MATH 2270
Exam \#2 - Fall 2008

Name:

1. (8 points) Let

$$
A=\left(\begin{array}{rrr}
4 & 2 & -4 \\
2 & 1 & -2 \\
-4 & -2 & 4
\end{array}\right) ; \vec{v}_{1}=\left(\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right), \vec{v}_{2}=\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right), \vec{v}_{3}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) .
$$

Then $\mathfrak{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is a basis of \mathbb{R}^{3}.
(a) If $\vec{x}=\vec{v}_{1}-\vec{v}_{2}+\vec{v}_{3}$, find $(\vec{x})_{\mathfrak{B}}$.
(b) Observe $A \vec{v}_{1}=9 \vec{v}_{1}$. Find $\left(A \vec{v}_{1}\right)_{\mathfrak{B}}$.
(c) Find $\left(A \vec{v}_{3}\right)_{\mathfrak{B}}$.
(d) Find the matrix B of the linear transformation $T(\vec{x})=A \vec{x}$ with respect to the basis \mathfrak{B}. (HINT: Proceed column by column - don't try to take an inverse).
2. (8 points) Let $T: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$ be the linear transformation given by

$$
T(M)=A M
$$

where A is a fixed invertible matrix in $\mathbb{R}^{2 \times 2}$.
(a) Find the image of T.
(b) Find the rank of T.
(c) Find the kernel of T.
(d) Find the nullity of T.
3. (6 points) Let V be the linear space spanned by the functions $\mathfrak{B}=\{\cos (t), \sin (t)\}$ and let $T: V \rightarrow V$ be the linear transformation given by

$$
T(f)=f^{\prime \prime}+2 f^{\prime}+3 f
$$

Find the matrix of T with respect to the basis \mathfrak{B}. (HINT: recall $\sin (t)^{\prime}=\cos (t)$ and $\left.\cos (t)^{\prime}=-\sin (t)\right)$.
4. (8 points) Find the $Q R$ factorization of the matrix

$$
M=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Clearly show each step.
5. (6 points) Recall the trace of a square matrix is the sum of its diagonal entries. For example,

$$
\operatorname{trace}\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=1+4=5
$$

Let $V=\mathbb{R}^{2 \times 2}$ be the inner product space with inner product

$$
\langle A, B\rangle=\operatorname{trace}\left(A^{T} B\right)
$$

(a) If $A=\left(\begin{array}{ll}2 & 2 \\ 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & 0 \\ 2 & 2\end{array}\right)$, find $\langle A, B\rangle$.
(b) Is A orthogonal to B in V ?
(c) Normalize A (i.e. find an element of unit length in the direction of A in V).
(d) What is the norm of an orthogonal matrix in V ?
6. (4 points) Multiple choice. Choose the best answer to each of the following questions.
(a) If $T: \mathbb{R}^{3 \times 3} \rightarrow \mathbb{R}^{2 \times 2}$ is a linear transformation, then the kernel of T must be at least
i. 1-dimensional.
ii. 2-dimensional.
iii. 3-dimensional.
iv. 4-dimensional.
v. 5-dimensional.
(b) If \vec{v} is a unit vector in \mathbb{R}^{n}, then the $n \times n$ matrix $\vec{v} \vec{v}^{T}$ has rank
i. 0 .
ii. 1 .
iii. n.
iv. $n-1$.
v. cannot be determined from the given information.

