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1 Introduction

Dating back to the early 1900s, representation theorists have tried to classify all of the irre-
ducible representations of semisimple and reductive Lie groups (e.g. SLn(R) or GLn(R)).
This problem is unwieldy and in some sense larger than what the original motivation dic-
tated should be studied. In fact, Gel’fand in the 1920s determined that we should focus
on classifying unitary representations. It was then Harish-Chandra’s incite that this class of
representations is contained in a larger class called admissible (or quasi-simple via a difficult
theorem of Harish-Chandra). In particular, due to his work we obtained inclusions

Ĝtemp ⊆ Ĝunit ⊆ Ĝadm

where the first inclusion will be made more precise later. In showing these, Harish-Chandra
also introduced the notion of infinitesimal representations arising from the group represen-
tation. These mirrored the techniques in the finite dimensional case of passing to the Lie
algebra. Further, he showed that we have the following fact:

Theorem 1.1 (Harish-Chandra). Let (π, V) be an admissible representation of G. Then V is
irreducible if and only if it is infinitesimally irreducible.

Thus, studying irreducible admissible representations is the same as studying irre-
ducible admissible infinitesimal representations. The latter is partially classified by a theo-
rem of Langlands:

Theorem 1.2 (Langlands). Let (π, V) be an irreducible admissible infinitesimal representation of
G. Then there exists a parabolic subgroup P = MAN of G, a tempered representation ω of M, and
a character, ν, of A whose real part lies in the open anti-dominant Weyl chamber such that

V ↪→ IndG
P (ω⊗ ν⊗ 1)K

(where (−)K means passing to the infinitesimal representation).

Langlands’ theorem reduces the study of admissible representations to the study of
tempered ones. It was shown by Vogan that there is a bijection for tempered representa-
tions with real infinitesimal character:

Theorem 1.3 (Vogan). Let Ĝtemp,R denote the isomorphism classes of irreducible tempered repre-
sentations with real infinitesimal character. Then

Ĝtemp,R
∼−→ K̂

where K is a maximal compact subgroup of G (e.g. K = O(n) for G = GL(n, R)).
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This is the beginning of the geometric theory in some sense. K̂ is completely classified
by a theorem of Borel and Weil:

Theorem 1.4 (Borel-Weil). Let K be a compact Lie group and T ⊆ K be a maximal torus. Let
H = KC be the complexification and B = MAN a Borel subgroup. Then the irreducible finite di-
mensional representations of K stand in one-to-one correspondence with the dominant, analytically
integral weights λ ∈ t∗ with the correspondence given by

λ 7→ ΓHol(K/T, Lλ) ∼= F Hol
B,χλ

where ΓHol(K/T, Lλ) denotes the set of holomorphic sections of the bundle and

F Hol
B,χλ

=
{

f : G → C f (gb) = χλ(b)−1 f (g), f holomorphic
}

with χλ the character of B associated to the analytically integral weight λ.

In particular, we see that we get a bijection K̂ = Λ+(T) the set of dominant integral
weights of T. Equivalently we could phrase this bijection in terms of certain K-equivariant
holomorphic vector bundles on the flag variety K/T. What we actually seek is a geometric
classification of representations of K in terms of representations of G. To have any chance
of this existing, we need to first determine how to construct geometric parameters for such
a classification.

2 Irreducible Representations of G and their (g, K)-modules

To make perfect sense of what will follow, we will need some general facts about the in-
finitesimal representation s referenced in the introduction.

We now return to the general case. What we present here again will be true for groups
in the Harish-Chandra class, but the proofs will be presented for reductive groups unless
noted otherwise. Let G be a real reductive Lie group, g0 its Lie algebra, and g its com-
plexification. Let Θ be a global Cartan involution and K the maximal compact subgroup
corresponding to the choice of Θ. We have the following decompositions of G:

G = K× p0 Polar Decomposition
G = KAN Iwasawa Decomposition
G = KAK Cartan Decomposition

Let (Π, V) be any infinite dimensional complex representation of G on a Hilbert (or even
Banach, Fréchet, etc.) space V with inner product 〈, 〉 . Unlike the finite dimensional case,
the following limit may not exist:

lim
t→0

Π(exp tX)v− v
t

(1)

for g ∈ G and v ∈ V.

Definition 2.1. We say that a vector v ∈ V is of class C1 if the mapping v 7→ limt→0
Π(exp tX)v−v

t
is continuous. We call a vector smooth or of class C∞ if the mapping

v 7→ Π(g)v

is Ck for all k ≥ 0. Let V∞ ⊆ V denote the subspace of all smooth vectors.
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Lemma 2.2. (Π, V∞) is a representation of G. Further, we can differentiate this action to get a
representation (π, V∞) of g.

Proof. Let v ∈ V∞. Then for all g, h ∈ G, gh 7→ Π(gh)v is C∞. As Π is a homomorphism,
Π(g)Π(h)v ∈ V∞ and by associativity

Π(gh)v = Π(g) · (Π(h)v) ∈ V∞

Thus, Π(h)v ∈ V∞. As g, h ∈ G are arbitrary, we see that Π(g)v ∈ V∞ for all v ∈ V∞ and
(Π, V∞) is a (smooth) representation of G.

