MATH 2270
Final Exam - Fall 2008

Name:

1. (18 points) Let $A=\left(\begin{array}{rrr}1 & -2 & -10 \\ -2 & 2 & 12 \\ 4 & 4 & 8\end{array}\right)$ and $\vec{b}=\left(\begin{array}{c}-1 \\ -2 \\ 20\end{array}\right)$.
(a) Solve the linear system $A \vec{x}=\vec{b}$ for \vec{x} using Gauss-Jordan elimination. Clearly show each step and indicate your answer. If the system is inconsistent, write inconsistent.
(b) What is the reduced row echelon form of A ?
(c) What is $\operatorname{rank}(A)$?
(d) Is the matrix A invertible?
(e) Find a basis for the kernel of A.
(f) What is the nullity of A ?
(g) Find a basis for the image of A.
2. (8 points) Consider the 3×3 matrix $A=\left(\begin{array}{ccc}\mid & \mid & \mid \\ \overrightarrow{v_{1}} & \overrightarrow{v_{2}} & \overrightarrow{v_{3}} \\ \mid & \mid & \mid\end{array}\right)$ and suppose $A^{T} A=\left(\begin{array}{lll}2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 2\end{array}\right)$.
(a) Find $\left\|\vec{v}_{2}\right\|$.
(b) Find $\vec{v}_{1} \cdot \vec{v}_{3}$.
(c) Which (if any) of the vectors \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3} are orthogonal?
(d) What are the possible values of $\operatorname{det}(A)$?
3. (10 points) Let V be the vector space spanned by the polynomials $\mathfrak{B}=\left\{1,2 x, 3 x^{2}\right\}$ and let $T: V \rightarrow V$ be the linear transformation given by $T(f)=f^{\prime \prime}-f^{\prime}+f$.
(a) Find the matrix of T with respect to the basis \mathfrak{B}.
(b) Is T injective?
(c) Is T surjective?
(d) Suppose now $T(f)=f^{\prime}-f^{\prime \prime}$. Find a basis for the kernel of T.
4. (8 points) Find the $Q R$ factorization of the matrix

$$
M=\left(\begin{array}{ll}
1 & 4 \\
1 & 0 \\
1 & 0 \\
1 & 0
\end{array}\right)
$$

Clearly show each step.
5. (10 points) Let $V=\mathbb{R}^{2 \times 2}$ be an inner product space with inner product $\langle C, D\rangle=\operatorname{trace}\left(C^{T} D\right)$ and let

$$
A=\left(\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right)
$$

(a) Find the norm of A in V.
(b) Find the orthogonal projection of $B=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ onto the subspace of V spanned by A.
(c) Find a nonzero matrix B in V such that $\langle B, A\rangle=0$.
(d) Suppose S is an orthogonal matrix. Prove $\langle S A, S A\rangle=\langle A, A\rangle$.
6. (10 points) Suppose

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Find a diagonal matrix D and an orthogonal matrix S such that $D=S^{T} A S$. Show your work.
7. (4 points) For $\alpha, \beta, \gamma \in \mathbb{R}$, let

$$
A=\left(\begin{array}{cccc}
1 & \alpha & 0 & 0 \\
0 & 2 & \beta & 0 \\
0 & 0 & 2 & \gamma \\
0 & 0 & 0 & 3
\end{array}\right)
$$

(a) What are the eigenvalues (with multiplicities) of A ?
(b) For which values of α, β, and γ is the matrix A diagonalizable?
8. (12 points) Multiple choice.
(a) The vectors $\vec{v}_{1}=\left(\begin{array}{r}-1 \\ 1 \\ 1\end{array}\right), \vec{v}_{2}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$, and $\vec{v}_{3}=\left(\begin{array}{r}1 \\ -1 \\ \alpha\end{array}\right)$ form a basis of \mathbb{R}^{3} for all values of α except
i. $\alpha=-2$.
ii. $\alpha=-1$.
iii. $\alpha=0$.
iv. $\alpha=1$.
v. $\alpha=2$.
(b) For the matrix $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$, what is the value of $\operatorname{rank}(A)-\operatorname{det}(A)$?
i. -2 .
ii. -1 .
iii. 0 .
iv. 1.
v. 2 .
(c) A linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that satisfies

$$
\begin{aligned}
T\binom{1}{2} & =\binom{-1}{1} \\
T\binom{0}{-1} & =\binom{2}{-1}
\end{aligned}
$$

will also satisfy $T\binom{1}{1}=$
i. $\binom{1}{2}$.
ii. $\binom{1}{0}$.
iii. $\binom{2}{-1}$.
iv. $\binom{1}{1}$.
v. Cannot be determined from the given information.
(d) Recall a matrix A is said to be skew-symmetric if $A^{T}=-A$. What is the dimension of the space of all 4×4 skew-symmetric matrices?
i. 4 .
ii. 6 .
iii. 8 .
iv. 16 .
v. None of the above.

