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The setting for cohomological induction is the collection of pairs (g, K) consisting of a
complex Lie algebra and K an algebraic (or analytic) group over C (or R, Q) which acts on
g is a way compatible with the adjoint representation of g on itself. It was shown by Vo-
gan in [?] that understanding the category of pairs and the associated homological algebra
thereof is a fruitful endeavor. We will mainly focus on the algebraic theory here, but will
interject the analytic story when there is something to be gained from that view. Let us first
formalize the definition we just hinted at:

Definition 0.0.1. An (algebraic) Harish-Chandra pair is a pair (g, H) consisting of a com-
plex Lie algebra g and an algebraic group H defined over C, such that

(a) There exists a morphism of algebraic groups ϕ : H → Aut(g)

(b) There exists an injective Lie algebra homomorphism ι : h→ g

(c) (Compatibility) dϕ = ad ◦ι.

Let (g, H) and (c, L) be Harish-Chandra pairs. A morphism of Harish-Chandra pairs is
a pair of maps (ω, Ω) : (g, H) → (c, L) where ω : g → c is a Lie algebra homomorphism,
Ω : H → L is a morphism of algebraic groups, and Resgh dΩ = ω|h. Let HCP be the
category of Harish-Chandra pairs.

Remark 0.0.2. In the analytic setting, we replace the algebraic assumption with K being a
compact Lie group. Normally, K will be a maximal compact subgroup of a real reductive
Lie group G, g = (g0)C.

Before we define modules for these pairs, we need to discuss representations in the
algebraic setting. In particular, we will show that these representations form an abelian
category as expected.

Definition 0.0.3. Let G be an algebraic group defined over C. A representation (π, V) of
G is algebraic if V is a union of finite dimensional representations (Vi, i ∈ I) such that the
representations of G on Vi are given by algebraic morphisms. Denote by ARep(G) the full
subcategory of algebraic representations.

Lemma 0.0.4. The category of algebraic representations is closed under subrepresentations, quo-
tients, and direct sums. In particular, ARep(G) is abelian.
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Proof. (Subrepresentations) Let U be a subrepresentation of V. Then put Ui = Vi ∩U. These
are clearly G-invariant. It suffices to show that the morphisms are algebraic. Fix i ∈ I.
Let Pi be the subgroup of GL(Vi) leaving Ui invariant. This is a closed subgroup and the
morphism G → GL(Vi) factors through Pi. Whence, by restriction we get the morphism
G → Pi → GL(Ui) is algebraic.

(Quotients) Let (q, W) be the representation of G on W = V/U. Denote by φ the natural
projection map. Set Wi = φ(Vi). Put qi : Pi → GL(Wi) the natural morphisms. Then the
representation of G on Wi is given by composition and thus this representation is algebraic.

(Direct Sums) Now let (π, V) and (σ, U) be two algebraic representations of G. Let the
respective unions of finite dimensional representations be indexed by J and I. Then V ⊕U
is given as a union of the Vj ⊕Ui and the morphisms are given by algebraic morphisms
of G into GL(Vj)⊕ GL(Ui) ⊆ GL(Vj ⊕Ui). Hence, the representation is algebraic and the
proof is complete.

Let (g, K) be a Harish-Chandra pair. Similar to analytic (g, K)-modules from before, we
can now define them intrinsically without reference to a larger group.

Definition 0.0.5. (Lepowsky, Algebraic version) A (g, K)-module is a vector space V equipped
with a representation of g and an algebraic representation of K, denoted by π : g ∪ K →
End(V), of g and K, such that the following conditions are satisfied:

(a) The differential of π|K = (π|g)|k0 .

(b) For all k ∈ K and X ∈ g, we have that π(ϕ(k)X) = π(k)π(X)π(k)−1.

We say that V is an admissible (g, K)-module if for every γ ∈ K̂, the γ-isotypic component
V(γ) =

⋃
i Vi, with Vi

∼= γ is a finite union.

Morphisms of (g, K)-modules are g and K equivariant linear maps. Denote byM(g, K)
the category of (g, K)-modules. An easy computation shows that M(g, K) is abelian. If
g = k then

M(k, K) = ARep(K)

and if K = {1} then
M(g, {1}) = Rep(g) ' U(g) -Mod

0.0.1 Induction, Coinduction, and the Zuckerman Functor

Now that we have the categoryM(g, K) associated to a Harish-Chandra pair, we can con-
sider what happens when we have a morphism of pairs (ω, Ω) : (h, L) → (g, K). In the
algebraic setting, we shall restrict ourselves to morphisms where at least one of the Lie
algebra, or algebraic group morphism is injective. That is (h, L) is a Harish-Chandra subpair
of (g, K).

Example 0.0.6. (a) Let h = g = gl(n, C) and L = (C×)n, K = GL(n, C). Then the mor-
phism (1, ι) : (g, L) → (g, K) realizes (gl(n, C), (C×)n) as a Harish-Chandra subpair
of (gl(n, C), GL(n, C)).

(b) Let h = sl(n, C) and g = gl(n, C). If we put L = SL(n, C) and K = GL(n, C) then
clearly (h, L) is a subpair of (g, K).
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Induction for Harish-Chandra pairs

Definition 0.0.7 (Inducing Algebraically). Let (g, K) ∈ HCP and let (π, V) be a (h, K)-
module for a subpair. Define

Ind(g,K)
(h,K)(V) := U(g)⊗U(k) V

to be the Induced module of (π, V).

Lemma 0.0.8. Ind(g,K)
(h,K)(V) is a (g, K)-module.

