MATH 2270

Exam #1 - Fall 2008

Name: _

1. (15 points) Let
$$A = \begin{pmatrix} 1 & 2 & 4 \\ 1 & 1 & 1 \\ 1 & 3 & 7 \end{pmatrix}$$
 and $\vec{b} = \begin{pmatrix} 3 \\ 1 \\ 5 \end{pmatrix}$.

(a) Solve the linear system $A\vec{x} = \vec{b}$ for \vec{x} using Gauss-Jordan elimination. Clearly show each step and indicate your answer. If the system is inconsistent, write *inconsistent*.

(b) what is $\operatorname{rref}(A)$ (i.e. the reduced row echelon form of A)?

- (c) what is rank(A)? Why?
- (d) Is the matrix A invertible? Why?
- (e) Find a basis for the kernel of A (i.e. ker(A)).

(f) Find a basis for the image of A (i.e. im(A)).

2. (8 points) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the function defined by

$$T\left(\begin{array}{c}x\\y\\z\end{array}\right) = \left(\begin{array}{c}x\\y\\0\end{array}\right).$$

(a) Prove T is a linear transformation.

(b) Write the matrix corresponding to T.

(c) Give an example of a vector in \mathbb{R}^3 not contained in either im(T) or ker(T).

3. (4 points) Let $k \in \mathbb{R}$. Compute the inverse of the following matrix using Gauss-Jordan elimination. Show your work.

$$A = \left(\begin{array}{cc} 1 & k \\ 0 & 2 \end{array}\right).$$

4. (2 points) Let $a, b, c, d \in \mathbb{R}$. Compute the following matrix products.

(a)
$$\begin{pmatrix} a \\ b \end{pmatrix} \begin{pmatrix} c & d \end{pmatrix} =$$

(b)
$$\begin{pmatrix} c & d \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} =$$

5. (4 points) Consider the $n \times 4$ matrix

$$A = \left(\begin{array}{cccc} | & | & | & | \\ \vec{v_1} & \vec{v_2} & \vec{v_3} & \vec{v_4} \\ | & | & | & | \end{array}\right).$$

You are told the vector $\vec{v} = \begin{pmatrix} 1\\ 2\\ 3\\ 4 \end{pmatrix}$ is an element of ker(A). Write $\vec{v_4}$ as a linear combination of the vectors $\vec{v_1}, \vec{v_2}, \vec{v_3}$.

- 6. (4 points) Multiple choice choose the best answer for the following questions.
 - (a) Suppose two distinct solutions, $\vec{x_1}$ and $\vec{x_2}$, can be found for the linear system $A\vec{x} = \vec{b}$. Which of the following is necessarily true?
 - i. $\vec{b} = \vec{0}$.
 - ii. A is invertible.
 - iii. A has more columns that rows.
 - iv. $\vec{x_1} = -\vec{x_2}$
 - v. There exists a solution \vec{x} such that $\vec{x} \neq \vec{x_1}$ and $\vec{x} \neq \vec{x_2}$.
 - (b) Let $T : \mathbb{R}^5 \to \mathbb{R}^3$ be a linear transformation whose kernel is a 3-dimensional subspace of \mathbb{R}^5 . Then $\operatorname{im}(T)$ is
 - i. The trivial subspace.
 - ii. A line through the origin.
 - iii. A plane through the origin.

iv. all of \mathbb{R}^3 .

- v. Cannot be determined from the given information.
- 7. (3 points) Compute the following matrix product.

$$\left(\begin{array}{cc}1&2\\0&1\end{array}\right)^{100}-\left(\begin{array}{cc}1&0\\2&1\end{array}\right)^{100}$$