To define the Lie algebra representation, let X ∈ g0 and for each v ∈ V∞ put

π(X)v = lim
t→0

Π(exp tX)v− v
t

=
d
dt

Π(exp tX)v|t=0

This is well-defined as v ∈ V∞ and also leaves V∞ invariant as Π(exp tX)v is smooth. It re-
mains to show that π is a Lie algebra homomorphism. (Note that if V is finite dimensional
then every vector is smooth and π is a Lie algebra homomorphism as it is the tangent map
to a Lie group homomorphism)

Let X ∈ g0 and put X̃ the corresponding left-invariant vector field on G. Then if we put
fv(g) = Π(g)v, we see that

Π(g)π(X)v = (X̃ fv)(g)

By putting g = exp tY for Y ∈ g0, we obtain

π(Y)π(X)v =
d
dt
∣∣
t=0Π(exp tY)π(X)v =

d
dt
∣∣
t=0(X̃ fv)(exp tY) = Ỹ(X̃ fv)(e)

Interchanging Y and X and subtracting them, we get

π(X)π(Y)v− π(Y)π(X)v = (X̃(Ỹ fv)− Ỹ(X̃ fv))(e)

The right hand side is precisely ([X̃, Ỹ] fv)(e) = [̃X, Y] fv(e) and thus π is a Lie algebra
representation. As V∞ is a complex vector space, we see that π extends to a complex Lie
algebra homomorphism g → End(V∞) and thus an associative algebra homomorphism
U(g)→ End(V∞) which sends 1 to 1.

One key aspect of this procedure is that V∞ is not some arbitrary subspace of V as the
following example shows:

Example 2.3. Let G = R and (λ, L2(R)) be the left-regular representation of G. Put V =
{ f ∈ C∞

c (R) : supp f ⊆ [0, 1]}. Then V is g invariant, but neither V, nor its closure are G
invariant.

What we want to show is that V∞ is not only a suitably nice subspace, but that V = V∞.
To do this, first will extend our given representation Π from G to C∞

c (G). From here, it will
then follow that the set of all matrix coefficients of this extension will be dense in V and
will all be smooth. We start with the extension.

Definition 2.4. Let (Π, V) be a Hilbert space representation of G. For any f ∈ C∞
c (G), put

Π( f )v =
∫

G
f (g)Π(g)v dg

where dg denotes a left-Haar measure on G. Notice that ||Π( f )v|| ≤ CΩ||v|||| f ||1 for all
compact Ω ⊆ G, where CΩ is a constant. Define the Gårding Subspace of V to be the
linear span of the Π( f )v.
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The reason we consider such a space is that we can chose a sequence of fi to be an
approximation to the identity (a net of distributions which converges to the identity element).
This in turn tells us that at least some of the Π( f )v are smooth vectors. As the following
proposition shows, in fact all of the Π( f )v are smooth. Even more convenient, the Gd̊ing
subspace is dense in V and by extension V∞ is dense.

Proposition 2.5. Let (Π, V) be a representation of G and f ∈ C∞
c (G). Then the following are

true:

(a) For every v ∈ V, Π( f )v ∈ V∞.

(b) The Gårding subspace of V is dense in V.

(c) V∞ is dense in V.

Proof. For (a), we first show that for X ∈ g then π(X)Π( f )v exists. By the definitions:

π(X)Π( f )v = t−1
∫

G
f (g) (Π(exp tX)Π(g)−Π(g)) dg

By making the substitution g 7→ exp(−tX)g, we get that

t−1
∫

G
f (g) (Π(exp tX)Π(g)−Π(g)) dg =

∫
G

f (exp(−tX)g)− f (g)
t

Π(g)v dg

By taking the limit as t → 0 and applying the Dominated Convergence Theorem, we see
that π(X)Π( f )v = −Π(X f )v and thus exists. This shows that the Gårding subspace is
stable under g and thus consists of smooth vectors.

For (b), let v ∈ V. By assumption Π is continuous and thus for any ε > 0 the set

T = {g ∈ G : ||Π(g)v− v|| < ε}

is open. Therefore, there exists some C ⊆ T compact and f ∈ C∞
c (G) with supp f ⊆ C. By

normalizing, we can assume
∫

G f dg = 1 and thus

||Π( f )v− v|| = ||
∫

G
f (g)[Π(g)v− v] dg|| ≤

∫
G

f (g)||Π(g)v− v|| dg ≤ ε
∫

G
f (g) dg = ε

Hence, the Gårding subspace is dense in V. Part (c) follows from (a) and (b). This completes
the proof.

We now want to mirror the finite-dimensional case. The main obstruction to directly
doing this being that characters no longer entirely determine the representation (namely
because they do not exist in the traditonal sense) and thus only the U(g)-module structure
on V∞ is not sufficient to reconstruct the G-module structure on V. This is mainly a topo-
logical obstruction. Notice however, that we have a small work-around for this by using
the Polar (Cartan) decomposition of G. It shows that K ' G and thus morally the represen-
tation theory of G should come from the representation theory of K, possibly with some
twist. As it will turn out, this yoga is true for irreducible representations! As understand-
ing the irreducible representations of G are the real goal of representation theory, this is
exactly the result we want.

The "twist" mentioned above is that we shall consider a certain subspace of V which is
generated by suitably nice vectors which allow us to decompose V as an algebraic direct
sum of irreducible spaces. This will in turn be the correct space to study.
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Definition 2.6. A vector v ∈ V is called K-finite if Π(K)v spans a finite dimensional vector
space. The subspace of all K-finite vectors is denoted VK.

If (Π, V) is a representation of G, then we can investigate Π|K. If K acts by unitary
operators, then (Π|K, V) decomposes as a Hilbert space direct sum of irreducible repre-
sentations of K. For each γ ∈ K̂, denote by V(γ) the sum of all of the subrepresentations
isomorphic to γ. This is called the γ− isotypic component of V.

Definition 2.7. A representation of G is called admissible if dimC V(γ) < ∞ for all γ ∈ K̂.
Notice that this is equivalent to mγ(Π|K) < ∞.

Proposition 2.8. Let (Π, V) be an admissible representation of G. Then VK ⊆ V∞.