Proof. Let α : U(g)×V → U(g)⊗U(h) V be given by

α(ξ, u) = ξ ⊗ u

This map is bilinear and thus descends to a unique map on the tensor product U(g)⊗C V.
The map α̂ is clearly surjective and the kernel is a (g, K)-module. Combining this with the
ϕ⊗π-action makes this an algebraic representation of K. Define the representation of U(g)
by left-multiplication in the first factor. Then differentiation of ϕ⊗ π gives the following:

ξ · (η ⊗ u) = ad(ξ)η ⊗ u + η ⊗ ξu = [ξ, η]⊗ u + ηξ ⊗ u = ξη ⊗ u

for all ξ ∈ k. Hence, U(g)⊗U(h) V is a (g, K)-module.

Lemma 0.0.9. Ind(g,K)
(h,K) :M(h, K)→M(g, K) is a functor.

Proof. Let (π′, V′) be another (h, K)-module and Ψ : V → V′ a (h, K)-homomorphism.
Then the induced map is 1 ⊗ Ψ. This is clearly K-equivariant. Further, this is a (g, K)-
homomorphism by the following computation:

π′(X)(ξ ⊗Ψ(u)) = Xξ ⊗Ψ(u) = (π(X)ξ)⊗Ψ(u)

Combining this with the Poincaré-Birkhoff-Witt theorem, we get the following result.

Theorem 0.0.10. Ind(g,K)
(h,K) is exact.

The existence of an exact functor begs the question: is Ind(g,K)
(h,K) adjoint to another func-

tor? The adjunction between extension and restriction of scalars implies this should be
true. The following theorem makes this precise.

Proposition 0.0.11. Ind(g,K)
(h,K) is left adjoint to the forgetful functor Res(g,K)

(h,K) :M(g, K)→M(g, K).

Proof. As U(g) is a free U(h)-module, it is clear that

HomU(h)(V, Resgh U) = HomU(g)(V ⊗U(h) U(g), U)

as U(h)-modules. The explicit bijection being given right to left by ϕ 7→ ϕ ◦ i where
i : V → V ⊗U(h) U(g) is an injection by freeness. Now suppose V, U are in addition
(h, K) and (g, K)-modules respectively. Then using the bijection above, we know that the
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underlying (h, K) and (g, K) morphisms are U(h)-submodules of HomU(h)(V, Resgh U) and
HomU(g)(V ⊗U(h) U(g), U) respectively. In particular, it suffices to show that the bijection
constructed above is K-equivariant if we now assume the morphisms are K-morphisms
additionally. To see this, let k ∈ K. Then

ϕ ◦ i(kv) = ϕ(ki(v)) = kϕ(i(v)) = k · ϕ ◦ i(v)

Hence, the bijections are K-equivariant and we get an (h, K)-module isomorphism

Hom(h,K)(V, Resgh U) = Hom(g,K)(V ⊗U(h) U(g), U)

Corollary 0.0.12. Ind(g,K)
(h,K) maps projective objects to projective objects.

Since Ind(g,K)
(h,K) is exact, we also have:

Corollary 0.0.13. Res(g,K)
(h,K) maps injective objects to injective objects.

If we now assume K is reductive (say for example K is the complexification of a maximal
compact subgroup of a real Lie group), then Rep(K) is semisimple and every object is
projective. Whence, we see the following:

Corollary 0.0.14. If K is reductive group, thenM(g, K) has enough projectives.

Proof. By use of the counit of the adjuction, we see that every (g, K)-module is a quotient
of a projective module.

In particular, this tells us that this functor will be nearly uninteresting in terms of homo-
logical techniques. Thus, we need to look for a different one that will yield a better view
of these module categories. In particular, the induction functor corresponded to tensor
products. Thus another option is to investigate Hom .

To do this properly however, we need to take a quick moment to discuss algebraic
representations more thoroughly.

Algebraic Representations

Similar to passing to K-finite vectors in the analytic setting, we want to pass to the under-
lying algebraic representation of a given representation of K. To show that this is possible,
we need some preliminary lemmata.

Definition 0.0.15. Let (π, V) be a representation of an algebraic group K. Then v ∈ V is
algebraic if there exists an algebraic subrepresentation of π containing v.

Lemma 0.0.16. The set of all algebraic vectors in V is a K-invariant subspace. In particular, it is
an algebraic representation.

Proof. Let v ∈ V be algebraic. By definition, there exists some (σ, U) an algebraic subrep-
resentation containing v. In particular, we see that Kv ⊆ U and thus the set of algebraic
vectors is a K-set.

Now let v1, v2 be two different algebraic vectors. To see that v1 + v2 is algebraic, let
(σ1, U1) and (σ2, U2) be the algebraic subrepresentations containing v1 and v2 respectively.
Then v1 + v2 ∈ U1 +U2 which is a quotient of an algebraic representation, namely U1⊕U2.
Hence, the set of algebraic vectors is a vector subspace of V.
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Definition 0.0.17. The algebraization of V denoted V[K] is defined by

V[K] := {v ∈ V : v algebraic}

Clearly if U ⊆ V is an algebraic subrepresentation then U ⊆ V[K]. For this reason, V[K] is
the largest algebraic subrepresentation of (π, V). Further, V is algebraic if and only if V = V[K].

Lemma 0.0.18. Algebraization is an additive functor.

Proof. It suffices to prove that given an algebraic representation (σ, U) and an arbitrary
representation (π, V) that for any K-morphism φ : U → V, φ(u) is algebraic. This follows
however from the first isomorphism theorem combined with Lemma 0.0.4. In particular,
we get that (−)[K] is a functor. To show that it is additive, it suffices to show that (U1 ⊕
U2)[K] = (U1)[K] ⊕ (U2)[K].

