so that you can write in the relevant explanations/derivationsby hand. Alternately, you may create text displays of your "hand" computa-tions, as is done in this assignment document. To follow this second, harderbut neater alternative, past Maple output into text �elds, as I've done below.(Then delete the Maple �elds.)...................................................................... .........................................Here's the project set-up as explained in the text, page 56: You have noair conditioner or evaporative cooler for your home, it's summer, you live inthe authors' home town of Athens Georgia, and the outside temperatures areoscillating periodically, with a period of 24 hours. In other words, we will assumethe ambient temperature outside is given byA(t) = a0 + a1 cos(! t) + b1 sin(! t)where the angular frequency ! is 2� radians per 24 hours, i.e.



! = 1�12radians per hour. In the book example the 24-hour average temperature is80 degrees F, with a minimum of 70 degrees at 4 a.m., and a maximum of 90degrees at 4 p.m. This is consistent with the fact that the hottest part of theday usually occurs in the afternoon, and the coolest part is in the early morninghours. Using this information, we may writeA(t) = 80� 10 cos(! (t� 4)) (1)and expand using the cosine addition angle formula, which you should havememorized and which is in your Calculus book:cos(�+ �) = cos(�) cos(�)� sin(�) sin(�)This yieldsA(t) = 80� 5 cos(! t)� 5 3( 12 ) sin(! t). (2)(Check!! but don't hand in.)We wish to model the temperature inside the house, assuming no sourcesor sinks for heat exist inside, and using Newton's Law of Cooling. This modelyields the linear DEdudt = k (A(t)� u)for the indoor temperature u(t), i.e.dudt + k u = k (a0 + a1 cos(! t) + b1 sin(! t)). (3)The proportionality constant k re
ects how quickly heat from the outsidea�ects temperature change inside - the smaller k is, the more slowly the insidetemperature changes for �xed di�erence A(t)� u , i.e. small k means goodinsulation.Exercise 1. Using the integration factor algorithm we've learned for solving�rst order linear DEs, and working by hand, show that the general solution tothe DE (1) above is given just as the book claims in equation 4, page 57. Inother words, that the solutions are



u(t) = a0 + c0 e(�k t) + c1 cos(! t) + c2 sin(! t). (4)Here the constant c0 arises as a constant of integration, and is related tothe initial temperature u0 . The constants c1 and c2 are determined by theinsulation constant k and the angular frequency !, as shown on page 57. Theformulas you derive for c0, c1, c2 agree with the book's display after equation(4). You may wish to use the book's integral tables, speci�cally #49,50 on theback cover of our text.Exercise 2. Redo the computation for Exercise 1 using Maple to computeall the integrals you need. Your work here should all be done in the Mapleworksheet: The Maple commands and output should be shown, along with anytext explanation or command comments you �nd necessary.Notice that the exponential part of the solution to (4) decays to zero (ex-ponentially) as t!1, and that what remains in the limit is also a solution(i.e. when the integration constant c0=0). We call this the steady periodic (sp)solution, and writeusp(t) = a0 + c1 cos(! t) + c2 sin(! t) .Exercise 3. Use Maple to crunch the numbers and show that with theAthens Georgia temperature data (i.e. the ambient temperature A(t) given byequation (2), and insulation constantk = .2we getu(t) = 80 + (e(�.2 t))(u0 � 82.3351) + 2.3351cos( 1 � t12 )� 5.6036 sin( 1� t12 )(5)and so also,usp(t) = 80 + 2.3351cos( 1 � t12 )� 5.6036 sin( 1� t12 )(6)Here's a nice picture of the various solutions to the IVP for our DE, withthe Athens data. In fact, it's �gure 1.5.10 in the text. I've included the Maplecommands which created the display. Notice the syntax elements of these com-mands - how to de�ne functions, that := is how to de�ne something in Maple,