Proof. We shall proceed in a few steps.
Step 1: Notice that VK ∩ V∞ 6= ∅ as V∞ is dense in V. We shall momentarily call vec-

tors in this intersection: smooth K-finite vectors for V. Let us show that a special class of
functions give K-finite vectors. Consider λ the left-regular representation of K on C∞(K).
Denote by λfin the K-finite vectors in C∞(K) and let f ∈ λfin. Further, let h ∈ C∞

c (exp p0)
and put

F(k exp p0) = f (k)h(exp X)

Each F of this form is compactly supported and left K-finite for λ as

λ(k0)F(k exp X) = F(k−1
0 k exp X) = f (k−1

0 k)h(exp X)

where the right hand side is K-finite by assumption.
Now, for every v ∈ V, Π(F)v ∈ V∞ by the proof of Proposition 2.5. Unraveling the

definitions a bit, we see that

Π(k0)Π(F)v =
∫

G
F(g)Π(k0g)v dg =

∫
G

F(k−1
0 g)Π(g)v dg = λ(k−1

0 )Π(F)v

with the right hand side K-finite by above. Hence, Π(F)v is K-finite.
Step 2: Now we shall show that the linear span of all Π(F)v is dense in V. Let v ∈ V be

arbitrary. As Π is continuous, the set

T = {g ∈ G : ||Π(g)v− v|| < ε}

is open and contains some compact subset C. We may then choose f , h supported in C such
that

∫
G F(g) dg = 1. Then

||Π(F)v− v|| =
∣∣∣∣∣∣∣∣∫G

F(g)Π(g)v dg− v
∣∣∣∣∣∣∣∣

≤
∫

G
F(g) ||Π(g)v− v|| dg

< ε
∫

G
F(g) dg = ε

Hence, the linear span of all such Π(F)v is dense in V. This shows that the set of smooth
K-finite vectors (namely Vk ∩V∞) is dense in V.

Step 3: Now we show that for admissible representations this subspace this is precisely
all of the K-finite vectors. As V is assumed admissible, write ΠK =

⊕̂
γ∈K̂V(γ) with each
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dimC V(γ) < ∞. Consider V(γ). As this is finite dimensional and irreducible, it consists
entirely of K-finite vectors. As this is true for every such γ, we see that VK =

⊕
γ∈K̂ V(γ)

(the algebraic direct sum). Combining this with the result from above, we have a dense
subspace of a linear space which in turn must be the entire space. Since, the K-finite vectors
are finite linear combinations of elements of the V(γ), we see that VK = VK ∩ V∞. Hence,
all K-finite vectors are smooth.

Similar to the smooth case above. Harish-Chandra proved that all K-finite vectors are
in fact real analytic by way of matrix coefficients and elliptic differential operators. The
main tool in that approach is the following fact which we shall not prove:

Theorem 2.9. Let D be an elliptic differential operator with real-analytic coefficients. Then every
element in the solution space D f = 0 is real-analytic.

It can be shown that K-finite matrix coefficients satisfy a certain elliptic differential op-
erator and thus are real-analytic. For a proof of this, see [Kna86]

Lemma 2.10. VK is a g invariant subspace of V∞.

Proof. Let v ∈ VK and put Wv = π(U(kC))v the necessarily finite dimensional subspace
corresponding to v. Then for X ∈ k, Y ∈ g, and v′ ∈Wv, we have that

π(X)π(Y)v′ = π(Y)π(X)v′ − π([X, Y])v′

and π(g)v′ is stable under π(k). As Wv is finite dimensional, we can exponentiate the el-
ements and conclude that π(g)Wv is Π(K)-invariant. Thus, Y ∈ g implies that π(Y)v is
an element of a finite dimensional vector space which is Π(K)-stable. Hence, π(Y)v is
K-finite

Therefore VK carries two related representations: one of g and one of K. As it turns out,
vector spaces with this property are incredibly rich in structure and thus are the next object
of study. We formalize this in the following definition.

Definition 2.11. (Lepowsky) Let G be a non-compact reductive Lie group, G = KAN the
Iwasawa decomposition. A (g, K)-module is a vector space V equipped with two repre-
sentations, denoted by π : g∪ K → End(V), of g and K, such that the following conditions
are satisfied:

(a) Every v ∈ V is K-finite.

(b) The differential of π|K is the restriction of πg|k0 .

(c) For all k ∈ K and X ∈ g, we have that π(Ad(k)X) = π(k)π(X)π(k)−1.

If V is equipped with an inner product, we say that V is a unitary (g, K)-module if π(X) is
a unitary operator for all X ∈ g. We say that V is an admissible (g, K)-module if for every
γ ∈ K̂, the γ-isotypic component V(γ) is finite dimensional.

Corollary 2.12. If (Π, G) is an admissible representation of G, then (π, VK) is a (g, K)-module by
Lemma 2.10.
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2.1 (g, K)-modules

This next section will cover the basics of the (g, K)-module theory. In particular, we shall
see that irreducible (g, K)-modules completely determine the irreducible G-modules. This
is the correspondence hinted at in the introduction. We have not proven this directly, but it
can be shown that the assignment V 7→ VK is functorial and this functor is fully faithful on
the category of irreducible (g, K)-modules (up to equivalence).

2.1.1 Admissible and Unitary representations

We have mirrored the finite dimensional theory fairly closely to this junction. One result
which has been starkly absent is Schur’s Lemma. The main reason for this is that in the
infinite dimensional setting, it may not hold! Luckily, if we restrict ourselves to countably
infinite bases, we get an analogous result due to Dixmier.

Lemma 2.13. Let V be a countable dimensional C-vector space and suppose T ∈ End(V). Then
there exists a scalar c ∈ C such that T − cI is not invertible.

Proof. Suppose for the sake of contradiction that T − cI is invertible for all c ∈ C. Then
for every polynomial P, P(T) is invertible as a function of one variable. Now, let R(T) =
P(T)/Q(T) be some rational function. This gives a linear map C(x) → End(V). For all
v ∈ V, we have that R(T)v = 0 only if P(T)v = 0. Thus the map C(x) → V given by
R 7→ R(T)v is injective. Since C(x) is uncountably infinite dimensional over C, we have a
contradiction.