For the reverse inclusion, let u1, u2 be algebraic in U1 and U2 respectively. Then u1 + u2
is algebraic in U1 ⊕U2 hence is contained in (U1 ⊕U2)[K]. F

For the forward inclusion, let (U1)[K] =
⋃
(U1i)[K] and (U2)[K] =

⋃
(U2j)[K]. Then (U1 ⊕

U2)[K] =
⋃
(U1i ⊕U2j)[K]. Now, we get a K-equivariant algebraic morphism

(U1)[K] ⊕ (U2)[K] → (U1 ⊕U2)[K]

given by addition. This is injective clearly. In particular, it is injective on each of the finite
dimensional pieces. Hence, an isomorphism by linear algebra.

Now we can prove the following theorem:

Theorem 0.0.19. The algebraization functor is right adjoint to the forgetful functor fromARep(K)→
Rep(K).

Proof. Let U be an algebraic representation of K and V an arbitrary representation. Then
for any morphism φ : U → V, φ(U) is an algebraic subrepresentation of V hence contained
in V[K]. Therefore, we get an injective map

HomK(U, V)→ HomA(U, V[K])

AsARep(K) is a full subcategory, this map is a bijection. Further, naturality of this bijection
is immediate as it is K-equivariant.

Corollary 0.0.20. The algebraization functor is left exact.

Now we shall consider the bi-functor HomC(−,−)[K]. Given two representations (ν, U)

and (π, V), the space HomC(U, V) is a K representation given by

ρ(g)T = π(g)Tν−1(g)

This induces a left-exact (in both variables) bi-functor

HomC(−,−)[K] : ARep(K)op ×ARep(K)→ ARep(K)

By differentiating the action of K, we get an action of k on HomC(−,−) given by

ρ(X)T = π(X)T − Tν(X)

5



for all X ∈ k. By restricting we get a representation of k on HomC(−,−)[K]. Similarly we get
a representation of k on HomC(−,−)[K] given by differentiation of the K action. We want
to know that these coincide.

Proposition 0.0.21. The differential of the algebraic representation ρ[K] on HomC(U, V)[K] is
given by

ρ[K](X)T = π(X)T − Tν(X)

Proof. Let u ∈ U, and T ∈ HomC(U, V)[K]. Then the orbit map ω : K → V given by

ω(k) = π(k)Tν−1(k)u

is regular. Hence, we can apply the chain rule and get that

ρ[K](X)u = dω(X) = π(X)Tu− Tν(X)u

for any X ∈ k. This completes the proof.

In a similar fashion to before, assume K is now reductive. Then we have the following:

Lemma 0.0.22. For K reductive, HomC(−,−)[K] is exact in both arguments.

Proof. (Exactness is first argument) Let 0 → U′ → U → U′′ → 0 be a short exact se-
quence of algebraic representations. This splits as G is reductive (say by a Zorn’s lemma
argument). Let P : U → U′ be the splitting map. Therefore, the sequence

0→ HomC(U′′, V)→ HomC(U, V)→ HomC(U′, V)→ 0

is exact and splits. Further, the sequence after passing to the algebraization is left exact.
Now, let A ∈ HomC(U′, V)[K]. Then A ◦ P is in HomC(U, V)[K] and i∗(A ◦ P) = A. There-
fore

0→ HomC(U′′, V)[K] → HomC(U, V)[K] → HomC(U′, V)[K] → 0

is exact.
Following this for the other argument, we arrive at the same result by way of splitting

on the right. This completes the proof.

Coinduction for Harish-Chandra pairs

Similar to coinduction of representations for finite groups, we consider how our represen-
tations can arise from Hom . This will be a bit more difficult than in the case of ⊗ simply
because morphisms are slightly more complicated.

Nonetheless, define a g-module structure on HomU(h)(U(g), U) for any representation
(σ, U) of h by

(ξ · A)(u) = A(uξ)

for u ∈ U(g).

Definition 0.0.23. Let V be a (h, K)-module. The coinduced module of V is

Coind(g,K)
(h,K)(V) := HomU(h)(U(g), V)[K]
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Proposition 0.0.24. Coind(g,K)
(h,K)(V) is a (g, K)-module.

Proof. Suppose first that we have an h-representation V. Then HomU(h)(U(g), V) is a g-
representation given by the action above. By the Poincaré-Birkoff-Witt theorem, U(g) is
free over U(h). Hence, HomU(h)(U(g),−) is an exact functor from Rep(h)→ Rep(g).

Now, suppose V was indeed an (h, K)-module. Define a K action on HomU(h)(U(g), V)
by

(k · A)(u) = π(k)A(ϕ(k−1)u)

it then follows that

(k · A)(uv) = π(k)A(ϕ(k−1)(uv)) = π(k)π(ϕ(k−1)(u))A(ϕ(k−1)v) = π(u)(k · A)(v)

for all u ∈ U(h), k ∈ K. Therefore, we have a representation of K on HomU(h)(U(g), V).
Denote the action map as Ψ : g×HomU(h)(U(g), V) → HomU(h)(U(g), V). Then for

every k ∈ K, we have that

Ψ(kξ, kA)(u) = π(k)A(ϕ(k−1)uϕ(k)ξ) = π(k)(ξ · A)(ϕ(k)−1(u)) = k · ξ · A(u)

Thus the action is K-equivariant. Furthermore, differentiating this action gives

(ζ · A)(u) = ζ A(u)− A((ad ζ)u) = A(ζu)

Thus, modulo the following result that the algebraization of this representation is g-stable,
we have the proposition.

Lemma 0.0.25. Let V be a vector space equipped with actions σ of g and τ of K. Assume that the
action map Ψ : g×V → V is K-equivariant. Then V[K] is a g-submodule of V.

