MATH 2270
Exam \#1 - Fall 2008

Name:

1. (15 points) Let $A=\left(\begin{array}{lll}1 & 2 & 4 \\ 1 & 1 & 1 \\ 1 & 3 & 7\end{array}\right)$ and $\vec{b}=\left(\begin{array}{l}3 \\ 1 \\ 5\end{array}\right)$.
(a) Solve the linear system $A \vec{x}=\vec{b}$ for \vec{x} using Gauss-Jordan elimination. Clearly show each step and indicate your answer. If the system is inconsistent, write inconsistent.
(b) what is $\operatorname{rref}(A)$ (i.e. the reduced row echelon form of A)?
(c) what is $\operatorname{rank}(A)$? Why?
(d) Is the matrix A invertible? Why?
(e) Find a basis for the kernel of A (i.e. $\operatorname{ker}(A)$).
(f) Find a basis for the image of A (i.e. $\operatorname{im}(A)$).
2. (8 points) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the function defined by

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
0
\end{array}\right)
$$

(a) Prove T is a linear transformation.
(b) Write the matrix corresponding to T.
(c) Give an example of a vector in \mathbb{R}^{3} not contained in either $\operatorname{im}(T)$ or $\operatorname{ker}(T)$.
3. (4 points) Let $k \in \mathbb{R}$. Compute the inverse of the following matrix using Gauss-Jordan elimination. Show your work.

$$
A=\left(\begin{array}{ll}
1 & k \\
0 & 2
\end{array}\right)
$$

4. (2 points) Let $a, b, c, d \in \mathbb{R}$. Compute the following matrix products.
(a) $\binom{a}{b}\left(\begin{array}{ll}c & d\end{array}\right)=$
(b) $\left(\begin{array}{ll}c & d\end{array}\right)\binom{a}{b}=$
5. (4 points) Consider the $n \times 4$ matrix

$$
A=\left(\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
\overrightarrow{v_{1}} & \overrightarrow{v_{2}} & \overrightarrow{v_{3}} & \overrightarrow{v_{4}} \\
\mid & \mid & \mid & \mid
\end{array}\right) .
$$

You are told the vector $\vec{v}=\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)$ is an element of $\operatorname{ker}(A)$. Write $\overrightarrow{v_{4}}$ as a linear combination of the vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}$.
6. (4 points) Multiple choice - choose the best answer for the following questions.
(a) Suppose two distinct solutions, $\overrightarrow{x_{1}}$ and $\overrightarrow{x_{2}}$, can be found for the linear system $A \vec{x}=\vec{b}$. Which of the following is necessarily true?
i. $\vec{b}=\overrightarrow{0}$.
ii. A is invertible.
iii. A has more columns that rows.
iv. $\overrightarrow{x_{1}}=-\overrightarrow{x_{2}}$
v. There exists a solution \vec{x} such that $\vec{x} \neq \overrightarrow{x_{1}}$ and $\vec{x} \neq \overrightarrow{x_{2}}$.
(b) Let $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ be a linear transformation whose kernel is a 3-dimensional subspace of \mathbb{R}^{5}. Then $\operatorname{im}(T)$ is
i. The trivial subspace.
ii. A line through the origin.
iii. A plane through the origin.
iv. all of \mathbb{R}^{3}.
v. Cannot be determined from the given information.
7. (3 points) Compute the following matrix product.

$$
\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)^{100}-\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)^{100}
$$

