Name:

1. Using the method of undetermined coefficients, solve the differential equation

$$y'' + 4y = x\sin(x) + 8$$

2. Using variation of parameters, solve the differential equation

$$y'' - 4y = \sinh(2x)$$

3. Use Laplace transforms to solve the initial value problem

$$x'' + 4x = \sin(3t),$$

$$x(0) = x'(0) = 0$$

4. Find the transient motion and steady periodic oscillations of a damped mass and spring system with m=1, c=2, and k=26 under the influence of an external force $F(t)=82\cos(4t)$, with x(0)=6 and x'(0)=0.

5. Apply the convolution theorem to find the inverse Laplace transform of the function

$$F(s) = \frac{1}{s(s^2+4)}.$$

A 1	1 1 C
A short table of	
Laplace Transforms	
f(t)	F(s)
1	$\frac{1}{s} (s > 0)$
t	$\frac{1}{s^2} (s > 0)$
$t^n \ (n \ge 0)$	$\frac{n!}{s^{n+1}} (s > 0)$
e^{at}	$\frac{1}{s-a} \ (s>0)$
$\cos(kt)$	$\frac{s}{s^2+k^2}$ (s > 0)
$\sin(kt)$	$\frac{k}{s^2 + k^2} \ (s > 0)$
$\cosh(kt)$	$\left \frac{s}{s^2-k^2} \left(s > k \right) \right $
$\sinh(kt)$	$\left \frac{k}{s^2 - k^2} (s > k) \right $
u(t-a)	$\frac{e^{-as}}{s}$ $(s>0)$