MATH 2270
Quiz \#5 - Fall 2008
DUE: In class Friday (10/31)

Name:

NOTES:

- Work individually, but feel free to use books, notes, etc.
- In order to receive full credit on a problem, you must clearly show each step used to obtain the solution.
- The quiz is due at (or before) the beginning of class on Friday $10 / 31$. If you cannot attend class on Friday (or choose not to), drop your quiz off at my office (JWB 213) or put it in my mailbox (JWB 228) sometime before the start of class.
- I will post the solutions on the course webpage
http://www.math.utah.edu/~ crofts
immediately following class on Friday. Consequently, I cannot accept late quizzes.

1. (3 points) Let

$$
V=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{r}
1 \\
1 \\
-1 \\
-1
\end{array}\right),\left(\begin{array}{r}
1 \\
-1 \\
-1 \\
1
\end{array}\right)\right\}
$$

be a subspace of \mathbb{R}^{4} and suppose $\vec{v}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$. Then $\vec{v}=\vec{v} \|+\vec{v}^{\perp}$ with respect to the subspace V. Find $\vec{v}^{\|}$and \vec{v}^{\perp}.
2. (3 points) Find the QR factorization of the matrix

$$
M=\left(\begin{array}{rr}
6 & 2 \\
3 & -6 \\
2 & 3
\end{array}\right) .
$$

3. (2 points) Find the 3×3 matrix A of the orthogonal projection onto the line in \mathbb{R}^{3} spanned by the vector $\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$.
4. (3 points) True/False. Indicate whether the following statements are true or false.
(a) If the matrices A and B commute, then the matrices A^{T} and B^{T} also commute.
(b) If A is a square matrix, then $\frac{1}{2}\left(A-A^{\mathrm{T}}\right)$ is a skew-symmetric matrix.
(c) There exists a subspace $V \subset \mathbb{R}^{5}$ such that $\operatorname{dim}(V)=\operatorname{dim}\left(V^{\perp}\right)$.
