Investigating platelet motion towards vessel walls in the presence of red blood cells
(Complex Fluids in Biological Systems)

Lindsay Crowl and Aaron Fogelson

Department of Mathematics
University of Utah

SIAM Conference on the Life Sciences
August 5th, 2008
Blood is a Heterogeneous Medium

1. **Plasma**
 - water-based solution
 - contains electrolytes and proteins
 - incompressible Newtonian fluid

2. **Red blood cells**
 - 40% of blood by volume
 - highly deformable cells
 - used for oxygen transport

3. **Platelets**
 - 0.3% of blood by volume
 - rigid elliptical cells
 - repair damaged vessel wall
Platelets

- The main function of platelets is to repair damage to vessels...
- ... but platelet concentration in blood is low.
- Fortunately, platelets are not uniformly distributed in blood but are highly concentrated near vessel walls.
- How does this occur? What factors affect the distribution of platelets in blood?
This profile depends on hematocrit (% of red blood cells).

(\textit{x-axis} is distance from wall, \textit{y-axis} is concentration of platelets)
This profile also depends on shear rate.

(x-axis is distance from wall, y-axis is concentration of platelets)

250 sec$^{-1}$ 560 sec$^{-1}$ 800 sec$^{-1}$ 1220 sec$^{-1}$
We want to simulate a large number of red blood cells and platelets in a blood vessel over a considerable amount of time. This is computationally expensive.

We use a parallel version of an immersed boundary-lattice Boltzmann method to solve for the coupled system of fluid-filled cells immersed in a fluid of similar density.
The lattice Boltzmann equations govern the behavior of particle distribution functions $f(\mathbf{x}, \mathbf{e}_i, t)$ that live at each lattice node \mathbf{x} at time t. \mathbf{e}_i are the discretized velocity vectors on a lattice defined by:

$$
\mathbf{e}_i = \begin{cases}
(0, 0) & \text{for } i = 0 \\
(c \cos(\pi(i - 1)/4), c \sin(\pi(i - 1)/4)) & \text{for } i = 1, 3, 5, 7 \\
(c\sqrt{2} \cos(\pi(i - 1)/4), c\sqrt{2} \sin(\pi(i - 1)/4)) & \text{for } i = 2, 4, 6, 8,
\end{cases}
$$

where $c = \frac{h}{\delta t}$ is the particle speed.
The equations governing the particle distribution functions are:

$$f_i(x + \delta_t e_i, t + \delta_t) - f_i(x, e_i, t) = -\frac{1}{\tau} \left[f_i(x, t) - f_i^{eq}(\rho(x, t), u(x, t)) \right]$$

where $f_i(x, t)$ is shorthand for $f(x, e_i, t)$, τ is the relaxation parameter and f^{eq} is the equilibrium distribution.
The exact form of f_i^{eq} depends on lattice geometry. For our nine-velocity model it is:

$$f_i^{eq}(\rho, \mathbf{u}) = \rho w_i \left(1 + \frac{\mathbf{e}_i \cdot \mathbf{u}}{c_s^2} + \frac{(\mathbf{e}_i \cdot \mathbf{u})^2}{2c_s^4} - \frac{\mathbf{u} \cdot \mathbf{u}}{2c_s^2} \right)$$

where $c_s = \frac{c}{\sqrt{3}}$ is the speed of sound and the weights, w_i, are

$$w_i = \begin{cases}
4/9 & \text{for } i = 0 \\
1/9 & \text{for } i = 1, 3, 5, 7 \\
1/36 & \text{for } i = 2, 4, 6, 8.
\end{cases}$$

The macroscopic quantities $\rho(\mathbf{x}, t)$ and $\mathbf{u}(\mathbf{x}, t)$ are the density and macroscopic fluid velocity.
Lattice Boltzmann Method

The macroscopic quantities can be obtained by evaluating the hydrodynamic moments of $f_i(x, t)$.

Fluid Density

$$\rho(x, t) = \sum_i f_i(x, t)$$

Momentum Density

$$\rho(x, t)u(x, t) = \sum_i f_i(x, t) e_i$$
Relation to Navier Stokes

In the limit that
\[
\frac{||\mathbf{u}||}{c} \to 0 \text{ and } \frac{h}{L} \to 0,
\]
where \(L \) is the hydrodynamic length scale, the lattice Boltzmann equations approximate the Navier Stokes equations. The macroscopic quantities:

\[
p(x, t) = c_s^2 \rho = \frac{1}{3} \rho \quad \text{and} \quad u(x, t)
\]

from the lattice Boltzmann method are equivalent to the velocity and pressure of the Navier Stokes equations. In addition the viscosity is

\[
\mu = \rho c_s^2 \delta_t \left(\tau - \frac{1}{2} \right).
\]
How can we couple the background fluid dynamics to a cellular membrane submersed in the fluid?