Proof. The action map is bilinear and thus there exists Ψ̂ : g⊗V → V which is K-equivariant.
Since, ϕ is an algebraic representation of K on g, we have that for all algebraic vectors ξ ∈ V,
the element X⊗ ξ is algebraic in g⊗V. By functoriality, Ψ̂(X⊗ ξ) is also algebraic. Hence,
Ψ̂(g⊗V[K]) ⊆ V[K] and V[K] is g-stable.

Corollary 0.0.26. Coind(g,K)
(h,K) is a functorM(h, K)→M(g, K).

Proof. Coind(g,K)
(h,K)(V) is a composition of functors

M(h, K)→ RepK(g∪ K)→M(g, K)

where RepK(g ∪ K) is the category vector spaces equipped with a representation of g ∪ K
such that the g action is K-equivariant.

Again we have a version of Frobenius Reciprocity:

Theorem 0.0.27. The functor Coind(g,K)
(h,K) is right adjoint to the forgetful functor.
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Proof. Let (σ, U) be an (h, K)-module and (π, V) be a (g, K)-module. Define

α : HomU(g)(V, HomU(h)(U(g), U)) −→ HomU(h)(V, U)

given by f 7→ ev1 ◦ f . This is clearly an abelian group homomorphism. We first need to
check that ev1 is an (h, K)-module map. It is clear that ev1 is U(h) invariant. Further, for
all k ∈ K, we have

α(k · f )(v) = ev1 ◦(k · f )(v)

= ev1(π(k) f (ϕ(k−1)v))

= π(k) f (ϕ(k−1)v)(1)

= π(k)(ev1 ◦ f )(ϕ(k−1)v)
= k · α( f )(v)

With this established, we now need to show that α is a bijection. Let Ψ ∈ ker α. Then for
any v ∈ V

0 = α(Ψ)(π(η)v) = ev1(Ψ(π(η)v)) = Ψ(π(η)v)(1) = ρ(η)Ψ(v)(1) = Ψ(v)(η)

for all η ∈ U(g). Hence, Ψ(v) = 0 for all v and Ψ = 0. Thus α is injective.
Suppose now that Φ ∈ Homh,K(V, U). We want to construct Ψ such that α(Ψ) = Φ. For

each v ∈ V define Ψv(η) = Φ(π(η)v). Then for all ζ ∈ U(h), we have that

Ψv(ζη) = Φ(π(ζ)π(η)v) = σ(ζ)Φ(π(η)v) = σ(ζ)Ψv(η)

Thus Ψv ∈ HomU(h)(U(g), U). In addition, for any k ∈ K, we see

(k ·Ψv)(η) = σ(k)Φ(π(ϕ(k−1)η)v) = Φ(π(η)π(k)v) = Ψπ(k)v(η)

Define Ω : V → HomU(h)(U(g), U) by Ω(v) = Ψv. The previous computation shows
that Ω is K-equivariant. To show it is a (g, K)-module map, let ξ ∈ U(g). Then

(ρ(ξ)Ω(v))(η) = Ψv(ηξ) = Φ(π(η)π(ξ)v) = Ψπ(ξ)v(η) = Ω(π(ξ)v)(η)

whence, Ω is a (g, K)-module morphism. As V is an algebraic representation of K, we see
that Ω(v) = Ψv ∈ HomU(h)(U(g), U)[K].

Now set β(Φ) = Ω. Then

(α ◦ β)(Φ)(v) = α(Ω)(v) = Ω(v)(1) = Φ(v)

Hence, β is a right inverse for α and α is bijective.

We now have the following formal categorical consequences:

Corollary 0.0.28. Coind(g,K)
(h,K) is left exact.

Corollary 0.0.29. Coind(g,K)
(h,K) maps injectives to injectives.

If we assume K is reductive, we additionally have the following:
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Corollary 0.0.30. Assume K is reductive, thenM(g, K) has enough injectives.

Proof. Algebraic representations of K are semisimple and thus every object is injective.
Combining this with the unit of the adjunction, we have the result.

Also similar to induction, we can deduce more about Coind(g,K)
(h,K) .

Theorem 0.0.31. If K is reductive, the functor Coind(g,K)
(h,K) is exact.

Unlike the case of induction, coinduction requires much more setup to prove this theo-
rem. The setup begins with the following observation:

Observation 0.0.32. There exists a linear subspace s ⊆ g such that g = h⊕ s where this
decomposition is as a K-representation.

This follows from reductivity. Note that these actions extend to K-representations on
U(h) and S(s). In this way, we have a K-action and left U(h)-module structure on U(g).
We can relate S(s) to U(g) by the symmetrization map:

λ(ξ1...ξn) =
1
n! ∑

σ∈Sn

ξσ(1)...ξσ(n)

By the Poincaré-Birkhoff-Witt theorem, this map is an injective vector space morphism.
Now we can define the key function for the proof of Theorem 0.0.31. Let

Λ : U(h)⊗ S(s)→ U(g)

be defined by Λ(η ⊗ ξ) = ηλ(ξ).

Lemma 0.0.33. The map Λ is a vector space isomorphism. Further, it is U(h) and K-equivariant.

Proof. We will define two filtrations, one on each space, and then set up an isomorphism
between the associated graded modules via Λ.

Define a filtration on U(g) via U(h) submodules by FpU(g) = U(h) ·Up(g) where Up(g)
is the standard filtration on U(g) by total degree of an element. Now define a filtration on
U(h)⊗ S(s) by Fp(U(h)⊗ S(s)) = U(h)⊗ Sp(s) where Sp(s) is the standard filtration on
the symmetric algebra.

Under Λ it is clear that we obtain maps

Λp : U(h)⊗ Sp(s)→ FpU(g)

The Poincaré-birkoff-Witt theorem implies that gr(U(g), Fp) = U(h)⊗C S(s) and that gr Λ
is the identity. Therefore Λ is an isomorphism. The additional equivariance conditions
follow immediately.