Lemma 2.14. (Dixmier) Suppose S ⊆ End(V) is a subset of endomorphisms which acts irre-
ducibly. If T ∈ End(V) commutes with all elements of S, then T = cI for some c ∈ C.

Proof. By the preceding lemma, there exists some c ∈ C such that T − cI is not invertible.
Consider ker(T − cI) and Im(T − cI). Every element of S preserves both of these spaces
one of them is necessarily a proper subset. As T − cI is not invertible, ker(T − cI) is non-
zero. Thus ker(T − cI) = V as all of the elements of S act irreducibly. Hence T − cI = 0
and T = cI.

Definition 2.15. If V and W are two (g, K)-modules, denote by Homg,K(V, W) the set of all
g homomorphisms V →W which are also K homomorphisms.

Lemma 2.16. Let V be an irreducible (g, K)-module. Then Homg,K(V, V) = C · Id .

Proof. Let v ∈ V and Wv the span of v under K. Then U(g)Wv is a g-invariant, K-invariant
subspace and thus V = U(g)Wv. This exhibits V as a countably infinite dimensional space.
By applying the above lemmas, we are done.

The main motivation for studying representations began with Harmonic analysis where
unitary representations arise naturally. In fact, all of the theory developed so far was orig-
inally done precisely to understand the Unitary dual of reductive Lie groups. Based on
the discussion above, one may guess that admissible representations are related to unitary
representations in some way. In fact, the precise statement is as follows:

Theorem 2.17. Let G be a real reductive Lie group and (π, V) an irreducible unitary representation
of G. Then (π, V) is admissible as a representation of G and thus VK is an admissible, unitary
(g, K)-module.
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Before getting to the proof, we need a few technical results, some of which we shall
not prove for brevity. All of the statements can be found in [HC53]. Let U(k) denote
the enveloping algebra of (k0)C considered as a subalgebra of U(g) and Y a left ideal in
U(k) such that U(k)/Y is finite dimensional and k acts by semisimple transformations.
Consider X = U(g)/U(g)Y. U(g) acts on this space by left-translation and thus restricts to
a representation of Z(g) (the center of U(g). Additionally, using the adjoint representation,
we get an action of K on this quotient. Let X(γ) denote the γ-isotypic component of X.

Lemma 2.18. For every γ ∈ K̂, X(γ) is a finite module over Z(g).

Proof. See [HC53, Theorem 1].

Lemma 2.19. Let (π, V) be an admissible representation of G and VK the associated (g, K)-module
with ψ ∈ VK. Then the closure π(U(g)ψ) is π(G) invariant.

Proof. Let ψ0 ∈ U = π(U(g)ψ, and λ ∈ V∗ such that λ vanishes on U. Since ψ0 ∈ VK, we
see that the map

g 7→ λ(π(g)ψ0)

is real analytic on G. Now, there exists a neighbourhood O of 0 in g0 such that the exponen-
tial map is given by a power series and thus

π(exp X)ψ0 =
∞

∑
m=0

1
m!

π(X)mψ0

and thus

λ(π(exp X))ψ0) =
∞

∑
m=0

1
m!

λ(π(X)mψ0)

As π(X)mψ0 ∈ U, the right hand side is 0. Therefore, λ(π(g)ψ0) vanishes on a neigh-
bourhood of 1 in G and by analyticity, vanishes everywhere. Applying the Hahn-Banach
theorem, we see that π(g)ψ0 ∈ U. Therefore π(g)U ⊆ U and by continuity, π(g)U ⊆ U.
This completes the proof.

Lemma 2.20. Let (π, V) be a representation of G which admits an infinitesimal character. Then
for any K-invariant subspace W, put W(γ) = W ∩ V(γ). If

⊕
γ∈K̂ W(γ) is dense in V, then

V(γ) = W(γ).

Proof. See [HC53, Lemma 30].

Remark 2.21. For a moral proof of the above lemma, mimic the ideas of the proof that the
Gårding subspace is dense. Consider the integral operators associated to certain smooth
functions and use the density of these to conclude the desired lemma.

Proposition 2.22. Let (π, V) be a representation of G on a Hilbert space which admits an infinites-
imal character. Let ψ0 ∈ VK =

⊕
γ∈K̂ V(γ) and U = π(U(g)ψ0). Then U is invariant under

π(G), π(U(g))ψ0 =
⊕

γ∈K̂ U(γ), and dimC U(γ) < ∞.

Proof. We know from Lemma 2.19 that U is π(G) invariant. Put U0 = π(U(g))ψ0. Then
U0 ⊆ VK and therefore U0 =

⊕
γ∈K̂ U0 ∩ V(γ). Let Y be the set of all elements x ∈ U(k)

such that π(x)ψ0 = 0. Then Y is a left ideal in U(k) and it satisfies the conditions prior to
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Lemma 2.18. Set X = U(g)/U(g)Y. Put (π̃, X) the associated representation of U(g) on X.
Define the map

α : X → U0 α([x]) = π(x)ψ0

where x is a representative of [x]. This is well defined as for any two representative x, x′ ∈
[x], we have that x = x′ + y where y ∈ Y. Now α(x) = α(x′) + α(y) = α(x′) by the
definition of Y. Now, for every a ∈ U(g), we have that α(π̃(a)[b]) = π(a)α([b]). Further, α
is injective and thus by identifying X with its image in U0, can consider X ⊆ U0 and thus
we have a direct sum decomposition

X =
⊕
γ∈K̂

X(γ)

and α(X(γ)) = U0 ∩V(γ). Applying Lemma 2.18, we get that each X(γ) is a finite module
over Z(g). Pick [b1], [b2], ..., [bk] elements in X(γ) such that X(γ) =

⊕
i π̃(Z(g))[bi]. Hence,

U0 ∩V(γ) =
⊕

i π(Z(g))α([bi]). Now for each element of z ∈ Z(g),

π(z) = χ(z)π(1)

and thus the α([bi]) span U0 ∩V(γ) and thus dim U0 ∩V(γ) < ∞. Since U0 =
⊕

γ∈K̂ U0 ∩
U(γ) is dense in U, by Lemma 2.20 we conclude that U(γ) = U0 ∩U(γ) and each of these
is finite dimensional. This concludes the proof.

