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Introduction

One of the important theorems of classical commutative algebra is as follows:

Theorem 0.1 (Auslander-Buchsbaum-Serre). Let (R,m, k) be a noetherian local ring. The fol-
lowing are equivalent:

(a) R is regular.

(b) projdim(M) < ∞ for all finite R-modules M

(c) projdim(k) < ∞

This theorem gives a way to check regularity of a ring in terms of its modules. In the
more modern language, we can derive a similar result using derived categories and will
prove the following theorem:

Theorem 0.2. Let R be a neotherian ring. Then R is regular if and only if Dsg(R-Mod) ' 0.

In particular, this gives a simple answer to the following

Conjecture 0.3. If R is regular, then any localization of R is regular.

1 From Abelian categories to Derived Categories

We start by recalling the definition of an Abelian category:

Definition 1.1. Let C be a category. We say that C is abelian if the following are true:

(a) C has a zero object

(b) C is pre-additive (i.e. Hom-sets are abelian groups and composition is bilinear)

(c) C has all finite products and coproducts

(d) Every morphism has a kernel and cokernel

(e) To any morphism f : A→ B the morphism p : coim f → Im f is an isomorphism.

Abelian categories are the general setting for exact sequences as we can always form them
by property (d).
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Definition 1.2. Let A and B be abelian categories and F : A → B a covariant additive
functor. We say that F is left exact if for all exact sequences

0→ L→ M→ N → 0 =⇒ 0→ F(L)→ F(M)→ F(N)

is exact. We define right exact similarly. For a contravariant functor we have the analogous
exact sequences.

It is an easy exercise to show that −⊗R A and both versions of Hom are additive func-
tors. It can be proven that ModR is an abelian category. This then gives us the correct
context to prove the following theorem.

Theorem 1.3. −⊗R A is right exact while HomR(A,−) and HomR(−, A) are left exact.

More precisely, this following from the following proposition:

Proposition 1.4. In more generality, suppose (F a G) : A � B is an adjunction (i.e. HomB(A, GB) ∼=
HomA (FA, B)) of additive functors. Then F is right exact and G is left exact.

Example 1.5. Here is an example to show how ⊗ can fail to be left exact. Let Z2 denote
the cyclic group of order 2. Treated as a Z-module, we have −⊗Z Z2. Consider the exact
sequence

0→ Z→ Q→ Q/Z→ 0

Applying the functor, we get

Z2 → 0→ Q/Z⊗Z Z2 → 0

The reason that Z2 ⊗Z Q = 0 follows from the fact that for any element

a⊗ b = a⊗ 2b/2 = 2a⊗ b/2 = 0⊗ b/2 = 0

This theorem is the motivation behind most of elementary homological algebra. Notice
that neither functor is totally exact but only left or right. We want to find a remedy to this
which preserves the original structure. To do this, we pass to a larger category of objects,
where we can fully capture this subtlety in a purely algebraic way. For a general abelian
category, we have the notion of short exact sequences. In addition to this, we have the
notion of (co)chain complexes. These will be the central objects we want to consider when
answering the questions posed in the previous section.

Definition 1.6. Let (C•, d•) be a collection of objects in an abelian category A together with
a morphism dn : Cn → Cn−1. We call (C•, d) a chain complex if dn−1 ◦ dn = 0. If instead we
have an object (C•, ∂•) such that ∂n : Cn → Cn+1 such that ∂n+1 ◦ ∂n = 0 then we say the
pair is a cochain complex. It is common practice to drop the index on the differential d• or
∂• and simply denote them d and ∂. We shall adopt this convention.

A morphism of (co)chain complexes (C•, d) and (D•, d′) is a chain map f• (resp. f •),
that is a collection of maps fi so that the following diagram commutes for all n,

Cn Cn−1

Dn Dn−1

d

fn fn−1

d′

With this notion of morphism, we can build a new category (c)Ch(A ) of (co)chain
complexes. Notice that because of the condition d2 = 0, we have that Im dn ⊆ ker dn−1.
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Definition 1.7. Let (C•, d) be a chain complex. Define the n−th homology groups of C• as

Hn(C•) = ker dn/ Im dn+1

These are in fact groups.

Two chain complexes are quasi-isomorphic if there exists a chain map f• : C• → D•
such that ( fi)∗ : Hi(C•)

∼→ Hi(D•) where ( fi)∗ is defined as [α] 7→ [ fi ◦ α]. This is well-
defined by the definition of a chain map. Further fi ◦ α ∈ ker d′n. We have completely
analogously the definition of cohomology groups Hi(C•). We call a (co)chain complex is
exact if all of the (co)homology groups are identiically 0.