We can now proceed to the proof of the theorem.

Proof of Theorem 0.0.31. By the lemma, we get a K-equivariant isomorphism

HomU(h)(U(g), U)→ HomU(h)(U(h)⊗ S(s), U)→ HomC(S(s), U)

where the second map is given by restriction.
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Let 0 → U′ → U → U′′ → 0 be an exact sequence of (h, K)-modules. Using the above,
we get a corresponding commuting diagram

HomU(h)(U(g), U′′) HomU(h)(U(g), U) HomU(h)(U(g), U′)

HomC(S(s), U′′) HomC(S(s), U) HomC(S(s), U′)

with the vertical arrows isomorphisms and the horizontal rows are exact. Applying the
algebraization functor and appealing to the exactness of HomC(−,−)[K] for reductive K,
implies that we get

HomU(h)(U(g), U′′)
[K]

HomU(h)(U(g), U)
[K]

HomU(h)(U(g), U′)
[K]

HomC(S(s), U′′)[K] HomC(S(s), U)[K] HomC(S(s), U′)[K]

Using the vertical isomorphisms, we see that the top row is exact. Hence, Coind(g,K)
(h,K) is

exact.

The Zuckerman Functor

As we have seen, the change of Lie algebras functors are exact when we assume reductiv-
ity. In particular, in the same theme as with the analytic theory, these are then uninteresting
for the purposes of generating new representations from old. Therefore, we now consider
changing the group! Given an algebraic subgroup T of K (this takes the place of the maxi-
mal torus of a compact Lie group), we clearly have that (g, T) is a Harish-Chandra subpair
of (g, K). Thus, we obtain a forgetful functor:

ForK
T :M(g, K)→M(g, T)

As these categories are abelian and ForK
T preserves all colimits, we know that there exists a

right adjoint to it.

Definition 0.0.34. The Zuckerman functor, denoted ΓK
T , is the right adjoint to the forgetful

functor ForK
T .

This description of the Zuckerman functor is not helpful for explicit computations. For
this reason, we will now describe a more explicit construction of this functor which will be
useful.

LetO(K) denote the ring of regular functions. For any vector space V, considerO(K)⊗
V to be the space of regular functions on K with values in V. Denote this space byO(K, V).
There are two natural representations of K on O(K, V) given by the left and right regular
action.

Convention 0.0.35. For the remainder of this section, we will always assume O(K, V) is
equipped with the left regular representation tensored with the trivial representation unless
otherwise noted. For the sake of clarity, let the right regular action be denoted by Rk and
the left regular action be denoted by Lk.

10



Assume now that (π, V) is an algebraic representation of K. Then there is a natural map

c : V → O(K, V)

k 7→ π(k)v

Definition 0.0.36. The map c is the matrix coefficient map.

It follows immediately that c(π(k)v)(h) = Rk(c(v))(h). That is to say that c is an in-
jective intertwining operator between the two representations. If in addition V is a (g, K)-
module, then c(π(ξ)v)(k) = π(ϕ(k)ξ)c(v)(k) for all ξ ∈ U(g). Thus, define a representa-
tion ν of g on O(K, V) by

ν(ξ)F = π(ϕ(k)ξ)F

Whence c intertwines the U(g)-module structure on V and O(K, V).

Remark 0.0.37. Note that we have not yet shown that O(K, V) is a (g, K)-module. The
actions we have defined have not yet been shown to be compatible. As we will see later,
this is actually more than we require. We will end up showing that a certain subspace is
indeed a (g, K)-module.

The representation we are about to define will be the central player in determining a
concrete realization of the Zuckerman functor. Set

Lπ := L⊗ π : K → O(K, V)

to be another representation of K on O(K, V).

Lemma 0.0.38. The image of the matrix coefficient map is contained in the space of all Lπ invariant
functions on K. In particular, it is an isomorphism between V and O(K, V)Lπ

.

Proof. The following computation shows the first result:

Lπ(k)c(v)(h) = π(k)c(v)(k−1h) = π(h)v = c(v)(h)

To obtain the second statement, let Ψ ∈ O(K, V)Lπ
. Then

Ψ(k) = Lπ(h)Ψ(k) = π(k)Ψ(k−1h)

for all h, k ∈ K. Therefore Ψ(kh) = π(k)Ψ(h). In particular, Ψ(k) = π(k)Ψ(1). Whence
Ψ = c(Ψ(1)). As c is a linear isomorphism which intertwines the actions of g and K, it is a
(g, K)-module isomorphism. This completes the proof.

Assume that (π, V) is only a (g, T)-module (again for T ⊆ K algebraic). The structure
of a U(g)-module on O(K, V) was already defined. Equip O(K, V) with the right regular
representation RkF(h) = F(hk) and let

Lπ
T := LT ⊗ π

where LT is the left regular representation of k and T onO(K). This defines a (k, T)-module
structure on O(K, V).

Lemma 0.0.39. The representation Lπ
T commutes with R and ν.