Proof of Theorem 2.17. It is known that every irreducible unitary representation has an in-
finitesimal character. As the K-finite vectors are analytic and dense in V. Pick ψ0 ∈ VK
non-zero. Then by irreducibility, V = π(U(g))ψ0 and applying the above proposition, we
conclude that dim VK(γ) < ∞. Hence, every irreducible unitary representation is admissi-
ble.

The remaining part of this section will encompass the proof that irreducibility of ad-
missible representations can be checked on either the group or (g, K) level. We will prove
this by way of considering the K-finite matrix coefficients for the given representations. In
particular, the main tool is actually a fact from the theory of partial differential equations
which we quote below:

Theorem 2.23 (Regularity Theorem). Let D be an elliptic differential operator on C∞(G). Then
if the coefficients of D are real analytic and u is a solution to Du = 0, then u is real analytic.

Proof. [Gru09, Theorem 6.29].

What we shall show is that every K-finite matrix coefficient is annihilated by an elliptic
differential operator and thus by the previous theorem, every K-finite matrix coefficient is
real analytic.

Proposition 2.24. Let G be a real reductive group and (π, V) an admissible representation of G.
Then every matrix coefficient of the form g 7→ (π(g)u, v) for u ∈ VK is real analytic.

Proof. By unraveling the definitions, we see that for any D ∈ U(g), we have that

D(π(g)u, v) = (π(g)π(D)u, v)
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We may assume without loss of generality that u is contained in some V(γ). As π is ad-
missible this is finite dimensional and there exists c1, ..., cn ∈ C such that

∏
i

π(Ω)− ci = 0

where Ω is the Casimir element in Z(g). If we denote by ΩK the Casimir element of Z(kC)
then π(ΩK) = cγ on V(γ) by Schur’s Lemma. Let g0 = k0 ⊕ p0 be a Cartan Decomposition
of the Lie algebra and pick bases for k0 and p0 which are orthogonal with respect to the
inner product Bθ(X, Y) = −B(X, θY) where θ is the Cartan involution. Then we have the
following equalities

Ω = −∑ X2
i + ∑ Y2

i

ΩK = −∑ X2
i

Ω− 2ΩK = ∑ X2
i + ∑ Y2

i

This is seen to be an elliptic differential operator by investigating its principal symbol in
a neighbourhood of the identity using coordinates defined by the exponential function.
From this, we see that the differential operator

D = ∏
i

Ω− 2ΩK + 2cγ − cj

is also elliptic with real analytic coefficients (as K is an analytic manifold). Now, from our
equation above,

D(π(g)u, v) =

(
π(g)∏

i

[
π(Ω)− π(2ΩK) + 2cγ − cj

]
u, v

)

=

(
π(g)∏

i

[
π(Ω)− cj

]
u, v

)
= 0

Hence, by the Regularity Theorem (π(g)u, v) is real analytic.

Definition 2.25. Let (π, V) be a representation of G on a HIlbert (Banach,Fréchet, etc.)
space and VK the associated (g, K)-module. Then the contragredient representation or
dual representation of VK is denoted as V?

K and is defined to be

V?
K = (V∗K)K

There is a natural transpose action on V?
K and from this we see that all linear functionals

(−, v) for v K-finite are contained in V∗K . In fact, this is the entire space!

Corollary 2.26. Let (π, V) and (π′, V′) be irreducible admissible representations of G. If π and π′

are infinitesimally equivalent (VK and V′K are isomorphic (g, K)-modules) then they have the same
set of matrix coefficients.

Proof. The matrix coefficients on G are characterized as the unique real analytic functions
such that their derivative at g = 1 is given by

D(π(g)u, v) = (π(D)u, v)

10



From the discussion in the definition of the contragredient representation, we see that this
is real analytic and given by (π(D)u, v′) for v′ ∈ V?

K not depending on D. Therefore, the
matrix coefficients are given in a way which is infinitesimally independent. This completes
the proof.

Corollary 2.27. The closed G-invariant subspaces of V are in one-to-one correspondence with the
g-invariant subspaces of VK with the correspondence given by

U 7→ U ∩VK

and
W ← [ W

Proof. This is a particular case of the previous corollary.

Corollary 2.28. Let (π, V) be an admissible representation of G. Then V is irreducible if and only
if VK is an irreducible (g, K)-module.

Proof. This follows immediately from the previous corollary.

Corollary 2.29. Let (π, V) and (π′, V′) be irreducible admissible representations of G. If V and
V′ share a single matrix coefficient in common, then VK ∼=g,K V′K.

Proof. Our assumption is that

(π(g)u, v) = (π′(g)u′, v′)

for all g ∈ G and some non-zero u, v ∈ VK and u′, v′ ∈ V′K. Let V0 = U(g)(π(g)u, v) be a
subspace of C∞(G). By the previous theorem, we have that π(U(g))u = VK. and thus

V0 = (π(g)π(U(g))u, v) = (π(g)VK, v)

Define ϕ : VK → V0 by v 7→ (π(−)π(U(g))u, v). This map is onto by construction. Further,
it is U(g)-equivariant since

ϕ(π(D)(π(D′)u)) = ϕ(π(DD′)u) = (π(−)π(DD′)u, v)

= D(π(−)π(D′)u, v)

= Dϕ(π(D′)u)

Since π is irreducible, ker ϕ = 0 and thus it is a U(g)-module isomorphism.
Starting with π′ instead, we get a U(g)-module isomorphism ψ : V′K → V0 and thus by

taking ψ−1 ϕ be have the desired (g, K)-module isomorphism.