We now return to the content of the previous section. Let M be an R-module and P• a
projective resolution of M.

It then follows from the discussion above that P• → 0 (truncating the free resolution
of M at P0) and M are quasi-isomorphic as chain complexes (here M is considered as the
trivial chain complex with differential 0 everywhere). We can use this to our advantage.
For any R-module A, consider Hom(−, A). The resulting cochain complex

Hom(P0, A)→ Hom(P1, A)→ Hom(P2, A)→ ...

is no longer exact.

Definition 1.8. The n-th cohomology groups or n-th Ext groups of M and are denoted

Extn
R(M, A) := Hi(Hom(Pn, A))

Remark 1.9. It can be shown that these groups do not depend on the resolution taken. In
fact, it does not even matter if we resolve A or M. There is a dual construction of Extn(M, A)
where instead of a projective resolution of M, we take an injective resolution of A.

For ⊗, we have the corresponding construction but now we only use projective resolu-
tions as ⊗ is covariant in both arguments.

Definition 1.10. The n-th homology groups or n-th Tor groups of M are

TorR
n (M, A) := Hi(Pn ⊗ A)

We now generalize to arbitrary abelian categories.

Definition 1.11. An abelian category is said to have enough projectives if every element
has a projective resolution (respectively, enough injectives and enough flats)

Let A be an abelian category with enough projectives and F : A → B be a right exact
functor. Then for any projective resolution of an object M, we can repeat the operation
above to define the derived functors of F. To be more specific, let P• be a projective resolution
of M.

Definition 1.12. The functors

LiF(M) = ker(FPn → FPn−1)/ Im(FPn+1 → FPn)

are called the left derived functors of F. Dually if G is left exact and I• is an injective
resolution, we can define RiG as the right derived functors for G.
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One may ask why we do not consider the left derived functors for a left exact functor.
The answer to this is that these are all zero, or at least un interesting. They tell you nothing
about exactness as 0s appear in the sequences.

Proposition 1.13. If F is exact then RiF and LiF are 0 for all i > 0.

Proof. As F is exact, the resulting long sequences are exact. Hence, the quotient groups are
0 and RiF (resp. LiF) is 0.

Remark 1.14. The derived functors measure the extent to which M is not projective, injec-
tive, or flat. More generally, they measure how far F is from being exact. If RiF is non-zero
for only very large i, then F is very close to being exact. Whereas if R2F is non-zero, then F
is nowhere close to being exact.

The final theorem we present in this section is the most useful for computing these
functors.

Theorem 1.15. Let 0 → A → B → C → 0 be exact in A and F : A → B be a right exact
functor. Then there is a long exact sequence

...LiF(A)→ LiF(B)→ LiF(C)→ Li−1F(A)→ ...

in the derived functors. The same is true for left exact functors.

The proof of this is immediate from the Snake Lemma. The reason it is so important
is because if we know that either A, B, or C is F-acyclic (that is LiF(C) = 0) then we get
isomorphisms of the remaining groups!

1.1 Localization and Chain homotopies

Now that we have the categories (c)Ch(A ) and the notions of quasi-isomorphisms, we can
quickly construct the derived category D∗(A) where ∗ will be a condition on the elements
of D(A). The construction proceeds in two steps involving localization of categories.

Definition 1.16. Let A and B be (small) categories1 such that B ⊆ A is a subcategory.
Then the localization of A by B is denoted B−1A and is the category who’s objects are
objects of A but whos morphisms are morphisms in A together with formal inverses for
all morphisms in B. In general, we can localize with respect to any collection of morphisms
in A .

In particular, this definition is too general to preserve any nice structure of the original
category A . Therefore, we have the following related definition for the situations we shall
frequently run into:

Definition 1.17. Let S be a class of morphisms in A . We call S a localizing class if the
following hold:

(a) 1M ∈ S for all M ∈ A .

(b) For all s, t ∈ S, t ◦ s ∈ S.

1Small here is to avoid some set theoretic nonsense, but is not an actual blockade in the definition
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(c) For any given morphisms f ∈ Mor A and s ∈ S there exist g ∈ Mor A and t ∈ S
such that the following diagram commutates

K L

M N

t

g f

s

(d) The dual of the above statement holds.