11



Proof. It is clear that Lπ
T commutes with R as the left and right regular representations

commute. Thus we need to show ν commutes with Lπ
T . Let us first show that for t ∈ T and

ξ ∈ g this commutes:

Lπ
T (t)ν(ξ)F(k) = π(t)(ν(ξ)F)(t−1k)

= π(ϕ(k)ξ)π(t)F(t−1k)
= ν(ξ)(Lπ

T T(t)F)(k)

On the other hand, the differential of Lπ
T of k on O(K, V) is given by

Lπ
T (X)F(k) = (L(X)F)(k) + π(X)F(k)

Thus, for h ∈ K, we have that

(ν(X)F)(h−1k) = π(ϕ(h−1k)X)F(h−1k) = π(ϕ(h−1)ϕ(k)X)F(h−1k)

Differentiating this at h = 1, we get

(L(X)ν(ξ)F)(k) = −π(ad(X)(ϕ(k)ξ))F(k) + π(ϕ(k)ξ)(L(X)F)(k)
= −π(X)(ν(ξ)F)(k) + π(ϕ(k)ξ)((λ(X)F)(k) + π(X)F(k))
= −π(X)(ν(ξ)F)(k) + (ν(ξ)Lπ

T (X)F)(k)

for all ξ ∈ g, X ∈ k. Combining this with what we have from above, we see then that

(Lπ
T (X)ν(ξ)F)(k) = (ν(ξ)Lπ

T (X)F)(k)

Hence, Lπ
T commutes with ν.

Definition 0.0.40. Let V be a (g, T)-module. Then the Zuckerman module of V is

ΓK
T(V) := O(K, V)Lπ

T

This is g and K invariant by the above construction.

As with every functor we have defined thusfar, we have the following lemma:

Lemma 0.0.41. ΓK
T(V) is a (g, K)-module.

Proof. For k ∈ K, ξ ∈ g and F ∈ O(K, V), we have

(ν(ϕ(k)ξ)F)(h) = (Rkν(ξ)Rk−1 F)(h)

by a simple calculation. Further, for F ∈ ΓK
T(V) we have that

F(kh) = F(Int(k)(h)k)

Since F is invariant for the Lπ-action of K, by differentiating with respect to h, we get

(Rξ F)(k) = −(Lπ(ϕ(k)ξ)F)(k) + π(ϕ(k)ξ)F(k) = (ν(ξ)F)(k)

Hence, ΓK
T(V) is a (g, K)-module.
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Lemma 0.0.42. ΓK
T is a functor.

Proof. For another (g, T)-module U and a morphism α : V → U we have a natural candi-
date for the intertwining map: 1⊗ α : O(K, V) → O(K, U). It clearly intertwines all of the
actions and thus descends to the invariants.

We will now prove the key theorem which motivated this entire construction:

Theorem 0.0.43. ΓK
T is right adjoint to the forgetful functor ForK

T :M(g, K)→M(g, T).

Before proving this, we need some setup involving the matrix coefficient map. If for
each V we denote the matric coefficient map as cV , then it is clear that c(−) is a natural
transformation

1M(g,K)
c(−)
=⇒ ΓK

T ◦ ForK
T

between functors on M(g, K). In a similar fashion, the evaluation at 1 morphism evV :
ΓK

T(V)→ V gives a natural transformation:

ForK
T ◦ΓK

T
ev(−)
=⇒ 1M(g,T)

Now we can prove the theorem:

Proof of Theorem 0.0.43. Let V be a (g, K)-module and U a (g, T)-module. For any α ∈
Homg,T(V, U) put ᾱ = ΓK

T(α) ◦ cV . This is a (g, K)-module morphism. Additionally, for
any β ∈ Homg,K(V, ΓK

T(U)), put β̂ = evU ◦β. We claim these maps are mutually inverse.
Let v ∈ V. Then

¯( ˆ )β(v)(k) = (1⊗ β̂) ◦ cV(v)(k)

= β̂(cV(v)(k))
= evU(β(π(k)v))
= β(π(k)v)(1)
= Rkβ(v)(1)
= β(v)(k)

Thus, ¯̂β = β.
Similarly, for α ∈ Homg,T(V, U) we have

ˆ̄α(v) = ᾱ(v)(1) = ((1⊗ α) ◦ cV)(v)(1) = α(cV(v))(1) = α(v)

Hence, the result is proved.

We now have the following formal corollaries.

Corollary 0.0.44. ΓK
T is the Zuckerman functor as defined abstractly.

Corollary 0.0.45. ΓK
T is left exact and maps injectives to injectives.

Corollary 0.0.46. The categoryM(g, K) has enough injectives.

Proof. Consider ΓK
1 and the fact that the unit of the adjunction gives a monomorphism

V → ΓK
1 (V)→ ΓK

1 (I) for I an injective object in Rep(g).

Note that this result does not depend on K being reductive. Therefore, we can always
define a cohomology theory for (g, K)-modules by way of the Zuckerman functor. To be
precise about this, we will need the language of derived categories. One huge upshot of
this approach is that we arrive at a quick proof of the Borel-Weil-Bott theorem.

13



0.0.2 Derived Categories of (g, K)-modules and vanishing of some Total
Derived Functors

We begin, as always, with a definition.

Definition 0.0.47. Let (g, K) be a Harish-Chandra pair. The unbound derived category of
(g, K)-modules is

D(g, K) := W−1K(M(g, K))

where W is the localizing class of quasi-isomorphisms and K(−) denotes the homotopy
category of chain complexes of (g, K)-modules. If we care to only consider semi-bounded
complexes then we shall amend the notation to be D∗(g, K) for ∗ ∈ {b,+,−,∅} for bounded,
bounded below, bounded above, and trivial complexes (complexes concentrated in a single
degree).

For any Lie subalgebra with k ⊆ h ⊆ g, we have a forgetful functor corresponding to
the inclusion of pairs (h, K) ↪→ (g, K) which we (by an abuse of notation) will denote as

Res(g,K)
(h,K) : D∗(g, K)→ D∗(h, K)

We saw previously that Ind(g,K)
(h,K) is exact. Combining this result with [?, Ch. 5, 1.7.1], we

obtain the following result:

Theorem 0.0.48. The functor Ind(g,K)
(h,K) : D∗(h, K) → D∗(g, K) is left adjoint to the forgetful

functor Res(g,K)
(h,K) .

