MATH 2270
Quiz \#3 - Fall 2008

Name:

1. (3 points) If possible, compute the following matrix products. If the matrix product is undefined, write undefined.
(a) $\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)=$
(b) $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)=$
(c) $\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}a & d & g \\ b & e & h \\ c & f & k\end{array}\right)\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=$
2. (4 points) Consider the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Find two vectors in $\mathbb{R}^{3}$ that span $\operatorname{ker}(A)$. Clearly indicate your answer.
3. (4 points) True or false. Indicate whether the following statements are true or false.
(a) If $A$ is the matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d \\
e & f
\end{array}\right)
$$

then $\operatorname{ker}(A)$ is a subset of $\mathbb{R}^{2}$.
(b) If $A$ is the matrix above, then $\operatorname{im}(A)$ is a subset of $\mathbb{R}^{2}$.
(c) If $A$ and $B$ are two $n \times n$ matrices, then it is always the case that

$$
(A-B)(A+B)=A^{2}-B^{2}
$$

(d) If $A$ is an invertible $n \times n$ matrix, then it is always the case that

$$
\left(I_{n}+A\right)\left(I_{n}+A^{-1}\right)=2 I_{n}+A+A^{-1}
$$