Corollary 2.30. Consider the induced representations V = L2(G, Vσ, σ), W = C∞(G, Vσ, σ), U =
C(G, Vσ, σ) where the latter two are defined naturally. Then VK ∼= WK ∼= UK.

Proof. Modulo the result that these representations are admissible, we see that for any
smooth, L2 function G → V we have that the matrix coefficient corresponding to this
element will be equal in all of the above representations. Now by the previous corollary,
we conclude the result.
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2.2 Infinitesimal Characters

We first recall the notation from above: n, n− are the positive and negative root spaces of g,
Z(g) is the center of the universal enveloping algebra. We can decompose g as h⊕ n⊕ n−.

Lemma 2.31.

(a) U(g) = U(h)⊕ (U(g)n+ n−U(g))

(b) If z ∈ Z(g) then π2(z) ∈ U(g)n only.

Proof. The proof of both parts is a corollary of the Poincaré -Birkhoff-Witt Theorem.

(a) (a) A basis for U(g) is given by the monomials

Ei1
−β1

...Eik
−βk

H j1
1 ...H jn

N El1
β1

...Elk
βk

Therefore, identifying U(h) with the monomials for which ip, lp = 0 for all p, and the
other spaces accordingly, (a) follows.

(b) (b) Let us expand z in terms of the basis given above. Every monomial is an eigen-
vector for ad H with eigenvalue

∑ lpβp −∑ ipβp

As z ∈ Z(g), (ad H)z = 0. Therefore if an E−β is present, so must be Eβ. Therefore
π2(z) ∈ U(g)n.

Now define π1 = γ′ : U(g)→ U(h). By Lemma 2.31, we have that for all z ∈ Z(g),

z− γ′(z) ∈ U(g)n (2)

Now let λ ∈ h∗ and let Vλ be an irreducible representation of highest weight λ. As λ is a
linear functional, by the universal property of the symmetric algebra, we can extend λ to a
linear function

λ : S(h)→ C

As h is a Cartan subalgebra, it is then abelian. Therefore we have an algebra isomorphism
and this extends λ as

U(h)→ S(h)→ C

For all z ∈ Z(g), we have that

zv = λ(γ′(z))v ∀v ∈ Vλ

Define a map σ : h→ U(h) by
σ(H) = H − δ(H)1

We can again extend this map and it becomes an automorphism of U(h).

Definition 2.32. The Harish-Chandra map is defined as the composition of γ′ and σ. That
is

γ : U(g)→ U(h)
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Remark 2.33. We can relate γ and γ′ in the following sense

(λ + δ)(γ(z)) = λ(γ′(z)

So on Vλ, we have that
zv = (λ + δ)(γ(z))v

Theorem 2.34 (Harish-Chandra). The Harish-Chandra map is an algebra isomorphism

γ : Z(g)→ U(h)W

where U(h)W is the subalgebra of elements fixed by the Weyl group action.

Remark 2.35. Every w ∈W has a representative in G normalizing h under the adjoint map.
We extend this action to U(h). As {Hi} is a basis for h, we have that U(h) consists of all
polynomials in these basis elements. W acts on this space by permuting the indicies.

Before we give a proof of the isomorphism. we need a few lemmas.

Lemma 2.36. Let V(λ) be the verma module for the highest weight λ.

(a) V(λ) ∼= U(n−)⊗C Cλ−δ

(b) If z ∈ Z(g), then z acts on V(λ) as

z(u⊗ 1) = λ(γ(z))(u⊗ 1) (3)

Proof. The proof is trivial and will be omitted here.

Lemma 2.37. Let λ ∈ h∗, α ∈ Π, m = 2 〈λ,α〉
|α|2 ≥ 0 ∈ Z. Then the U(g) submodule M =

U(g)(E−α)m(1⊗ 1) of V(λ) is isomorphic to V(sαλ).

Proof. We shall break this proof into four steps.

Step 1: Put v = (E−α)m(1⊗ 1). For H ∈ h we have that

Hv = (−mα(H) + (λ− δ)(H))v = (sαλ− δ)(H)v

Step 2: We need to show that Eβv = 0 for all β ∈ ∆+. It suffices to check for β ∈ Π
as every positive root can be written as iterated brackets of simple roots. Notice then that
[Eβ, E−α] = 0 as β− α is not a root for any simple root β. Therefore Eβv = 0 by definition
of highest weight module.

Step 3: We need to show that Eαv = 0. We know that

Eαv = Eα(E−α)
m(1⊗ 1) = [Eα, Em

−α](1⊗ 1)

Further [Eα, E−α] = 2|α|−2Hα. Therefore we have a lie algebra isomorphism

SpanC{Eα, E−α, Hα} ∼= sl2(C)

It can be shown that in sl2(C) we have that

[e, f m] = m f m−1(h− (m− 1)1)
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Using this and normalizing, we see that

[E′α, (E′−α)
m](1⊗ 1) = m(E′−α)

m−1(2|α|−2Hα − (m− 1)(1⊗ 1)

= m
(

2 〈λ− δ, α〉
|α|2 − (m− 1)

)
(E′−α)

m−1(1⊗ 1)

= 0

The last line follows from the fact that 2 〈δ, α〉 /|α|2 = 1. This gives us a U(b) map of
Csαλ−δ ↪→ V(λ).

Step 4: Frobenius Reciprocity gives an isomorphism

Homb(Csαλ−δ, M) ∼= Homg(Indg
b(Csαλ−δ), M)

This makes the map 1⊗ 1 7→ v surjective as

V(sαλ) = U(g)(1⊗ 1) 7→ U(g)v = M

The map is clearly injective and therefore an isomorphism. This completes the proof.

We now can proceed with the proof of Theorem 2.34. We will stick to the case of G =
U(n), g0 = u(n), g = gln(C) = u(n)C. The general case follows the same general principles.