Now, the categoryM(h, K) has enough injectives and Coind(g,K)
(h,K) is left exact as proven

in the previous section. By [?, Ch. 5, 3.1.3], we have that the total derived functor R Coind(g,K)
(h,K) :

D+(h, K)→ D+(g, K) exists and by [?, Ch. 5, 1.7.1] we have:

Theorem 0.0.49. The functor R Coind(g,K)
(h,K) is right adjoint to the forgetful functor.

If K is assumed to be reductive, then we saw that Coind(g,K)
(h,K) is exact. Thus, Coind(g,K)

(h,K)

lifts to a functor Coind(g,K)
(h,K) : D∗(h, K)→ D∗(g, K). Whence, we obtain the following:

Theorem 0.0.50. Coind(g,K)
(h,K) : D∗(h, K) → D∗(g, K) is right adjoint to the forgetful functor

Res(g,K)
(h,K) .

That is to say that for K reductive, we have that R Coind(g,K)
(h,K) = Coind(g,K)

(h,K) .
Now assuming T ⊆ K is a closed subgroup, we saw in the previous section we can

define the Zuckerman functor ΓK
T and it is left exact. Again as the category M(g, T) has

enough injectives, we see that RΓK
T exists. Further, as the forgetful functor preserves injec-

tives, we see that the following diagram commutes:
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D+(g, T) D+(g, K)

D+(h, T) D+(g, K)

RΓK
T

Res(g,T)
(h,T) Res(g,K)

(h,K)

RΓK
T

Moreover, in a similar theme to above, [?, Ch. 5, 1.7.1] gives the following:

Theorem 0.0.51. The functor RΓK
T is right adjoint to the forgetful functor Res(g,K)

(g,T) : D+(g, K)→
D+(g, T).

We can now combine the group induction with Lie algebra induction to obtain the so
called cohomological induction functor.

Definition 0.0.52. Let (g, K) be a Harish-Chandra pair, T ⊆ K a closed subgroup, and h a
lie subalgebra of g containing t.. Then we have the following inclusions of pairs

(h, T) ↪→ (g, T) ↪→ (g, K)

which induces a forgetful functor

Res(g,K)
(h,T) : D+(g, K)→ D+(h, T)

that factors through D+(g, T). Whence, by the above theorems, has a right adjoint given by
RΓK

T ◦ R Coind(g,T)
(h,T) . The cohomological induction functor is defined as this composition

and is denoted
R I(g,K)

(h,T) := RΓK
T ◦R Coind(g,T)

(h,T)

Corollary 0.0.53. The cohomological induction functor R I(g,K)
(h,T) : D+(h, T) → D+(g, K) is right

adjoint to the forgetful functor Res(g,K)
(h,L) .

Corollary 0.0.54. If T is reductive then

R I(g,K)
(h,T) = RΓK

T ◦Coind(g,T)
(h,T)

Suppose now that we have yet another Harish-Chandra subpair (l, S) ↪→ (h, T). We get
three cohomolgical induction functors R I(g,K)

(h,T), R I(h,T)
(l,S) and R I(g,K)

(l,S) . We want to relate these
to each other. A result from basic category theory tells us the following:

Theorem 0.0.55 (Cohomological Induction in Stages). The cohomological induction functor
R I(g,K)

(l,S) : D+(l, S)→ D+(g, K) is isomorphic to R I(g,K)
(h,T) ◦R I(h,T)

(l,S) .

Remark 0.0.56. Notice that for induction in stages classically is more technical and requires
additional components to be true. In particular, such a simple composition is not present
in the classical picture.

15



Algebraic Representations for Reductive Groups, revisited

For K an algebraic group and T a closed subgroup, we have the categories of algebraic
representations ARep(K) (resp. T) which we will now denote byM(K) (resp. T). As we
have seen prior, there is a natural identification

M(K) 'M(k, K)

Therefore, using the above we have a cohomological induction functor

R IK
T : D+(T)→ D+(K)

which is right adjoint to the forgetful functor.
If we assume however that T, K are reductive, then we obtain an even more interest-

ing statement. We recall that in this situation Coind = R Coind . Thus, R IK
T = RΓK

T ◦
Coind(k,T)

(t,T) . On the other hand we have that ΓK
T is right adjoint to the restriction functor

and thus we obtain the following chain of bijections for an irreducible algebraic represen-
tation of K:

HomK(V, ΓK
T(Coind(k,T)

(t,T)(U))) = Homk,T(V, Coind(k,T)
(t,T)(U)) = HomT(V, U)

Since H is reductive, we have that Hom (resp. ⊗) is exact. Therefore U 7→ HomT(V, U)
is exact. Whence, the functor

U 7→ HomK(V, ΓK
T Coind(k,T)

(t,T)(U))

is exact.
Since K is reductive, every algebraic representation is a direct sum of irreducibles.

Therefore, the functor IK
T = ΓK

T ◦ Coind(k,T)
(t,T) is exact. It is right adjoint to the forgetful

functor and we have classical Frobenius reciprocity:

Theorem 0.0.57. Let V be an irreducible representation of K. Then

HomK(V, IK
T (U)) = HomT(V, U)

Since IK
T is exact, it lifts to a functor on the corresponding derived categories. Thus, we

obtain the following result:

Theorem 0.0.58. The functors IK
T and R I(k,K)

(t,T) are isomorphic.

A Vanishing Theorem

Let (g, K) be a Harish-Chandra pair, T a subgroup of K, and h a T-invariant subalgebra of
g. Assume that

(a) t = k∩ h

(b) g = k+ h.

Then (h, T) is a Harish-Chandra subpair of (g, T). By the Poincaré-Birkhoff-Witt theorem
we obtain an isomorphism:
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Lemma 0.0.59. U(h)⊗U(t) U(k) ∼= U(g) as U(h)-modules.