etc. Notice too that I had Maple check a lot of the work you'll be doing byhand above, using the "dsolve" command!!!!! (Although the answer is a mess itshould agree with your hand work and the text after you do algebra.)> restart: #clear all old definitions from memory> with(DEtools): #load the DE library of commands> A:=t->a0 + a1*cos(omega*t) + b1*sin(omega*t);> #formula for ambient temperature, with free> #parameters a0, a1, b1, omega. This is equation> #(1), but not using subscripts on the variables.> #When you enter multi-line> #commands hold down the shift key while you hit> #"enter" or "return", to prevent premature executionA := t! a0 + a1 cos(! t) + b1 sin(! t)> deqtn3:=diff(u(t),t)=-k*(u(t)-A(t));> #I named the DE "deqtn3" since it's equation (3)> #on top of page 57.deqtn3 := ddt u(t) = �k (u(t) � a0 � a1 cos(! t)� b1 sin(! t))> dsolve(fdeqtn3,u(0)=0g,u(t));u(t) = e(�k t) (�k2 a1 + k b1 ! � a0 k2 � a0 !2)k2 + !2 +a0 k2 + a0 !2 + k2 a1 cos(! t) + k a1 ! sin(! t)� k b1 ! cos(! t) + k2 b1 sin(! t)k2 + !2> a0:=80;> #average ambient temp in Georgia in July> a1:=-5;> b1:=-5*sqrt(3.0);> #the a1 and b1 values were worked out by hand,> #using the cosine addition> #angle formula, assuming 4 a.m. temp min and 4 p.m max,> #and range from 70 to 90 degrees,> #for trigonometric temp oscillation.> omega:=Pi/12;> #this makes the period equal to 24 (hours)> k:=0.2;> #constant for a well-insulated buildinga0 := 80a1 := �5b1 := �8:660254040! := �12k := 0:2



> DEplot(deqtn3,u(t),t=0..50,f[u(0)=65],[u(0)=70],> [u(0)=75],[u(0)=80],[u(0)=85],[u(0)=90],[u(0)=95]g,> arrows=line, color=black,linecolor=black,> dirgrid=[30,30], stepsize=1,> title="inside temperatures");
inside temperatures

65

70

75

80

85

90

95

u(t)

0 10 20 30 40 50

tWe can also recreate a comparison of the steady-periodic indoor temperaturevs. the outdoor temperatures, Figure 1.5.11 on page 58:> with(plots): #load the plotting package> usp:=t->80+(2.3351)*cos(Pi/12*t)-(5.6036)*sin(Pi/12*t):> plot1:=plot(usp(t),t=0..50,color=black):> plot2:=plot(A(t),t=0..50,color=black):> display(fplot1,plot2g,title=`long-term indoor vs outdoor> temperatures`);



long-term indoor vs outdoor temperatures
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tNotice that the indoor temperatures have a smaller amplitude, and thatthey lag the outdoor temperatures. The same thing happens with seasonaltemperatures on earth, where the temperatures in a given hemisphere lag behindthe times of maximal and minimal heating from the sun.Exercise 4: Use the cosine addition angle formula or Maple to show thatthe steady periodic solution given by equation (6) above, can be written inphase-amplitude form asusp(t) = 80� 6.0707cos( 1 � t12 � 7.5082)so that the coolest and hottest indoor temperatures are around 7:30 a.m.and p.m., with smaller amplitude of around 6.07, vs. the outdoor amplitude of10 degrees.Now we're in Salt Lake City, it's winter, we're worried about pipes freezingafter our heater breaks, and we're doing exercises L2.3 and L2.4 from ProfessorGustafson's project! So, the setup is that our heater is turned o� at midnight,t=0. Perhaps we forgot to pay our natural gas bill. At this time, the indoortemperature is u0 = 74 degrees. The outdoor ambient temperature is given asin equation (1), except that the 24-hour temperatures vary between 21 and 49degrees, with the high and low at 3 p.m. and 3 a.m., respectively. We don'thave a very well insulated house, its insulation constant is k = .32 .Exercise 5: From the information above deduce the constants in the formulafor the ambient temperature A(t), and use Maple to �nd the solution to the



initial value problem for the indoor temperature u(t).Exercise 6: Create a Maple display which shows three plots: the Ambienttemperature, the indoor temperature, and the steady-periodic indoor tempera-ture.Exercise 7: Find the phase delay (the di�erence, in hours), between theambient temperature and the indoor steady periodic temperature. It is accept-able to approximate this from the display in Exercise 6 (clicking the mouse ona point of the display will yield the point coordinates in a small window at thetop of your Maple program). It is even better if you can verify the phase delayby writing the steady-periodic solution in phase-amplitude form (see section 5.4mechanical vibrations, page 324, for help).Exercise 8: Suppose the inside temperature is 76 degrees when the furnaceis turned o�. Using 3-d plots and other commands (see hints at ProfessorGustafson's page, or use Maple help), �gure out for the range of insulationconstants .2 < k < .48 , the times during the �rst 72 hours when the indoortemperature is at or below 30 degrees. (This could be bad for your water pipes.)Justify the logic and math used to �nd these "bad" times, in a short paragraph.Illustrate your work with a computer graphic.