Proof of Theorem 2.34 for U(n).
Proof that Im(γ) ⊆ U(h)W : It suffices to show that

sαλ(γ(z)) = λ(γ(z))

for each sα as they generate W. We know by construction that z acts on v ∈ V(λ) by
(λ − δ)(γ(z))v. If we apply sα we have by the previous lemma that z acts on V(sαλ) by
(sαλ− δ)(γ(z)). However via the embedding of V(sαλ) ↪→ V(λ) given by the lemma, the
conclusion follows.

Proof that γ is multiplicative: Recall that z− γ′(z) ∈ U(g)n. As σ is an automorphism it
suffices to check that γ′ is multiplicative. Consider two elements z1, z2 ∈ Z(g). Then

z1z2 − γ′(z1)γ
′(z2) = z1(z2 − γ′(z2)) + (z1 − γ′(z1))γ

′(z2)

The right hand side is in U(g)n by lemma 2.1. Apply γ′ again to the whole expression and
we achieve our desired result.

Proof that γ is injective: If γ(z) = 0 then γ′(z) = 0 and µ(γ(z)) = 0 for all highest wieghts
µ ∈ h∗. For any irreducible representation V we know that z acts by the scalar λ(γ(z))
where λ is the highest weight of the representation. As U(n) is reductive, we know that
every finite dimensional representation decomposes as a direct sum of irreducible ones.
Therefore for any such representation Π : U(n)→ GL(V), the associated representation on
lie algebras extends to the universal enveloping algebra and therefore π : U(g)→ End(V)
must have π(z) = 0.

Now consider the matrix coefficient (Π(g)u, v) of Π. It can be shown that for every
D ∈ U(g),

D(Π(g)u, v) = (Π(g)π(D)u, v)

Putting D = z we have that z as a left-invariant differential operator, annihilates every ma-
trix coefficient of every finite-dimensional representation of g. This holds in particular for
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the tensor powers of the standard representation and therefore z annihilates all monomials
and thus z = 0 as a differential operator. Hence z = 0 in U(g) and γ is injective.

Proof that γ is onto: Let {Hi} be a basis for h. It is easy to show that U(h)W is precisely
given by

U(h)W = C[s1, ..., sn]

where si is the ith symmetric polynomial in the Hi. Let Xi run through the basis vectors of g
and put X̃i to be the orthogonal basis to Xi with respect to the Killing Form B. Then we can
build elements Zk defined similarly to Casimir elements, which are central and such that

γ′(Zk) = ∑
i1,...,ik

Tr(Hi1 ...Hik )H̃i1 ...H̃ik mod Uk−1(g)

. It follows then that Hi = H̃i for all i. Therefore

γ(Zk) = ∑(Hi)
k mod Uk−1(g).

Taking the difference between γ(Zk) and ∑i Hk
i we see that this is a symmetric polynomial.

Further, it is polynomial in p1, ..., pk−1. We need to show that pk is also needed. Let ζ1, ..., ζk
be the kth roots of unity and consider the homomorphism

Hj 7→
{

ζ j 1 ≤ j ≤ k
0 k + 1 ≤ j ≤ n

Under this homomorphism, we have that pj(ζ1, ..., ζk, 0, ..., 0) = (−1)k+1 if j = k and 0
otherwise. Further it sends ∑(Hi)

k to n and this implies that ∑ Hk
i cannot be expressed in

terms of the p1, ..., pk−1 alone. Hence, γ is surjective and this completes the proof of the
theorem.

Proposition 2.38. Let χ : Z(g) → C be an algebra homomorphism sending 1 to 1. Then χ = χλ

for some λ ∈ h∗. Further χλ = χλ′ if and only if λ = λ′w for some w ∈W.

In particular, this proposition combined with Dixmier’s lemma implies that any irre-
ducible admissible (g, K)-module V has an infinitesimal character given by χλ. Whence,
we see that V is annihilated by the ideal Jλ = 〈ker χλ〉 in U(g).

3 Equivariant Sheaves and the Sheafification of Represen-
tations

We now start the transformation of representations into sheaves.
By the Poincaré-Birkhoff-Witt theorem, U(g) isa filtered algebra and the associated

graded ring gr U(g) ∼= S(g) is a natural way. In particular, and module over U(g) inherits
a grading and thus we obtain a functor

gr : U(g)-Mod→ S(g)-Mod

The advantage of this approach is that S(g) is commutative. In particular, we have a natural
identification for all vector spaces that S(W) = P(W∗) polynomial functions on the dual
space. Hence, we have the following fact:
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Proposition 3.1. mSpec(S(g)) = g∗.

As S(g) is noetherian, we can invoke Serre’s theorem to obtain the following:

Theorem 3.2. There exists an equivalence of categories between S(g)-Mod f g ' Coh(g∗).

Combining this with the above observation we get a functor (by abusing notation)

gr :M f g(g, K)→ Coh(g∗)

This functor lands in a particularly interesting subcategory: the category of K-equivariant
coherent sheaves.

Definition 3.3. Let G be an S-group scheme, and X an S-scheme together with an action
morphism a : G ×S X → X. A sheaf F on X is G-equivariant if there exists an isomor-
phism:

θ : a∗F → π∗2F

and θ satisfies the following cocycle condition:

(π∗23θ) ◦ [(1× a)∗θ] = (m× 1)∗θ

which can be viewed as the following diagram

(m× 1)∗a∗F (m× 1)∗π∗2F

(1× a)∗a∗F π∗23π∗2F

(1× a)∗π∗2F π∗23a∗F

∼

(m×1)∗θ

∼

(1×a)∗θ

∼

π∗23θ

which is to say that θ behaves well with respect to associativity.

When we grade a (g, K)-module and sheafify it, the K-action on g∗ induces the structure
of a K-equivariant sheaf on g∗. Therefore, we get a version of Serre’s theorem for equivari-
ant sheaves

Theorem 3.4 (K-equivariant Serre). There is an equivalence of categories

(S(g), K)-Mod f g ' CohK(g∗)

The first question we can ask here is what is the support of the sheaf associated to a
given finitely generated (g, K)-module. To answer this, we need to discuss the nilpotent
cone in g∗.