Further, in combination with the natural inclusion i : U(t) → U(g) we obtain an iso-
morphism:

Homh(U(g), U)→ Homt(U(k), U)

for all U ∈ Rep(g).
If in addition U is a (h, T)-module, then the isomorphism intertwines the T action and

thus induces an isomorphism of algebraic representations

Homh(U(g), U)[T] → Homt(U(k), U)[T]

Henceforth, we obtain the following lemma:

Lemma 0.0.60. The following diagrams commute:

M(h, T) M(g, T)

M(t, T) M(k, T)

Res(h,T)
(t,T)

Coind(g,T)
(h,T)

Res(g,T)
(t,T)

Coind(k,T)
(t,T)

D+(h, T) D+(g, T)

D+(t, T) D+(k, T)

Res(h,T)
(t,T)

R Coind(g,T)
(h,T)

Res(g,T)
(t,T)

R Coind(k,T)
(t,T)

By now applying the functor RΓK
T to the diagram and assuming K and T reductive, we

obtain the following diagram:

D+(h, T) D+(g, T)

D+(t, T) D+(k, K)

Res(h,T)
(t,T)

R I(g,K)
(h,T)

Res(g,T)
(t,T)

IK
T

Since, IK
T is exact, we conclude that the higher cohomologies of R I(g,K)

(h,T) vanish. Thus,
we obtain the following theorem:

Theorem 0.0.61. Under the assumptions above, I(g,K)
(h,T) is exact.

0.0.3 n-homology and the Borel-Weil-Bott theorem

Using everything we have done, we can now prove a cohomological induction version of
a theorem of Borel and Weil and extended by Bott:
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Theorem 0.0.62. Let G be a connected semisimple algebraic group, T a Cartan subgroup, and λ
an anti-dominant weight of T. For each w ∈W(g, t) we have

Hp(G/T, Vw(λ−ρ)+ρ = Fλ

for p = `(w) and 0 otherwise.

We will do this by making use of n-homology and a theorem of Kostant.

n-homology as an adjoint

Let G be a semisimple algebraic group, T a Cartan subgroup with Lie algebra t, and ∆ =
∆(g, t) the set of roots. With respect to a choice of positivity, we can define ∆+ and a
subalgebra

b = t⊕
⊕

α∈∆+

gα := t⊕ n

It then follows that Ad(T) normalizes n and for any (b, T)-module V we obtain a (b, T)-
module Vn = V/nV where n acts trivially. Therefore, using the identificationM(t, T) =
M(T), we see that V 7→ Vn defines an additive functor

M(b, T)→M(T)

In the reverse direction, we can treat any (t, T)-module as a (b, T)-module by extending
the action trivially to n. This defines a functor

F :M(T)→M(b, T)

Lemma 0.0.63. The functor (−)n is left adjoint to the functor F.

Proof. For V a (b, T)-module and U an algebraic representation of T, we see that

Hom(b,T)(V, F(U)) = Hom(b,T)(F(Vn), F(U)) = HomT(Vn, U)

Now as T is reductive, the category M(b, T) has enough projectives by the previous
section. Therefore the functor (−)n has a total left derived functor D−(b, T)→ D−(T).

If we forget the T action and restrict the b action to n this functor will be the derived
functor of Lie algebra homology. Thus, denote by

H•(n,−) := L(−)n

From the standard complex, we see that the homological dimension Hdim(−)n is finite.
Thus the cohomological dimension is also finite and the functor H•(n,−) extends to a func-
tor on the entire unbound derived category. By restricting to bounded below complexes,
we obtain the following:

Theorem 0.0.64. The functor H•(n,−) : D+(b, T) → D+(T) is left adjoint to the functor
F : D+(T)→ D+(b, T).

Combining this adjunction with the adjunction for the cohomological induction func-
tors implies the following:

Corollary 0.0.65. The functor R I(g,G)
(b,T) : Db(T)→ Db(G) is right adjoint to the functor H•(n,−).
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The proof of the main theorem

Let µ be a weight of T and denote by Cµ the one dimensional representation of T corre-
sponding to µ. Let Fλ be the irreducible finite dimensional representation of G with lowest
weight λ. Kostant proved the following elegant theorem:

Theorem 0.0.66 (Kostant). In the setting above, denote by W(p) the elements of the Weyl group
of length p. Then we have

Hp(n, Fλ) =
⊕

w∈W(p)

Cw(λ−ρ)+ρ

for any 0 ≤ p ≤ dim n.

Applying this theorem to the above, we know that

H•(n, Fλ) =
dimn⊕
p=0

 ⊕
w∈W(p)

Cw(λ−ρ)+ρ

 [p]

By the adjointness we just proved, we have

HomD+(G)(Fλ, R I(g,G)
(b,T) (Cµ)[q]) = HomD+(T)(H•(n, Fλ), Cµ[q])

= HomD+(T)

 ⊕
w∈W(p)

Cw(λ−ρ)+ρ, Cµ[q]


Thus, HomD+(G)(Fλ, R I(g,G)

(b,T) (Cµ)[q]) = 0 for µ 6= w(λ− ρ) + ρ for some w ∈ W. If µ is of
this form and w has length p, then

HomD+(G)(Fλ, R I(g,G)
(b,T) (Cµ)[q]) = C

if p = q and is 0 otherwise.
Applying Schur’s lemma, we arrive at the result:

Theorem 0.0.67 (Cohomological Induction Borel-Weil-Bott). Let λ be an anti-dominant weight
of T and w ∈W. Then

Rp I(g,G)
(b,T) (Cw(λ−ρ)+ρ) = Fλ

for p = `(w) and 0 otherwise.
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