- Fluid lies on Eulerian grid \((\mathbf{x})\)
- Boundary lives on Lagrangian grid \((\mathbf{X}(q, t))\)
Immersed Boundary Method

Typically, the fluid is governed by the incompressible Navier Stokes equations:

\[\nabla \cdot \mathbf{u} = 0 \]

\[\rho \left[\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right] = -\nabla p + \mu \nabla^2 \mathbf{u} + \mathbf{F}_f, \]

where the external force is imposed by the presence of the immersed boundary object (in our case a cellular membrane).
Immersed Boundary Method

- The force felt by fluid is related to the force felt by the boundary:

\[F_f = \int F_{IB} \delta(x - X(q, t)) dx. \]
Immersed Boundary Method

- The force felt by fluid is related to the force felt by the boundary:

\[
F_f = \int F_{IB} \delta(x - X(q, t)) \, dx.
\]

- The boundary moves with the fluid velocity:

\[
\frac{\partial X}{\partial t}(q, t) = u(X, t) = \int u(x, t) \delta(x - X(q, t)) \, dx.
\]
Immersed Boundary Method

- The force felt by fluid is related to the force felt by the boundary:

\[F_f = \int F_{IB} \delta(x - X(q, t)) \, dx. \]

- The boundary moves with the fluid velocity:

\[\frac{\partial X}{\partial t}(q, t) = u(X, t) = \int u(x, t) \delta(x - X(q, t)) \, dx. \]

- We discretize the delta function:

\[\delta(x) = \hat{\delta}(x_1) \times \hat{\delta}(x_2), \]

where \[\hat{\delta}(x_i) = \begin{cases} \frac{1}{4h} \left(1 + \cos \left(\frac{\pi x_i}{2h} \right) \right) & \text{for } |x_i| \leq 2h \\ 0 & \text{for } |x_i| > 2h \end{cases}. \]
We can include an external force into the lattice Boltzmann equations with the following additions:

\[
\begin{align*}
 f_i(x + e_i \delta_t, t + \delta_t) - f_i(x, t) &= \frac{1}{\tau} (f_i(x, t) - f_i^{eq}(\rho, v)) + \\
 &\quad \delta_t \mathcal{W}_i \left[\frac{(1 - \frac{1}{2\tau}) (F_f \cdot e_i)}{c_s^2} + \frac{A : (e_i e_i^T - c_s^2 I)}{2c_s^4} \right],
\end{align*}
\]

where \(\rho v = \rho u + \frac{\delta_t F_f}{2} \) and the matrix \(A \) is

\[
A = -\frac{\delta_t + \rho \beta}{\delta_t \tau} (u F_f^T + F_f u^T).
\]
What is F_f?

Recall that the force on the membrane is distributed to the fluid.

$$F_f = \int F_{IB} \delta(x - X(q, t)) dx.$$

How do we model the behavior of cellular membranes that resist stretching and have a non-circular equilibrium shape?

$$F_{IB} = \frac{\partial T}{\partial l} = \frac{\partial}{\partial l} (T t + q n).$$
What is F_f?

$$F_{IB} = \frac{\partial T}{\partial l} = \frac{\partial}{\partial l}(Tt + qn).$$

We use a one-dimensional version of the Skalak membrane law:

$$T_{iso}^{sk} = G(\lambda^2 - 1)(1 - C\lambda^2(\lambda^2 + 1)),$$

where $\lambda = \frac{ds}{dS}$ is the principal stretch ratio.
What is F_f?

$$F_{IB} = \frac{\partial T}{\partial l} = \frac{\partial}{\partial l} (Tt + qn).$$

We use a one-dimensional version of the Skalak membrane law:

$$T_{iso}^{sk} = G(\lambda^2 - 1)(1 - C\lambda^2(\lambda^2 + 1)),$$

where $\lambda = \frac{ds}{dS}$ is the principal stretch ratio. Then we set the bending energy to be minimized at some equilibrium shape

$$q = \frac{d}{dl} [E_B(\kappa(l) - \kappa_0(l))],$$

where $\kappa(l)$ is the instantaneous curvature and $\kappa_0(l)$ is the curvature of minimum energy.
Whole Blood Simulation

Wall shear rate is 800 sec$^{-1}$ and hematocrit is 40%.

.... now some movies!
Preliminary Results: Comparison to Eckstein’s Data

LB-IB Simulation

- Number of Platelets vs Distance From Wall (µm)

Eckstein’s experiment

- Concentration @ 10^3 (#/µm²) vs Distance From Wall (µm)

- Lines represent different percentages: 13%, 39%, 65%
Lateral movement of platelets is highly sensitive to the presence of red blood cells.

without RBCs

with RBCs
Future Directions

- Speed up code (OpenMP/MPI?)
- Vary parameters
 - Hematocrit
 - Deformability of RBCs
 - Shear rate
 - Platelet shape and size
 - Vessel diameter
- Understand why lateral platelet motion occurs
- Find a way to incorporate the effect of red blood cells on platelets into coagulation models