3.1 The Nilpotent cone and Nilpotent Orbits

Recall that an element of a Lie algebra is considered nilpotent if X ∈ [g, g] and ad X is a
nilpotent operator. As we are assuming G to be reductive, there exists a non-degenerate
bilinear form ψ on g which gives a canonical isomorphism g ∼= g∗. Thus, we can define
nilpotence for functionals.
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Definition 3.5 (First approach). An element λ ∈ g∗ is nilpotent if the element Xλ ∈ g
corresponding to λ under ψ is nilpotent.

This definition is a bit cumbersome as it relies on the definition of ψ. For this reason we
give another definition of nilpotence that at first glance seems unrelated.

Definition 3.6 (Second Approach). Let λ ∈ g∗ and put

g∗(λ) = {Y ∈ g : ad∗Y(λ) = 0}

Then λ is nilpotent if λ|g∗(λ) ≡ 0.

Lemma 3.7. The two definitions of nilpotent elements are equivalent for a reductive lie algebra.

Proof. The first definition implies the second one as ψ is non-degenerate for g reductive
and in particular is a scalar multiple of the Killing form on any simple summand of [g, g].
The reverse direction is a bit more difficult and can be found in [CM93].

Definition 3.8. Let G be a real reductive Lie group and g its complexified Lie algebra. A
coadjoint orbit Oλ of G is an orbit of a functional λ ∈ g∗ under the action given by Ad∗ .

Theorem 3.9 (Kostant). Let Oλ be a coadjoint orbit of G. Then

Oλ
∼= G/G(λ)

where G(λ) is the stabilizer of λ in G. Further, there exists a canonical symplectic manifold struc-
ture on Oλ induced by the Lie bracket.

Sketch of Proof. The first assertion is immediate. For the second assertion: at λ ∈ Oλ define
ωλ(X, Y) = λ([X, Y]). For f = Ad∗(g)λ ∈ Oλ and Ad(g)X = X f , Ad(g)Y = Yf ∈ TfOλ

∼=
g/g∗(λ) put

ω f (X f , Yf ) = f ([X f , Yf ]) = Ad∗(g)λ([Ad(g)X, Ad(g)Y]) = λ([X, Y])

Thus, ω is a G-invariant non-degenerate bilinear form. The fact that it is closed follows
from the Jacobi identity. Hence, ω is a symplectic form on Oλ.

Theorem 3.10 (Kostant). There exist only finitely many coadjoint orbits consisting of nilpotent
elements. The nilpotent cone N ∗ of g∗ is given by V((S(g)G)+) = V(gr Z(g)+).

We will not prove this theorem, but simply give a corollary:

Corollary 3.11. The associated graded module of an irreducible (g, K)-module is supported on the
nilpotent cone.

Proof. As gr Jλ ∩ gr Z(g) = gr Jλ ∩ S(g)G and Jλ ∩ S(g)G has codimension 1, it follows from
the above theorem [CM93] that V(gr Jλ) ⊆ N ∗. (In particular, Jλ cannot contain elements
with constant terms as these will not be G invariant).

Definition 3.12. An ideal I ⊆ U(g) is called primitive if I = Ann(V) for an irreducible
U(g)-module V. The associated variety of I is V(I) := V(gr I) ⊆ g∗.

Corollary 3.13. The associated variety of an irreducible (g, K)-module is a finite union of nilpotent
orbits of G.
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Proof. This follows from Kostant’s theorem and the previous corollary.

A much harder theorem of Borho, Brylinski, and Joseph is as follows:

Theorem 3.14 (Borho, Brylinski, Joseph). Let I be a primitive ideal. Then V(I) = O for a single
nilpotent orbit.

Corollary 3.15. Let M be an irreducible (g, K)-module. Then AV(M) := V(AnnU(g)(M)) = O
for a single nilpotent orbit. In particular, if M is the K-equivariant sheaf associated to M, then
Supp(M ) = O

4 An Open Problem

Up until now, the goal has been to use the G action on g∗ to determine structure of the
support of a given K-equivariant coherent sheaf. It was Vogan’s insight (see [Vog91]) that
we should look at K orbits as well as G orbits. in particular, he showed that:

Theorem 4.1 (Vogan). Let G be reductive and K a maximal compact subgroup. Then the K-orbits
of maximal dimension in a given G orbit O are Lagrangian submanifolds of O. In particular, there
are only finitely many such orbits.

These K-orbits are related to the minimal K-types of a representation whose associated
variety isO. In this same vein, we have our idea for a geometric classification of K̂ in terms
of representations of G.

Question 4.2. Is there a bijection between K̂ and the set of G-orbits in N ∗?

The answer is most certainly no. The right hand side is a finite collection whereas the
left side is an infinite collection. However, we have not invoked any of the structure of or-
bits in this question. In particular, Oλ = G/G(λ). Therefore, for any representation (σ, V)
of G(λ) we can build the bundle G×G(λ) V → Oλ. The set of global continuous or smooth
sections of this bundle forms a representation of G under left translation. From this, we can
then pick a minimal K-type and maybe this will give us a bijection. In particular, Vogan
proved that the set of pairs {(O, σ)} consisting of nilpotent G orbits and representations of
the stabilizer is a basis for the Grothendieck group K0(CohK(g

∗)). This led him to give the
following conjecture:

Conjecture 4.3 (Vogan). Let G be a reductive algebraic group defined over R and K the fixed
points of a Cartan involution. There is a bijection

{(O, σ)} → K̂

given by sending the pair to the lowest K-type of the induced representation.

The current progress on this conjecture is as follows:

(a) GL(n, C)) was proven by Achar in his thesis.

(b) G a complex semisimple Lie group was proven by Bezrukavnikov.

All other cases are open.
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