(e) Two maps f , g : M → N are equalized by an element of S if and only if they are
coequalized by an element of S.

Example 1.18. Let A = R-Mod for R a commutative ring with 1. Put

Ch(R) := Ch(R-Mod)

and consider the collection of quasi-isomorphisms (weak-equivalences) W. Then W−1Ch(R)
is a localization where two chain complexes C•, D• are considered isomorphic if there ex-
ists a quasi-isomorphism E• → D• and an isomorphism E• → C•. In particular, we have a
diagram of the form:

C•
∼← E•

qis→ D•

Theorem 1.19. Let A be an abelian category and S a localizing class of morphisms. Then S−1A
is again abelian and the localization functor Q : A → S−1A is exact.

Proof. See [Mil]

In particular, this theorem tells us that localizing classes are the correct classes of mor-
phisms to localize by.

What we would like to naively say is that W−1Ch(R) is the derived category of R-
modules. However, we want to get ride of one other type of equivalence which will not
change (co)homology: chain homotopies.

Definition 1.20. Let f , g : C• → D• be chain maps. Then we say that f is chain homotopic
to g (denoted f ' g) if there exists a chain map P : C• → D•[1] such that

f − g = δDP + PδC

In diagrams:

... Ci+1 Ci Ci−1 ...

... Di+1 Di Di−1 ...

fi+1,gi+1

∂C

fi ,gi

∂C

P
fi−1,gi−1

∂C

P

∂D ∂D ∂D

Lemma 1.21. If f ' g then f∗ = g∗ on homology.

Thus, chain homotopy classes of maps constitute collections of maps which behave
identically on homology. For this reason, we only want a single representative from each
of these classes.
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Definition 1.22. Let A be an abelian category. The homotopy category of A , denoted
K(A ), is the category whose objects are chain complexes in A , but whose morphisms are
given by

HomK(A )(C•, D•) = HomCh(A )(C•, D•)/(chain homotopy)

Now, we can formally define the Derived category associated to the abelian category
A .

Definition 1.23. The (unbounded) Derived category of A , denoted D(A ) is precisely de-
fined as

D(A ) := W−1K(A )

where W consists of all quasi-isomorphisms in Ch(A ). There are a few distinguished sub-
categories of D(A ) denoted collectively as D∗(A ) where ∗ ∈ {b,+,−}meaning bounded
complexes, bounded below complexes, and bounded above complexes.

Remark 1.24. For some more motivation on why such a category holds any importance is
as follows: this is the correct setting for homological algebra. The next theorem will bring
a bit more light to this, but the moral idea here is that given a functor F : A → B which
is left exact, we construct the derived functors RiF which are the cohomology of F is some
sense. However, in the act of taking quotients, we lose some information and thus want to
deal directly with the complex given by FI• for instance. To do this, we extend F to its total
derived functor RF : D(A )→ D(B). As it turns out,

RiF(M) = Hi(RF(M))

The benefit however is that now we lose no information in passing to RF(C•). The “moral"
part of this story is that R does not always have to exist. If A has enough injectives or
projectives, then the total right or left derived functors exist. In this setting however, the
story simplifies as

RF(A) = FI•

where A→ I• is an injective resolution (resp. projective resolution and L).

Theorem 1.25. D(A ) is additive.

Proof of 1.25. D∗(A ) is the localization of the additive category K∗(A ) via quasi-isomorphisms.
It suffices to show that the collection of quasi-isomorphisms, W, forms a localizing class.
This however is straight forward and follows from the definitions. Hence, D(A ) is addi-
tive.

Now we give a characterization of Hom for the derived category on chain complexes
concentrated in a single degree for modules.

Proposition 1.26. Let A, B ∈ R-Mod. Then

HomD(R-Mod)(A, B[i]) = Exti
R(A, B)

Proof. See [Har66].
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Example 1.27. Let A = Vect<∞
C

. We claim that D(A ) is naturally equivalent to Z-GrVectC.
To see this, first notice that given any chain complex of vector spaces, we can construct this
complex (by choosing bases) from a direct sum of the chain complexes:

...→ 0→ C→ 0→ ...

...→ 0→ C→ C→ 0→ ...

inductively. The second sequence is quasi-isomorphic to 0 and the first has homology k in
degree 0 only. Thus every chain complex V• is quasi-isomorphic to

⊕
i∈Z Vi[i] where Vi is

some vector space. Now, by the above proposition Hom(k, k[j]) = Extj
k(k, k) = 0 if j 6= 0.

