MATH 2270
Exam \#3 - Fall 2008

Name:

1. (4 points) Find the determinant of the following matrix. Show your work.

$$
\left(\begin{array}{llll}
0 & 3 & 1 & 0 \\
2 & 0 & 0 & 0 \\
0 & 1 & 4 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

2. (6 points) Consider a 3×3 matrix A with rows $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$

$$
A=\left(\begin{array}{ccc}
- & \vec{v}_{1} & - \\
- & \vec{v}_{2} & - \\
- & \vec{v}_{3} & -
\end{array}\right)
$$

and suppose $\operatorname{det}(A)=8$.
(a) Find $\operatorname{det}\left(\begin{array}{c}2 \vec{v}_{1} \\ \vec{v}_{3} \\ \vec{v}_{2}\end{array}\right)$.
(b) Find $\operatorname{det}\left(A^{-1} A^{T} A\right)$.
(c) Suppose the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are orthogonal and have norm x, i.e.

$$
\left\|\vec{v}_{1}\right\|=\left\|\vec{v}_{2}\right\|=\left\|\vec{v}_{3}\right\|=x .
$$

Find x.
3. (8 points) For $\alpha \in \mathbb{R}$, let

$$
A=\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & \alpha \\
0 & 0 & 0 & 0 & 2
\end{array}\right)
$$

and observe that the only eigenvalues of A are $\lambda=1$ and $\lambda=2$.
(a) What is the algebraic multiplicity of the eigenvalue $\lambda=1$?
(b) What is the geometric multiplicity of the eigenvalue $\lambda=1$?
(c) For which values of α will the geometric multiplicity of $\lambda=2$ and the algebraic multiplicity of $\lambda=2$ be equal?
(d) If $\alpha=0$, is A diagonalizable? Explain your answer.
4. (8 points) Suppose

$$
A=\left(\begin{array}{rr}
3 & 4 \\
4 & -3
\end{array}\right)
$$

Find a diagonal matrix D and an orthogonal matrix S such that $D=S^{T} A S$. Show your work.
5. (10 points)
(a) Is the matrix $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$ similar to the matrix $\left(\begin{array}{lll}2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2\end{array}\right)$?
(b) Is the matrix $\left(\begin{array}{cc}-1 & 6 \\ -2 & 6\end{array}\right)$ similar to the matrix $\left(\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right)$?
(c) Suppose \vec{v} is an eigenvector of an invertible $n \times n$ matrix A and let λ be the associated eigenvalue. Is \vec{v} an eigenvector of $A^{-1}+2 I_{n}$? If so, what is the associated eigenvalue? If not, explain why.
(d) Let $q\left(x_{1}, x_{2}, x_{3}\right)=3 x_{1}^{2}+4 x_{2}^{2}+5 x_{3}^{2}-6 x_{1} x_{2}+7 x_{2} x_{3}$ be a quadratic form. Find a symmetric 3×3 matrix A such that $q(\vec{x})=\vec{x}^{T} A \vec{x}$.
(e) Suppose A is a symmetric, orthogonal $n \times n$ matrix. Find the eigenvalues (with multiplicities) of A^{2}.
6. (4 points) Multiple choice. Choose the best answer to each of the following questions.
(a) If a 2×2 matrix A has eigenvalues $\lambda=1$ and $\lambda=2$, then $\operatorname{trace}\left(A^{100}\right)$ is
i. 2^{100}
ii. 2^{101}
iii. $2^{100}+1$
iv. 3^{100}
v. Cannot be determined from the given information.
(b) If A is a symmetric positive definite 2×2 matrix, which of the following must be true?
i. The algebraic multiplicity of every eigenvalue is 1 .
ii. A^{-1} is negative definite.
iii. $\operatorname{det}(-A)<0$
iv. The curve defined by the equation $\vec{x}^{T} A \vec{x}=1$ is an ellipse.
v. none of the above.