Whence,
HomD(A )(V•, W•) =

⊕
Z

Homk(Vi, Wi)

which is exactly the morphisms in Z-GrVectC. Hence, the equivalence of categories is pre-
cisely send V• to

⊕
i∈Z Vi.

2 The Singularity Category

We now proceed with the more commutative algebra portion of the notes. For the remain-
der of the text, set A := R-Mod for a local ring (R,m, k). As we have seen, D∗(A ) is an
abelian category for ∗ ∈ {b,+,−}.

We will construct a thick (see definition below) subcategory of Db(A ) and a quotient by
this category will be the singularity category we desire. In combination with the theorem
of Auslander-Buchsbaum-Serre, we will show that this category measures regularity of the
ring R.

Definition 2.1. Let B be a full subcategory of A . Then B is thick if for all exact sequences

0→ M′ → M→ M′′ → 0

M ∈ B if and only if M′, M′′ ∈ B.

Lemma 2.2. Let B be a thick subcategory of A . Let S be the set of morphisms whose kernel and
cokernel are objects in B. Then S is a localizing class and A /B := S−1A is an abelian category.

Proof. See [Mil]

Corollary 2.3. Every element of B is isomorphic to 0 in A /B.

Proof. Consider the unique morphism M→ 0. Then ker = M and coker = 0.

Now that we have this language, we may define a certain thick subcategory of Db(A ).

Definition 2.4. A complex C• in Ch(A ) is perfect if C• is quasi-isomorphic to a bounded
complex of finitely generated projective modules. Note that if Q : Kb(A f g) → Db(A f g) is
the localization functor, then Q(C•) is isomorphic to this complex in the derived category.
Set Perf(A ) to be the subcategory of Db(A f g) consisting of perfect complexes with the
natural morphisms.

Lemma 2.5. Perf(A ) is a thick subcategory of Db(A f g).
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Definition 2.6. The singularity category of A is the category

Dsg(A ) :=
Db(A f g)

Perf(A )

Theorem 2.7. Dsg(A ) ' 0 if and only if R is regular.

Proof. (⇐) Assume R is regular. Then by Auslander-Buchsbaum-Serre, every finitely gen-
erated R-module has finite projective dimension. In particular, every module is quasi-
isomorphic to a perfect complex. Therefore, any complex in Db(A f g) is quasi-isomorphic
to a perfect complex. As quasi-isomorphisms are isomorphisms in the derived category,
we have that Dsg(A ) ' 0 as every object is uniquely isomorphic to every other object.

(⇒) Assume that Dsg ' 0. In particular, every finitely generated module is perfect,
hence has finite projective dimension. By ABS, R is regular.

Now let S be a multiplicative set in R. Consider the canonical morphism R→ S−1R.

Corollary 2.8. If R is regular then S−1R is regular.

Proof. We claim there exists an essentially surjective functor Dsg(R)→ Dsg(S−1R). To con-
struct this, consider the functor M 7→ M ⊗R S−1R from R-Mod → S−1R-Mod This is
essentially surjective as there is an equivalence of categories

S−1R-Mod ' R-ModS

where R-ModS is the category of R-modules where S acts by automorphisms. This map
descends to the subcategories of finitely generated modules and thus their derived cate-
gories. Whence, defining an essentially surjective functor on singularity categories. Now,
by the previous theorem R is regular if and only if Dsg(R) ' 0. As the functor given is
essentially surjective, Dsg(S−1R) ' 0. This completes the proof.

Example 2.9. We will give two examples showing what happens for regular and non-
regular rings.

(a) Consider R = k[x]/(x2) for k a field of characteristic 0. We claim this ring is not
regular. To show this, we will exhibit k as quasi-isomorphic to an infinite resolution.
Namely, notice that R/(x) = k. So, consider the complex

C• = ...→ R x→ R x→ R to0

Then Hi(C•) = 0 for all i > 0 and H0(C•) = k. In particular, k does not have finite
projective dimension.

(b) Consider k[x] and consider the maximal ideal m = (x). Then set R = k[x]m. This is
regular as dim R = 1 and mR is principal in R. Now, a resolution of k = R/mR is
given by the Koszul complex:

0→ R x→ R→ 0

As R is a domain, and x is a regular element, this is a free resolution of k. In particular
projdim k < ∞.
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